Асинхронный двигатель с тиристорным регулятором напряжения
Скорость асинхронного двигателя (АД) можно регулировать изменением напряжения, подводимого к статору, при этом частота напряжения на двигателе не изменяется и равна частоте сети 50 Гц.
Для регулирования напряжения на статоре АД (рис. 8.11) наибольшее распространение получили тиристорные регуляторы напряжения (ТРН), которые обладают большим быстродействием, высоким КПД, небольшой стоимостью. В каждую фазу трехфазного ТРН включаются два тиристора по встречно-параллельной схеме, которая обеспечивает протекание тока в нагрузке в оба полупериода напряжения сети U1. Тиристоры получают импульсы управления Ua от системы импульсно-фазового управления (СИФУ), которая обеспечивает их сдвиг на угол управления αа в функции внешнего сигнала Uy. Изменяя угол управления αа от 0 до 180°, можно регулировать напряжение на статоре от полного напряжения сети U1 до нуля. Форма напряжения статора является несинусоидальной.
Несинусоидальное напряжение представим как совокупность нес-кольких синусоидальных напряжений –— гармоник с определенной час-тотой. Частота изменения первой из них (основной) равна частоте питающего напряжения f1,ь а частоты других гармоник больше, чем первой. Основная гармоника имеет наибольшую амплитуду, и по ней ведутся все основные расчеты.На рис.8.14,(б)показаны механические характеристики АД при изменении напряжения на его статоре.
Регулирование напряжения на статоре не приводит к изменению скорости ХХωw и не влияет на критическое скольжение sK, но изменяет значение критического (максимального) момента МKк. Критический момент пропорционален квадрату напряжения: МK к
Рис. 8.11.Схема асинхронного ЭП с тиристорным пусковым устройством
Скольжение s определяется зависимостью, где ω – скорость идеаль-
ного холостого хода АД:
Скольжение sопределяется зависимостью
где w — скорость идеального холостого хода АД.
Полная мощность на валу, включающая потери на трение и венти-ляцию:
где М – — электромагнитный момент двигателя.
Полная электромагнитная мощность, передаваемая от статора к ро-тору через воздушный зазор:
Разность мощностей рассеивается в виде теплоты в активных сопротивлениях ротора. Потери в роторе определяются как
. (8.1)
Часть электромагнитной мощности, пропорциональная скольжению s, рассеивается в виде теплоты в обмотке ротора, другая часть, пропор-циональная (1 — s), передается на вал двигателя, т.е.
(8.2)
Т. о.,Способ регулирования скорости изменением напряжения является неэкономичным, так как потери в роторе при постоянном моменте наг-рузки возрастают пропорционально скольжению.
Из (8.1) получим выражение длямомент двигателя:
, (8.3)
где т –— число фаз статора; r2–— сопротивление ротора.
.
В установившемся режиме работы момент двигателя М равен мо-менту сопротивления МсМС. Для вентиляторной нагрузки
Вывод. Токи АД обратно пропорциональны
.
Продифференцировав последнее выражение, легко показать, что токи имеют максимальное значение при s = 1/3 или ωw = 2/Зωw. Для постоянного момента нагрузки полу-чаем:
.
Рис. 8.12. Характеристика АД с повышенным сопротивлением статора |
Cопротивление ротора является важным параметром, влияющим на токи двигателя. Для получения удов-летворительных режимов работы двигателя с вентиляторным моментом сопротивления на валу необходимо применять двигатели с повышенным сопротивлением ротора, обеспечи-вающим номинальное скольжение 10. 12 %. При работе с постоянным моментом нагрузки сопротивление ротора должно быть еще больше.
На рис. 8.12 приведены харак-теристики двигателя с повышенным сопротивлением ротора. Их сравнение с характеристиками на рис. 8.11 показывает, что при применении двигателя с повышенным сопротив-лением ротора удается несколько увеличить диапазон регулирования. Для рассматриваемого способа используются также двигатели с пере-менным сопротивлением ротора. Обычные глубокопазовые или двух-кле-точные двигатели в этих случаях оказываются малоэффективными. Луч-шие характеристики имеют двигатели с массивным ротором или клиньями, изготовленными в виде постоянных магнитов. В этом случае нагрев двигателя уменьшается, так как часть потерь в роторной цепи рассеивается вне двигателя.
Все перечисленные мероприятия не могут существенноо устранить потери в роторной цепи,что сильно ограничивает диапазон регулирования в этой системе. Для реверса АД, (см. рис.7.8,а) могут быть использованы обычные контакторы, которые переклю-чают два провода в цепи статора при отсутствии тока в силовой цепи, за счет предварительного устранить потери в роторной цепи, что сильно ограничивает диапазон регулирования в этой системе. Для реверса АД, рис.7.8,а, могут быть использованы обычные контакторы, которые переключают два провода в цепи статора при отсутствии тока в силовой цепи за счет предварительного запирания тиристоров. Бестоковая коммутация позволяет повы-сить безотказность работы контакторов. Реверсирование фаз статора можно осущес-твить также бесконтактным способом за счет включения дополнительных тиристор-ных групп (рис.8.13). При прямом враще-нии двигателя тиристоры дополнительных групп Х иУ закрыты.
