Меню

Частотный регулятор 3 фазного двигателя

Преобразователь частоты для электродвигателя: назначение, свойства, схемы подключения

Электродвигатели — составляющая часть бытовой и строительной техники, производственного оборудования. Небольшой мощности моторы стоят в кулерах, обеспечивающих охлаждение компьютерной техники и электронных устройств. Но далеко не все хорошие и дешевые двигатели могут работать с разной скоростью, а это ограничивает область их применения. Частотный преобразователь для электродвигателя как раз и предназначен для того, чтобы обойти эту сложность. Этот прибор изменяет частоту электрического тока, что позволяет решить многие проблемы.

Частотный преобразователь для электродвигателя: назначение и функции

Инверторный преобразователь частоты — электронное устройство для изменения частоты электрического тока и напряжения. Пределы изменений солидные. Частота может меняться от 1 Гц до 500 Гц. И это не максимум, а предел регулировки нормального частотника. Современные частотные инверторы делают на основе электроники, что позволяет точно поддерживать частоту и напряжение. При желании можно создать условия для плавного старта. Все это позволяет применять относительно недорогие электромоторы постоянного тока там, где раньше это было невозможно.

Частотный инвертор с асинхронным электромотором

Асинхронные двигатели при включении потребляют в разы больше энергии чем при штатной работе. Пусковые токи могут быть в 6-8 раз выше рабочих. Такие мгновенные скачки просаживают сеть. Напряжение резко падает, потом также скачкообразно восстанавливается. При включении особо мощного движка, сетевые параметры изменяются настолько сильно, что воспринимаются чувствительной техникой как пропадание. В результате перезапускается компьютерная техника, моргают или совсем гаснут лампы, перегорают блоки питания у котлов отопления и т.д.

Раньше остроту проблемы снижали установкой конденсаторов, которые сглаживали скачки. Но конденсаторы требуются большой емкости — по 70 мкФ на каждый киловатт мощности, плюс такую же емкость необходимо подключать для нейтрализации пускового тока. Но даже в этом случае скачки были, как и перегрузки двигателя на старте. К тому же подключение через емкость «съедало» значительную часть мощности мотора. Для компенсации потери необходимо было покупать более мощные агрегаты, ставить более мощные пусковые конденсаторы. В общем, решение не лучшее, но другого по сути, не было.

С появлением преобразователей частоты (ПЧ) проблема решается намного эффективнее. Основная функция этого оборудования — плавный и постепенный разгон двигателя с нуля до полной мощности. На протяжении определенного промежутка времени (может задаваться, а может быть фиксированной величиной), подаваемый на двигатель ток плавно изменяет свои параметры, выводя движок на рабочий режим. Никаких перегрузок, влияния на сети. И конденсаторы не нужны, значит мощность двигателя может быть примерно на 40% меньше чем раньше (именно настолько она снижалась с конденсаторами). Точно так же, постепенно, происходит отключение. Электромотор постепенно замедляется, затем останавливается. В общем, частотный преобразователь для электродвигателя продлевает срок его эксплуатации, убирает проблему пусковых токов, стабилизирует параметры сети.

Что дает применение частотного инвертора с синхронным двигателем

Синхронные электродвигатели постоянного тока имеют несложное устройство, после выхода на требуемую скорость работают стабильно. Недостатки — сложности с пуском и невозможность регулирования частоты вращения вала. Проблему пуска давно научились обходить — делают асинхронную пусковую обмотку, которой разгоняют до нужной частоты. А вот невозможность менять скорость очень сильно ограничивает область применения. Не так много устройств, в которых нет необходимости в разных скоростных режимах работы двигателя. Это вентсистемы, кулеры.

Если с синхронным электродвигателем использовать частотный преобразователь, проблема изменения скоростей решается на раз. Причем эта связка работает настолько удачно, что японцы уже выпустили новые электропоезда на такой тяге. Стало появляться и другое подобное оборудование. Причем не только тяговое — новые электроинструменты некоторые производители стали выпускать с такими моторами. Да, стоит такое оборудование дороже, но имеет хороший КПД, работает стабильно.

