Меню

Чем измерить напряжение импульсного блока питания

Диагностика импульсного блока питания. Часть I, используемые определения

Блок питания D-Link

Мы уже рассматривали классический вариант диагностики импульсного блока питания некоторые моменты мы сознательно опустили, для более простой подачи материала. Практика показала, что у части специалистов возникают вопросы даже после ознакомления с публикацией, постараемся исправить этот пробел. Материал является самостоятельным и строго ориентирован на ремонт блока питания с ШИМ UC3843 (3842,3844,3845). В качестве примера будем рассматривать уже рассмотренный блок питания D-Link JTA0302D-E (5В*2А) выполненного на ШИМ 3843 в виду его классического исполнения.

Хотя часть ремонтируемых блоков питания не имеют родных схем, большинство ремонтов блоков питания на ШИМ 3843 (3842,3844,3845) мы выполняем по нижеприведенной принципиальной электрической схеме.

Схема блока питания D-Link JTA0302D-E (5В*2А), такая схемотехника характерна для канонических вариантов схем.

Подобная схема хоть и не соответствует стандартам, но максимально приближена к каноническому варианту исполнения принципиальных электрических схем. Некоторые признаки указывают, что схема была срисована с уже готового блока питания, а значит так ее видит автор. Если бы эту схему рисовали мы, то получился бы несколько другой вариант, по которому проще ремонтировать, схема от немного другого блока питания, несколько сумбурно прорисованы цепи обратной связи, холодная и горячая земля, но все же по ней проще делать диагностику.

Схема блока питания D-Link 5В*2А, такая схемотехника характерна для наглядных пособий по ремонту.

Отличие этих двух схем в элементной базе небольшие, но есть серьёзные различия в исполнении, если первая схема ориентирована на ГОСТ, то вторая схема нарисована специалистом ранее ремонтировавшим подобный блок питания.

Так как материал рассчитан на специалиста, редко занимающегося ремонтом импульсных блоков питания, то поиск по сопутствующим ресурсам или ответы от более опытных коллег, иногда ставят в тупик, вместо того чтобы помочь в решении проблемы. Такое происходит от специфики терминологии используемой в среде специалистов при ремонте блоков питания. Стоит отметить терминология может меняться от региона к региону, например грифлик может называться снаббером, а пусковой конденсатор – конденсатором первого удара.

Схема блока питания D-Link 5В*2А, с небольшими корректировками, для удобства чтения.

Структурная блок схема блока питания D-Link 5В*2А

Что бы не было неоднозначности, конкретно пропишем каждые элементы блок схемы, функционал и особенности диагностики рассмотрим позже.

Предохранитель F1 (2.25А) тут возможно опечатка или неудачное сокращение, скорее всего имеется ввиду 2А*250В, по функционалу — не занимается фильтрацией, но мы его отнесли к цепям входного фильтра
Терморезистор TR(5 Ом) необходим для «мягкого пуска» блока питания в момент включения и хотя по функционалу — не занимается фильтрацией, мы его отнесли к цепям входного фильтра.
Х-конденсатор XC1 (100 pF*250B), тут стоит обратить внимание – это X конденсатор.
Дроссель L1 – как правило это проволочный дроссель на феррите (не пермаллой), выполненный в виде трансформатора.

Диодный мост DB1-DB4(1N4007)
Конденсатор входного выпрямителя С1(33мкф*400В)

T1.1 Высоковольтная (первичная) обмотка
T1.2 Обмотка для питания ШИМ
T1.3 Низковольтная (вторичная) обмотка

Резистор R1(39кОм) редко бывает в планарном исполнении, так как на нем рассеивается значительная мощность
Конденсатор С2(4700 пФ*2кВ) использование низковольтного конденсатора в этой цепи недопустимо.
Быстродействующий диод VD1(PS1010R) – не смотря на рабочее напряжение конденсатора 2кВ, рабочее напряжение этого диода обычно 1кВ, при хорошем токе в 1А.

5. Выходной выпрямитель.

Диод Шотки VD5-VD6 (SB340) использование диодов Шотки позволяет на малых мощностях обойтись без дополнительных элементов охлаждения.
Конденсаторы LowESR C9, C10 (680 мкФ*10В) использование обычных конденсаторов допустимо, но резко снижает ресурс блока питания, так как эти конденсаторы работают в очень жестком режиме.
Дроссель L2 выполняет двойную функцию является накопителем для конденсатора С20, а так же является элементом фильтра.
Конденсатор С20 (220мкФ*10В) – благодаря дросселю L2 работает в нормальном режиме и особых требований, кроме массогабаритных показателей, к этому конденсатору не предъявляется.
Резистор R21(220 Ом) – формально не является элементом выходного выпрямителя, а служит для быстрого разряда С9,С10, С20, L2.