Рис. 8.13. Схема тиристорного регулятора напряжения для реверсивной схемы |
Рис. 8.14. Схема несимметричного регулятора напряжения асинхронного двигателя |
Управляющие импульсы к этим ти-ристорам подаются в том случае, если группы А и С закрыты. При этом изме-няется порядок чередования фаз прило-женного напряжения к статору напряже-ния, и двигатель реверсируется. Группы Х и У должны открыватьсяпосле полного запирания групп A и C, в противном случае возникает режим КЗ. Для предотвращения режима КЗ в фазы статора включают датчики тока, которые запрещают перек-лючение тиристорных групп до тех пор, пока токи не станут равными нулю. На рис. 8.17 приведена схема, которая содержит только две пары тиристоров, а третья фаза наг-рузки подключена непосредственно к сети.
Схема регулятора напряжения может содержать только два тирис-тора, включенных в одну из фаз статора двигателя. Однако в несиммет-ричных схемах усугубляются проблемы, связанные с нагревом двига-теля, так как нагрузка между его фазами распределяется неравномерно и некоторые фазы оказываются сильно перегруженными. Для несиммет-ричной нагрузки линейные напряжения, приложенные к зажимам статора в общем случае не равны друг другу
Если магнитная цепь АД не насыщена, то система несимметричных напряжений с помощью метода симметричных составляющих заменяется двумя системами симметричных напряжений прямой и обратной после-довательностей, которым соответствуют магнитные потоки двигателя, вращающиеся в противоположных направлениях. Если принять угловую скорость прямого поля ωwпр = ωwо за положительную, то угловая скорость обратного поля ωwобр = -ωwо В соответствии с этим скольжение относительно поля прямой последовательности вычисляется по формуле
а последовательности:относительно поля обратной последовательности по формуле
Момент, развиваемый двигателем при асимметричной системе нап-ряжений, равен алгебраической сумме моментов, обусловленных полями прямой и обратной последовательностей::
.
Поскольку каждая из рассматриваемых систем напряжений симмет-рична, для них справедливы известные формулы расчета момента АД.
Несмотря на все отмеченные недостатки, система ТРН-АД вследст-вие ее простого конструктивного исполнения, нашла широкое примене-ние в связи с тем, что она позволяет обеспечить плавный пуск и тормо-жение электродвигателя, ограничить пусковой момент и токи, изменять направление скорости АД. На базе ТРН изготовляются тиристорные ре-версивные и нереверсивные контакторы для пуска, реверса и торможе-ния АД.
Одна из реальных областей применения системы ТРН-АД связана с использованием ее в ЭП насосных и вентиляторных установок.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Источник
Асинхронный электропривод с тиристорными регуляторами напряжения
Рейтинг 2.1/5 (40 голосов)
Асинхронный электропривод с тиристорным регулятором напряжения
На рис. представлена типовая схема замкнутой (имеющей обратные связи) системы автоматического регулирования (САР) скорости вращения и тока АД крановых ЭП.
ЭП включает АД с подключенными к цепи ротора пускорегулирующими сопротивлениями, тиристорный регулятор напряжения типа РСТ на тиристорах VS1 — VS6, систему импульсно-фазового управления (СИФУ) и цепи обратных связей.
Реверсирование АД осуществляется контакторами КМ1, КМ2, а вал двигателя тормозится и фиксируется посредством тормозного электромагнита YВ. Расширение диапазона регулирования достигается применением пускорегулирующих сопротивлений, коммутируемых контакторами КМ3 и КМ4.
САР имеет обратные связи (ОС) по скорости (тахогенератор BR) и по току (трансформаторы тока ТА и блоки токоограничения УТО, блок нелинейности по току НТ, блок защиты по току МТ). Первая ОС обеспечивает стабилизацию скорости — высокую жесткость характеристик во всем диапазоне регулирования, вторая — ограничение тока
в пределах до 1,5 номинального.
Напряжение управления с командоконтроллера КК подается на блок задания скорости БЗС. С него задающее напряжение, соответствующее заданному значению скорости АД, подается на узел сравнения, куда поступает также напряжение ОС по скорости. Результирующее напряжение управления подается на вход усилителей У1, РУ, У2. От напряжения У2 зависит фаза импульсов СИФУ, подаваемых на управляющие электроды
тиристоров, и, следовательно, величина напряжения РСТ, подаваемого на АД.
Сигнал с блока логики поступает также на контакторы КМ1, либо КМ2, определяя направление вращения АД.
Источник