Принцип работы

Частотный преобразователь — это устройство, которое плавно изменяет частоту исходного напряжения. Есть устройства, работающие как от однофазной (220 В), так и от трехфазной сети (380 В). Предел изменения частоты — от 0,1 Гц до 500 Гц. Существуют преобразователи двух типов — индукционного и электронного. Индукционные имеют невысокий КПД, так что используются реже. Практически все современные частотные преобразователи — электроника с системой управления и контроля.

Как работает преобразователь частоты с электродвигателем? Известно, что вал асинхронного электрического двигателя с короткозамкнутым ротором вращается со скоростью, которая зависит от частоты питающего напряжения. Частота вращения ротора определяется по следующей формуле:

где n — частота вращения ротора; f — частота питающего напряжения, p — число пар полюсов статора. Как видите, зависимость прямая. Чем выше частота питающего напряжения, тем быстрее вращается ротор, чем меньше частота, тем медленнее вращение. Вот на этой зависимости и построено управление асинхронным двигателем при помощи преобразователя частоты, его плавный старт и останов. Осталось разобраться как частотный регулятор это делает.

Читайте также:  Клапан регулятор давления d06f honeywell

Устройство частотного преобразователя

Работает частотный преобразователь для электродвигателя следующим образом:

  1. Сетевое напряжение подается на выпрямитель, где преобразуется в постоянное.
  2. На блоке инвертора из постоянного напряжения формируются полярные импульсы (положительные и отрицательные) требуемой частоты. Импульсы формируются по принципу широтно-импульсной модуляции (ШИМ).
  3. Импульсы преобразуются в синусоиду той же частоты.

Как видите, устройство не слишком сложное, но это базовый набор блоков. В более сложные модели встраиваются дополнительные, обеспечивающие контроль параметров и защиту.

Основной узел частотного преобразователя для электродвигателей — инвертор. Его собирают не основе IGBT транзисторов. Включая и выключая их, из постоянного напряжения формируем импульсы. Задавая частоту включения и выключения, на выходе получаем импульс с заданной частотой.

Если изменять скважность импульсов — отношение длительности периода к длительности импульса — меняется площадь импульса, а значит, и напряжение на выходе. Вот и получаем возможность используя частотный преобразователь для электродвигателя менять не только частоту, но и напряжение.

Последний блок — сглаживающий импульсы и превращающий их в синусоиду — присутствует далеко не всегда. Частота импульсов на выходе инверторного блока может достигать нескольких килогерц. А обмотки двигателя имеют высокую индуктивность, и сами работают как выходной фильтр.

Применение

Основные плюсы применения частотного преобразователя для электродвигателя — снижение влияния старта и торможения, возможность плавного регулирования скорости. Это дает возможность управлять работой двигателя без останова. Кроме этого, можно управлять группой двигателей, подключать движок на 220 В к сети 380 В и наоборот. Все это можно делать с асинхронными двигателями:

  • Вентиляторы, швейные машины.
  • Насосы, дымососы, компрессоры.
  • Центрифуги.
  • Крупная строительная техника (бетономешалки, манипуляторы и т.д.).
  • Токарные или фрезерные станки.

Любой электрический двигатель при подключении через частотный преобразователь работает стабильно. Ведь большая часть устройств позволяет подобрать нужный режим питания для обеспечения нормальной работы.

Преобразователь частоты может работать и с синхронными двигателями. Но выбирать его надо ориентируясь на потребляемый ток. Как правило, мощность ПЧ получается завышенной, но с этим ничего не поделаешь. Иначе работать двигатель не будет. И стоит иметь в виду, что синхронный двигатель при работе на повышенных частотах (выше 50 Гц) будет сильно шуметь, быстрее изнашиваться.

Классификация и виды

Все частотные преобразователи для электромоторов условно можно разделить на несколько групп:

  • Индивидуальные. Разработаны под какой-то определенный тип и характеристики мотора.
  • Универсальные. Благодаря возможности изменять параметры могут работать с различными двигателями.
  • Специализированные. Разрабатываются для конкретных типов оборудования. Например, преобразователи для насосных станций (насосов) и вентиляторов (Mitsubishi FR-F740).
  • Интеллектуальные. Имеют встроенный персональный компьютер, имеют функции самодиагностики. ПЧ сам следит за состоянием изнашиваемых частей и сообщает о необходимости из замены, когда ресурс подходит к концу.

