Меню

Амплитуда напряжения между пластинами конденсатора емкостью 5 мкф в цепи переменного тока

§ 33. Конденсатор в цепи переменного тока

Постоянный ток не может идти по цепи, содержащей конденсатор. Ведь фактически при этом цепь оказывается разомкнутой, так как обкладки конденсатора разделены диэлектриком. Переменный же ток может идти по цепи, содержащей конденсатор. В этом можно убедиться с помощью простого опыта.

Цепь состоит из конденсатора и лампы накаливания

Пусть у нас имеются источники постоянного и переменного напряжений, причем постоянное напряжение на зажимах источника равно действующему значению переменного напряжения. Цепь состоит из конденсатора и лампы накаливания (рис. 4.13), соединенных последовательно. При включении постоянного напряжения (переключатель повернут влево, цепь подключена к точкам АА’) лампа не светится. Но при включении переменного напряжения (переключатель повернут вправо, цепь подключена к точкам ВВ’) лампа загорается, если емкость конденсатора достаточно велика.

Как же переменный ток может идти по цепи, если она фактически разомкнута (между пластинами конденсатора заряды перемещаться не могут)? Все дело в том, что происходит периодическая зарядка и разрядка конденсатора под действием переменного напряжения. Ток, идущий в цепи при перезарядке конденсатора, нагревает нить лампы.

Установим, как меняется со временем сила тока в цепи, содержащей только конденсатор, если сопротивлением проводов и обкладок конденсатора можно пренебречь (рис. 4.14).

Напряжение на конденсаторе

Напряжение на конденсаторе

равно напряжению на концах цепи. Следовательно,

Заряд конденсатора меняется по гармоническому закону:

Сила тока, представляющая собой производную заряда по времени, равна:

Сила тока, представляющая собой производную заряда по времени

Колебания силы тока опережают по фазе колебания

Следовательно, колебания силы тока опережают по фазе колебания напряжения на конденсаторе на (рис. 4.15).

Амплитуда силы тока равна:

Если ввести обозначение

и вместо амплитуд силы тока и напряжения использовать их действующие значения, то получим

Величину Хс, обратную произведению ωС циклической частоты на электрическую емкость конденсатора, называют емкостным сопротивлением. Роль этой величины аналогична роли активного сопротивления R в законе Ома (см. формулу (4.17)). Действующее значение силы тока связано с действующим значением напряжения на конденсаторе точно так же, как связаны согласно закону Ома сила тока и напряжение для участка цепи постоянного тока. Это и позволяет рассматривать величину Хс как сопротивление конденсатора переменному току (емкостное сопротивление).

Чем больше емкость конденсатора, тем больше ток перезарядки. Это легко обнаружить по увеличению накала лампы при увеличении емкости конденсатора. В то время как сопротивление конденсатора постоянному току бесконечно велико, его сопротивление переменному току имеет конечное значение Хс. С увеличением емкости оно уменьшается. Уменьшается оно и с увеличением частоты ω.

В заключение отметим, что на протяжении четверти периода, когда конденсатор заряжается до максимального напряжения, энергия поступает в цепь и запасается в конденсаторе в форме энергии электрического поля. В следующую четверть периода, при разрядке конденсатора, эта энергия возвращается в сеть.

Сопротивление цепи с конденсатором обратно пропорционально произведению циклической частоты на электроемкость. Колебания силы тока опережают по фазе колебания напряжения на .

Вопросы к параграфу

1. Как связаны между собой действующие значения силы тока и напряжения на конденсаторе в цепи переменного тока?

2. Выделяется ли энергия в цепи, содержащей только конденсатор, если активным сопротивлением цепи можно пренебречь?

3. Выключатель цепи представляет собой своего рода конденсатор. Почему же выключатель надежно размыкает цепь?

Источник

Колебания и волны

Решебник к сборнику задач по физике Н. А. Парфентьева

633. Через какой наименьший промежуток времени от начала движения из положения равновесия тело, подвешенное на нити, смещается на половину амплитуды? Данную систему нить — тело считайте математическим маятником, период колебаний которого 12 с. За какое время тело проходит оставшуюся часть пути до максимального смещения?

Колебания и волны

634. Шарику массой 100 г, висящему на пружине жесткостью 1,6 Н/м, сообщили скорость 0,04 м/с, направленную вертикально вниз, и одновременно включили секундомер. Запишите закон изменения координаты шарика х от времени. Ось ОХ направлена вертикально вверх.

Колебания и волны

635. Грузик, надетый на гладкую горизонтальную спицу, соединен двумя невесомыми пружинами (рис. 154). Свободные концы пружин прикреплены к неподвижным стенкам. В положении равновесия пружины не деформированы. Определите период колебаний грузика, если известно, что при его поочередном подвешивании к каждой из пружин по отдельности они удлиняются соответственно на 4 и 6 см.