МОП транзистор с n-каналом VT1(P4NK60Z), полевой транзистор на работу с которым рассчитан ШИМ UC3843

Резистор R2(1.5 Ом) не смотря на то, что рассеивает значительную мощность, встречается как в планарном так и проволочном исполнении. В случае планарного исполнения набирается путем параллельного соединения нескольких планарных резисторов.

Резистор R8 (300 Ом), R3(750кОм) и С4 (10нФ) мы не хотели добавлять эти элементы в раздел токовый датчик, так как они создают некоторую путаницу в терминологии, ведь под понятием токовый датчик подразумевается именно резистор R2(1.5 Ом) и только он, но слово из песни не выкинешь, так как формально эти элементы так же являются цепями токового датчика, мы вынуждены их упомянуть, тем самым создав некоторую путаницу в терминологии токового датчика.

Резистор R4 (300кОм) не смотря на простоту один из самых сложных элементов блока питания, так именно он определяет возможные замены ШИМ на аналоги, именно он выглядит как неисправный элемент, так как он рассеивает значительные мощности, именно при замене этого резистора забывают посмотреть рабочее напряжение резистора, а ведь оно должно быть не менее 400 В, для примера, планарный резистор типоразмера 1206 имеет максимальное рабочее напряжение 250В.

Читайте также:  Как это двуполярное напряжение

T1.2 Обмотка для питания ШИМ
Резистор R9 (5.1 Ом) элемент интегрирующей цепи для гашения паразитных выбросов трансформатора, очень неоднозначный элемент – именно неудачный выбор (слишком большой номинал) этого элемента заставляет срываться блок питания на холостом ходу.
Выпрямительный диод VD2 (1N4148) – обыкновенный диод без всяких изысков.
ZD1 (BZX55C20) еще один неоднозначный элемент схемы, о нем мы поговорим попозже и рассмотрим подробнее, на данном этапе лишь укажем его характеристики 20В, 5 мА. Отметим только тот факт, что он доставляет много проблем начинающим ремонтникам.

Конденсатор С6 (47мкФ*25В) – без преувеличения можно назвать основным элементом импульсного блока питания. Косвенно, как только механик начинает видеть этот конденсатор только посмотрев на блок питания, можно говорить о квалификации этого ремонтника. Отметим – этот элемент всегда подлежит замене при любом ремонте импульсного блока питания, пренебрежение этой рекомендацией превращает ремонт в борьбу с ветряными мельницами.

U2(UC3843) – не нуждается представлении, отметим только это самый простой в реализации и надежный в эксплуатации ШИМ для своего времени.

12. Драйвер силового ключа.

Резистор R5(150 Ом), рассматриваемая схема самый неудачный пример для рассматривания драйвера силового ключа, так как большинстве своем, драйвер имеет радикальное отличие от рассматриваемого, обычно это резистор номиналом 15-30 Ом.

13. Внешние цепи генератора.

Резистор R11(3кОм) и конденсатор С5(10нФ) задают частоту генерации.

Делитель на резисторах R22(5.25кОм) и R23(4.87 кОм)
Токоограничивающий резистор R17(470 Ом)
Оптопара гальванической развязки U1.1, U1.2
Регулируемый стабилитрон U3(KA431AZ)
Элементы коррекции цепи обратной связи конденсаторы С12 (1мкФ*50В), С3(10нФ)

Отдельно стоит отметить помехоподавляющий Y конденсатор YC2(2200пФ), но не столько из за его функционала, сколько благодаря ему можно (и нужно) отличать «горячую» и «холодную» землю.

Источник

Как проверить блок питания

Блок питания перед установкой в компьютер желательно проверить, особенно, если вы покупаете бывший в употреблении БП. Да и новые БП, несмотря на проверку на производстве частенько бывают неисправны. Куда смотреть, чем делать замеры и где, какие отклонения напряжений допустимы для источника питания? В этом тексте мы попытаемся ответить на данные вопросы.

Что необходимо для проверки блока питания

Будем рассматривать две ситуации. В первом случае у нас имеется только сам блок питания, во втором имеется возможность установить его в тестовую систему — готовый компьютер. Для измерения напряжений нам нужен мультиметр. Можно взять недорогой вариант, но лучше все же потратиться, так как измерения будут точнее. Софтовые измерения напряжений в большинстве случаев очень неточны и программами типа HWMonitor или AIDA64 делать замеры — совершенно бесполезное занятие.