Самые дешевые — индивидуальные. Но они могут работать только исключительно с моторами одного типа/мощности. Специализированные тоже имеют довольно ограниченный диапазон подключаемого оборудования. Универсальные, с этой точки зрения, хороши, но стоит они значительно дороже (сложнее схема и больше компонентов).

Но, все-таки, самые дорогие — интеллектуальные. Многие из них управляться могут при помощи сенсорной панели, а не набора регуляторов. Кроме того, большинство моделей имеет пульт дистанционного управления. Это удобно, так как частотный регулятор может быть установлен далеко. Обычно их ставят в шкафах или где-то на вводе. При наличии пульта ДУ можно регулировать работу, находясь возле двигателя и не бегая к шкафу.

Выбор по мощности

Главный критерий выбора частотного преобразователя для электродвигателя — мощность. Частотник не должен быть менее мощным чем управляемый им двигатель. Мощнее быть может, слабее — нет. Но все не так просто, так как конкретное соотношение мощностей зависит от типа оборудования, к которому будет подключаться преобразователь. Частотный преобразователь для электродвигателя с двумя парами полюсов, должен иметь мощность:

  • равную двигателю, если движок работает постоянно (транспортеры);
  • не ниже 150% от мощности, если движок работает с перегрузкой;
  • не менее 120% от мощности движка для центробежных насосов и вентиляторов;
  • для управления моторами подъемной техники, может понадобиться двукратное превышение мощности.

При выборе стоит обратить внимание на описание ПЧ, так как производители часто нормируют нагрузки на постоянный и переменный момент. В некоторых есть отдельные линейки под работу с постоянным и переменным моментом. Например, частотные преобразователи Delta (Дельта).

Кроме этого, необходимо отслеживать такие параметры:

  • Номинальный длительный ток преобразователя частоты должен быть не меньше рабочего потребления тока управляемого оборудования.
  • Если подключаться будет несколько двигателей, ток ПЧ должен быть не менее чем на 25% больше суммарно потребляемого подключенными устройствами.

Если надо обеспечить быстрый разгон устройств, лучше выбрать более мощный преобразователь — он быстрее справляется с задачей.

Читайте также:  Регуляторы роста рассады применение

Дополнительные функции и параметры

Современный частотный преобразователь для электродвигателя — сложное устройство. Если он выполнен на базе процессора, то функций имеет немало. Даже недорогие модели могут обладать широкой функциональностью. Для оправданного выбора стоит знать, что означает каждый из параметров и для чего нужна та или иная функция.

  • Выходная частота или диапазон ее изменения. Тут все понятно. Этим параметром описываются возможности изменения частоты на выходе.
  • Пределы регулирования напряжения. Вопросов тоже не возникает.
  • Тип преобразования частоты. Может быть векторным и скалярным. Скалярный используется в более простых моделях. Параметры отслеживаются по соотношению напряжения и частоты. Векторный тип преобразования частоты в ЧМ подстраивает работу так, чтобы по отношению к нагрузке, момент вращения был постоянным. Такой способ управления более сложный и надежный, используется в более дорогих моделях.
  • Наличие ПИД-регулятора. Удерживает давление, температуру и скорость в заданных пределах (выставляются при помощи ручки или программируются). Для связи с другими средствами управления должен иметь сигнальные выводы (аналоговые и/или цифровые).
  • Юстировка скорости. Помогает при смене или скачках питания стабилизировать работу двигателя.

Кроме параметров и дополнительных возможностей, на работу влияет качество сборки. Естественно, лучше брать оборудование известных производителей. Хорошо себя зарекомендовали ABB, Siemens, Mitsubishi, Omron. Но их частотники дешевыми назвать нельзя. Если нужно сэкономить и внешний вид не так важен, обратите внимание на отечественных и белорусских производителей. Внешнее оформление, как водится, желает быть лучше, а характеристики и стабильность работы неплохие.