Колебания и волны

636. Тело массой 1 кг колеблется на пружине с амплитудой 0,02 м. Максимальное ускорение тела равно 0,3 м/с2. Определите полную механическую энергию колебаний.

Читайте также:  Что проводит электрический ток в жидкостях

Колебания и волны

639. На гладкой горизонтальной поверхности на пружине жесткостью k находится брусок массой т. Свободный конец пружины прикреплен к стене. В брусок попадает пуля, летящая со скоростью v0 под углом а к горизонту, и застревает в нем (рис. 156). Масса пули, равная т0, много меньше массы бруска. Определите энергию колебаний системы и запишите уравнение колебаний бруска вдоль оси ОХ, считая за нуль его начальное положение.

Колебания и волны

642. Небольшой шарик массой 20 г, подвешенный на нерастяжимой непроводящей нити, совершает колебания в однородном электрическом поле напряженностью 20 В/м, силовые линии которого вертикальны. После того как ему сообщили некоторый заряд q, период колебаний изменился в 1,2 раза. Определите заряд q.

Колебания и волны

643. Ускорение свободного падения на поверхности Марса 3,7 м/с2. Сравните периоды колебаний математического и пружинного маятников на Марсе и Земле.

Колебания и волны

648. Колебательный контур состоит из катушки и двух конденсаторов, которые можно подключать по отдельности и параллельно. При подключении поочередно одного из конденсаторов периоды колебаний в колебательном контуре равны 3 и 4 с. Определите период колебаний при параллельном подключении обоих конденсаторов.

Колебания и волны

651. В колебательном контуре, состоящем из катушки индуктивностью 2 Гн и конденсатора емкостью 1,5 мкФ, максимальное значение заряда на пластинах 2 • 10“6 Кл. Определите значение силы тока в контуре в тот момент, когда заряд на пластинах конденсатора станет равным 10“6 Кл.

Колебания и волны

652. В колебательном контуре, состоящем из конденсатора емкостью 10 мкФ и катушки индуктивностью
0,4 Гн, происходят затухающие колебания. В некоторый момент времени сила тока в контуре 10

3 А, а заряд на пластинах конденсатора 10

6 Кл. Определите количество теплоты, выделившейся в проводниках, когда колебания полностью прекратятся.

Колебания и волны

653. Определите период колебаний в контуре (рис. 157). В цепь включены два идеальных полупроводниковых диода. С = 0,25 мкФ, Lx = 2,5 мГн, Ь2 = 4,9 мГн.

Колебания и волны

655. На рисунке 158 показан график зависимости силы тока от времени. Определите действующее значение силы переменного тока.

Колебания и волны

658. К генератору переменного тока подключили печь сопротивлением 440 Ом. Определите количество теплоты, выделившейся в печи за 2 мин работы, если амплитуда напряжения 220 В.

Колебания и волны

663. В цепи (рис. 159) индуктивность катушки равна 2,53 мГн, а емкость конденсатора равна 10 мкФ, частота источника переменного тока равна 103 Гц. Определите силу тока, идущего через резистор.

Колебания и волны

Колебания и волны

665. Определите амплитуду установившихся колебаний силы тока при резонансе в колебательном контуре, если активное сопротивление равно 5 Ом, а амплитудное значение внешнего напряжения равно 100 В.

667. В колебательный контур с конденсатором емкостью 10 мкФ и катушкой индуктивностью 0,1 Гн последовательно включили источник переменной ЭДС. При какой частоте ЭДС амплитуда силы тока в контуре будет максимальной?

Колебания и волны

670. Первичная обмотка трансформатора в ламповом радиоприемнике имеет 2000 витков, напряжение в сети 220 В. Определите число витков во вторичной обмотке трансформатора, используемого для питания электролампы, рассчитанной на напряжение 10 В и силу тока 0,5 А, если сопротивление вторичной обмотки 2 Ом.

Колебания и волны

675. Для определения числа витков в первичной обмотке трансформатора на его сердечник намотали 10 витков провода и концы подключили к вольтметру. При подаче на первичную обмотку переменного напряжения 220 В вольтметр показал напряжение 1,1 В. Чему равно число витков в первичной обмотке трансформатора?

Колебания и волны

680. Камень брошен со скалы. Всплеск от его падения в воду был услышан через 5 с. Определите высоту скалы. Скорость звука в воздухе 330 м/с.

Колебания и волны

685. Волна возбуждается источником, уравнение колебаний которого s = 0,lsin57rt. Скорость распространения волны 100 м/с. Запишите уравнение волны и найдите смещение от положения равновесия, скорость и ускорение точки, находящейся на расстоянии 180 м от источника колебаний в момент времени, равный 2 с.