Особенности эксплуатации двигателей с частотными преобразователями

Как уже сказано выше, используя частотный преобразователь для электродвигателя, снижаем потери мощности за счет снижения реактивной составляющей тока. Кроме того, есть некоторые моменты, которые необходимо знать:

  • При работе на сниженных оборотах возможен перегрев двигателя. Это происходит за счет снижения скорости естественного обдува. Особенно заметен перегрев на скоростях, близких к номинальным. Для снижения температуры в таком случае желательно использовать дополнительный обдув.
  • При работе стандартного электромотора (на 50 Гц) на повышенных скоростях вращения, стоит учитывать состояние подшипников. Из-за возникающей более сильной вибрации они быстрее выходят из строя. Для нивелирования этого явления можно использовать виброгасящие подкладки. Кроме того, частоту надо выбирать так, чтобы не возникало резонанса. И учтите: на повышенных скоростях шуметь вентилятор электромотора будет больше.

Частотный преобразователь для электродвигателя расширяет возможности его использования. Это важно, но не менее важно правильно его подобрать, учитывая все особенности работы. Это гарантирует длительную эксплуатацию обоих устройств.

Подключение к электродвигателю

Для обеспечения безопасной работы, перед частотным преобразователем желательно ставить автомат защиты. Причем на трехфазную сеть нужен трехфазный автомат, а не три отдельных однофазных. Это позволит быстро отключить сразу все фазы как при перегрузке проводки, так и при перекосе на одной из фаз. Номинал автоматов выбирают по току нагрузки.

Подключение нулевого и заземляющего проводников обязательно. Тянут их от соответствующих шин напрямую — при помощи провода требуемого сечения. Для защиты человека и контроля за состоянием изоляции, в схему желательно добавить еще УЗО (устройство защитного отключения). Его включают перед автоматом. При возникновении тока утечки, УЗО одновременно разорвет фазы и ноль, полностью обесточив схему.

При покупке дешевых моделей преобразователей, для пуска и останова может понадобиться установка специального реле, фиксирующего контакты в нужном положении. В этом случае с выхода автомата провода подаются на реле, а с его выхода идут на частотный преобразователь. Само подключение двигателей к ПЧ происходит напрямую.

Как известно, асинхронные двигатели могут работать как с однофазным, так и с трехфазным напряжением. Перед подключением движка к преобразователю частоты, надо проверить как подключены обмотки. Они должны быть:

  • «звездой» — если напряжение на выходе ПЧ трехфазное;
  • «треугольником» — если преобразователь выдает однофазное питание.

Частотный преобразователь для электродвигателя подключается при помощи кабелей (не проводов), сечение и параметры которых соответствуют параметрам устройства. Эти данные, как и рекомендации по подключению, должны быть в паспорте прибора. Так что внимательно проштудируйте мануал. Это может спасти от многих неприятностей. Все-таки могут быть особенности.

Первый пуск и настройка

Перед первым включением собранной схемы, на преобразователе частоты выставляется минимально возможная скорость вращения вала. После этого включаем автомат, подаем питание на инверторный преобразователь частоты. На нем должны загореться светодиоды. В моделях с дисплеем, на экране отобразятся стартовые показатели прибора. Далее действия такие:

  • Кратковременно нажимаем кнопку «пуск» на частотнике.
  • Вал начинает медленно вращаться. Если он движется не в ту сторону, можно либо перепрограммировать направление вращения (смотрим в инструкции), либо перекинуть фазы предварительно отключив автомат.
  • Если вал вращается в нужном направлении, при помощи регулятора задаем требуемую частоту.
Читайте также:  Для чего нужен клапан регулятор

В некоторых моделях на экране отображается не частота вращения вала, а частота подаваемого напряжения. Если это так, необходимо будет по таблице пересчитывать значения.

Источник



Особенности и схема подключения частотного преобразователя к разным типам электродвигателей

Содержание

Частотные преобразователи используются для подключения различных электродвигателей и позволяют регулировать такие характеристики, как скорость вращения ротора, момент силы вала и защищают от перегрузок и перегрева. Также такие устройства дают возможность подключать трехфазное оборудование в однофазную систему без потери мощности и перегрева обмоток двигателя.

Разновидности частотных преобразователей

Современные частотные преобразователи различаются многообразием схем, которые можно сгруппировать в несколько категорий:

  1. Высоковольтные двухтрансформаторные

Принцип работы такого прибора заключается в последовательном преобразовании напряжения при помощи понижающего и повышающего трансформатора, преобразования частоты низковольтным преобразователем, а также сглаживание пиковых перенапряжений на выходе с помощью синусоидального фильтра. Схема работы выглядит следующим образом: питающее напряжение 6000 В подается на понижающий трансформатор и на его выходе получают 400 (660) В, далее оно подается на низковольтный преобразователь и после изменения частоты подается на повышающий трансформатор для увеличения значения напряжения до начального.

  1. Тиристорные преобразователи

Такие устройства состоят из многоуровневых частотных преобразователей на основе тиристоров. Конструктивно они состоят из трансформатора ( обеспечивающего понижение питающего напряжения), диодов ( для выпрямления) и конденсаторов ( для сглаживания). Также для уменьшения уровня высших гармоник применяют многопульсные схемы.

Тиристорные преобразователи имеют высокий КПД до 98 % и большой диапазон выходных частот 0-300 Гц, что для современного оборудования является положительной и востребованной характеристикой.

  1. Транзисторные частотные преобразователи

Такие частотные преобразователи являются высокотехнологичными устройствами, которые собираются на транзисторах различного типа. Конструктивно они имеют транзисторные инверторные ячейки и многообмоточный сухой трансформатор специальной конструкции. Управляют таким преобразователем с помощью микропроцессора, что позволяет тонко настраивать работу оборудования и контролировать весь процесс работы различных двигателей. Транзисторные частотные преобразователи, так же, как и тиристорные, имеют высокий КПД и широкий диапазон регулирования частоты.

Как подключить частотный преобразователь

Для подключения частотного преобразователя к оборудованию, прежде всего необходимо убедиться в том, что характеристики такого прибора подходят для работы с конкретным электродвигателем. Также важно, чтобы напряжение питающей сети позволяло использовать данный частотный преобразователь.

При установке и подключении ЧП необходимо, чтобы условия эксплуатации соответствовали классу защищённости от влаги и пыли, а также были выдержаны все расстояния от движущихся частей машин и механизмов, от людских проходов и электрооборудования и аппаратуры.

Схема подключения ПЧ

Частотные преобразователи бывают как для трехфазных сетей, так и для однофазных. При этом к однофазной сети также можно подключать и трехфазный частотный преобразователь по схеме «треугольник», который дополнительно оснащен специальным конденсаторным блоком ( при этом значительно падает мощность и понижается КПД устройства). Подключение же трехфазного преобразователя в соответствующей сети производится по схеме «звезда».

Управление частотным преобразователем может осуществляться с использованием контакторов, встроенных в различные релейные схемы, микропроцессорных контроллеров и компьютерного оборудования, а также вручную. Поэтому при подключении автоматизированных систем требуется участие специалистов по наладке такого оборудования.

Обратите внимание! Частотный преобразователь может иметь дополнительные настройки, выполняемые с помощью DIP-переключателей, а также встроенным программным обеспечением.

Принцип подключения частотных преобразователей в целом одинаковый, но может несколько отличаться для разных моделей. Поэтому правильным решением будет перед подключением изучить инструкцию, сопоставить характеристики устройств и убедиться в том, что устройство подключается по схеме, предложенной производителем.

Для трехфазного электродвигателя

Для трехфазного электродвигателя принцип подключения следующий: к клеммным колодкам на выходе трехфазного частотного преобразователя подключаются фазные проводники к каждому выводу, а на вход подключаются фазы питающего напряжения. В данном случае всегда реализуется схема подключения «звезда» в двигателе. При подключении трехфазного двигателя через частотный преобразователь к однофазной сети применяют схему «треугольник».

Для однофазного электродвигателя

Для однофазного электродвигателя необходимо подключить фазный и нулевой проводник к преобразователю частоты, а обмотки двигателя подключаются к соответствующим клеммам на выходе частотного преобразователя. Например, обмотка L1 будет подключаться к клемме А преобразователя, обмотка L2 к клемме B, а общий провод к клемме C. Если применяется конденсаторный двигатель, то от частотного преобразователя фаза подключается к двигателю, а конденсатор обеспечивает сдвиг фаз.

Во всех случаях, при подключении частотных преобразователей и электродвигателей, всегда следует применять устройства защиты: автоматические выключатели и УЗО, рассчитанные на высокие пусковые токи, а также обязательно подключать заземляющий проводник к корпусам устройств. Также важно обратить внимание на сечение проводников электрокабеля, которым будет производится подключение – сечение должно соответствовать параметрам подключаемого частотного преобразователя и нагрузки.

Источник