Колебания и волны

689. Определите расстояние от наблюдателя до места, где вспыхнула молния, если промежуток времени между вспышкой и громом был равен 5 с. Скорость звука в воздухе 330 м/с, скорость света 3 • 108 м/с.

Колебания и волны

692. Наибольшая частота волн, воспринимаемых ухом как звук, равна 20 000 Гц. При повышении температуры от 0 до 20 °С скорость звука возрастает на 12 м/с. Определите, на сколько возрастает при этом наименьшая длина звуковых волн.

Читайте также:  Сосновая канифоль проводит ток

Колебания и волны

696. Определите, на каком расстоянии от источника плотность потока излучения уменьшится в 100 раз по сравнению с плотностью потока излучения на расстоянии 100 м от источника.

Колебания и волны

704. Радиолокатор, ведя разведку месторождений, работает на волне 12 см и дает 5000 импульсов в секунду. Длительность импульса 3 мкс. Сколько колебаний содержится в каждом импульсе и какова наибольшая глубина разведки локатора?

Источник



Амплитуда напряжения между пластинами конденсатора емкостью 5 мкф в цепи переменного тока

Колебания напряжения на конденсаторе в цепи переменного тока описываются уравнением U=40 косинус (500t),где все величины выражены в СИ. Емкость конденсатора равна C = 6мкФ.Найдите амплитуду силы тока. (Ответ дать в амперах.)

Общий вид зависимости напряжения на конденсаторе в колебательном контуре: U=U_0 косинус (\omega t плюс \varphi_0),где U_0— амплитудное значение напряжения. Сравнивая с U=40 косинус (500t),находим, что U_0=40В, \omega =500с в степени минус 1 .Значение максимального заряда на обкладках конденсатора равно q_0=CU_0=6мкФ умножить на 40В=0<, data-lazy-src=

Решение задач по теме «Электромагнитные колебания и волны» на примере разбора задач ЕГЭ

Презентация к уроку

Назад Вперёд

Цели урока:

  • Образовательные: обобщение и систематизация знаний по теме, проверка знаний, умений, навыков. В целях повышения интереса к теме работу вести с помощью опорных конспектов.
  • Воспитательные: воспитание мировоззренческого понятия (причинно-следственных связей в окружающем мире), развитие у школьников коммуникативной культуры.
  • Развивающие: развитие самостоятельности мышления и интеллекта, умение формулировать выводы по изученному материалу, развитие логического мышления, развитие грамотной устной речи, содержащей физическую терминологию.

Тип урока:систематизация и обобщение знаний.

Техническая поддержка урока:

  • Демонстрации:
  • Плакаты.
  • Показ слайдов с помощью информационно – компьютерных технологий.
  • Дидактический материал:
  • Опорные конспекты с подробными записями на столах.
  • Оформление доски:
  • Плакат с кратким содержанием опорных конспектов (ОК);
  • Плакат – рисунок с изображением колебательного контура;
  • Плакат – график зависимости колебаний заряда конденсатора, напряжения между обкладками конденсатора, силы тока в катушке от времени, электрической энергии конденсатора, магнитной энергии катушки от времени.

План урока:

1. Этап повторения пройденного материала. Проверка домашнего задания.
Четыре группы задач по теме:

  • Электромагнитные колебания.
  • Колебательный контур.
  • Свободные колебания. Свободные колебания – затухающие колебания
  • Характеристика колебаний.

2. Этап применения теории к решению задач.
3. Закрепление. Самостоятельная работа.
4. Подведение итогов.

Учитель: Темой урока является «Решение задач по теме: «Электромагнитные колебания и волны» на примере разбора задач ЕГЭ»

К доске вызываются 3 ученика для проверки домашнего задания.

– Задания по этой теме можно разделить на четыре группы.

Четыре группы задач по теме:

1. Задачи с использованием общих законов гармонических колебаний.
2. Задачи о свободных колебаниях конкретных колебательных систем.
3. Задачи о вынужденных колебаниях.
4. Задачи о волнах различной природы.

– Мы остановимся на решении задач 1 и 2 групп.

Урок начнем с повторения необходимых понятий для данной группы задач.

Электромагнитные колебания – это периодические и почти периодические изменения заряда, силы тока и напряжения.

Колебательный контур – цепь, состоящая из соединительных проводов, катушки индуктивности и конденсатора.

Свободные колебания – это колебания, происходящие в системе благодаря начальному запасу энергии с частотой, определяемой параметрами самой системы: L, C.

Читайте также:  Напряжение переменного тока сокращение

Скорость распространения электромагнитных колебаний равна скорости света: С = 3 . 10 8 (м/с)

Основные характеристики колебаний

Амплитуда (силы тока, заряда, напряжения) – максимальное значение (силы тока, заряда, напряжения): Im, Qm, Um
Мгновенные значения (силы тока, заряда, напряжения) – i, q, u

Схема колебательного контура

Учитель: Что представляют электромагнитные колебания в контуре?

Электромагнитные колебания представляют периодический переход электрической энергии конденсатора в магнитную энергию катушки и наоборот согласно закону сохранения энергии.

Задача №1 (д/з)

Колебательный контур содержит конденсатор емкостью 800 пФ и катушку индуктивности индуктивностью 2 мкГн. Каков период собственных колебаний контура?

Задача № 2 (д/з)

Колебательный контур состоит из конденсатора емкостью С и катушки индуктивности индуктивностью L. Как изменится период свободных электромагнитных колебаний в этом контуре, если электроемкость конденсатора и индуктивность катушки увеличить в 3р.

Задача № 3 (д/з)

Амплитуда силы тока при свободных колебаниях в колебательном контуре 100 мА. Какова амплитуда напряжения на конденсаторе колебательного контура, если емкость этого конденсатора 1 мкФ, а индуктивность катушки 1 Гн? Активным сопротивлением пренебречь.

Схема электромагнитных колебаний

Ученик 1 наглядно описывает процессы в колебательном контуре.

Ученик 2 комментирует электромагнитные колебания в контуре, используя графическую зависимость заряда, напряжения. Силы тока, электрической энергии конденсатора, магнитной энергии катушки индуктивности от времени.

Уравнения, описывающие колебательные процессы в контуре:

Обращаем внимание, что колебания силы тока в цепи опережают колебания напряжения между обкладками конденсатора на π/2.
Описывая изменения заряда, напряжения и силы тока по гармоническому закону, необходимо учитывать связь между функциями синуса и косинуса.

Задача № 1.

По графику зависимости силы тока от времени в колебательном контуре определите, какие преобразования энергии происходят в колебательном контуре в интервале времени от 1мкс до 2мкс?

1. Энергия магнитного поля катушки увеличивается до максимального значения;
2. Энергия магнитного поля катушки преобразуется в энергию электрического поля конденсатора;
3. Энергия электрического поля конденсатора уменьшается от максимального значения до «о»;
4. Энергия электрического поля конденсатора преобразуется в энергию магнитного поля катушки.

Задача № 2.

По графику зависимости силы тока от времени в колебательном контуре определите:

а) Сколько раз энергия катушки достигает максимального значения в течение первых 6 мкс после начала отсчета?
б) Сколько раз энергия конденсатора достигает максимального значения в течение первых 6 мкс после начала отсчета?
в) Определите по графику амплитудное значение силы тока, период, циклическую частоту, линейную частоту и напишите уравнение зависимости силы тока от времени.

Задача № 3 (д/з)

Дана графическая зависимость напряжения между обкладками конденсатора от времени. По графику определите, какое преобразование энергии происходит в интервале времени от 0 до 2 мкс?

1. Энергия магнитного поля катушки увеличивается до максимального значения;
2. Энергия магнитного поля катушки преобразуется в энергию электрического поля конденсатора;
3. Энергия электрического поля конденсатора уменьшается от максимального значения до «о»;
4. Энергия электрического поля конденсатора преобразуется в энергию магнитного поля катушки.

Задача № 4 (д/з)

Дана графическая зависимость напряжения между обкладками конденсатора от времени. По графику определите: сколько раз энергия конденсатора достигает максимального значения в период от нуля до 2мкс? Сколько раз энергия катушки достигает наибольшего значения от нуля до 2 мкс? По графику определите амплитуду колебаний напряжений, период колебаний, циклическую частоту, линейную частоту. Напишите уравнение зависимости напряжения от времени.

К доске вызываются 2 ученика

Задача № 5, 6

Задача № 7

Заряд на обкладках конденсатора колебательного контура изменяется по закону
q = 3·10 –7 cos800πt. Индуктивность контура 2Гн. Пренебрегая активным сопротивлением, найдите электроемкость конденсатора и максимальное значение энергии электрического поля конденсатора и магнитного поля катушки индуктивности.

Задача № 8

В идеальном колебательном контуре происходят свободные электромагнитные колебания. В таблице показано, как изменяется заряд конденсатора в колебательном контуре с течением времени.

t, 10 –6 (C) 1 2 3 4 5 6 7 8 9
q, 10 –9 (Кл) 2 1,5 –1,5 –2 –1,5 1,5 2 1,5

1. Напишите уравнение зависимости заряда от времени. Найдите амплитуду колебаний заряда, период, циклическую частоту, линейную частоту.

2. Какова энергия магнитного поля катушки в момент времени t = 5 мкс, если емкость конденсатора 50 пФ.

Домашнее задание. Напишите уравнение зависимости силы тока от времени. Найдите амплитуду колебаний силы тока. Постройте графическую зависимость силы тока от времени.

Источник