Показания мультиметра RGK DM40: 12В — 12,43 В; 5 В — 5,108 В; 3,3 В — 3,305 В.

Даже у самой простой модели мультиметра при измерении постоянного напряжения отклонения от реальных значений будут невелики, и в отличие от софтовых показаний дадут почти реальную картину характера стабилизации напряжений в БП.

Проверяем БП без подключения к компьютеру

Прежде всего нужно провести внешний осмотр на предмет повреждений как самого корпуса БП, так и кабелей. При включенном в сеть БП и правильном положении выключателя на задней панели блока (вкл.), у нас на 24-контактом разъеме должно появиться дежурное напряжение 5 В. Допустимое отклонение от номинального значения ± 5 %, то есть от 4,75 В до 5,25 В.

Дежурное напряжение подается на материнскую плату и позволяет ее логике давать сигнал к включению блока питания. То есть, когда мы нажимаем кнопку на системном блоке, то подаем сигнал материнской плате, а уже она сигнализирует БП, что неплохо бы запуститься. Измерить его можно тут:

Если его нет, проверьте исправность кабеля питания, наличие напряжения в сети и положение выключателя на задней панели блока. Все правильно, а напряжения нет? Еще раз проверьте, на нужном ли контакте вы проводите измерения, и если все сделано верно, а напряжения нет, скорее всего БП неисправен. Выход из строя дежурного источника питания не такая редкая причина поломки.

Если дежурное напряжение есть, как на картинке выше, то запустить блок питания можно, замкнув два контакта на колодке 24-контактного разъема. В данном случае нам нужен PS_ON и любой земляной контакт. Удобно это делать обычной канцелярской скрепкой, если согнуть ее нужным образом, но подойдет и любой кусок проволоки.

Операцию эту надо делать аккуратно. Хотя при незапущенном, но включенном блоке напряжение у нас есть только на паре контактов — дежурный источник напряжения и PS_ON, и если вы их куда-нибудь не туда замкнете, ничего страшного не произойдет. У современных БП защита от кроткого замыкания на дежурном источнике питания, как правило, имеется.

БП должен запуститься, а вентилятор завертеться, если он вообще работает на низких нагрузках, то есть БП у вас не с полупассивным охлаждением. Теперь можно замерить основные напряжения. Их три: 3,3 В; 5 В и 12 В. Есть еще напряжение -12 В, но его можно не учитывать. В современных системах оно не нужно. Прежде всего — где измерять. Самые доступные разъемы в данном случае — это четырехконтактные Molex.

Читайте также:  Индикатор напряжения цифровой fit 56530

Раньше во всех БП АТХ провода были определенного цвета для каждого напряжения, и об этом на пару страниц были разъясниения в Power Supply Design Guide, но в последнее время модным стали черные провода. Да, выглядят они определенно эстетичнее, но ориентироваться, где какое напряжение на разъеме стало труднее. Поэтому для вас сделал пару картинок с распиновкой. Ориентироваться где какая сторона у разъема удобно по защелке.

Разъем для дополнительного питания видеокарт.

Разъем для питания процессора.

Напряжение 3,3 В есть только на 24-контактном разъеме.

Допуски основных напряжений ± 5 % от номинала.

Замеряем все напряжения, и если они в допустимых пределах, блок питания можно считать условно исправным. Почему условно? Полную информацию о его состоянии можно получить только тестированием под нагрузкой.

Проверка БП в составе системного блока

Если вы купили б/у блок, то лучше его сначала проверить вышеописанным методом, а потом устанавливать в компьютер. Далее просто запускаем бенчмарки, нагружающие одновременно основные потребители, видеокарту, процессор и повторяем измерения.

Измерять при нагрузке лучше всего именно на самом нагружаемом разъеме. То есть, 12 В на разъеме для питания процессора и видеокарты. Для остальных напряжений это не так важно, ибо токи там небольшие. Потому что по проводам, идущим к этим разъемам, протекает ток, и чем он больше, тем больше падение напряжения на проводах.

Замеренное на неподключенном ни к чему разъеме напряжение будет отличаться от напряжения на разъеме видеокарты, например. А нас интересует, сколько именно приходит к потребителю, а не сколько на выходе внутри самого блока питания.

Как измерить напряжение на разъеме, подключенном к материнской плате или видиокарте? Можно использовать такой метод: в нужный контакт разъема со стороны проводов аккуратно (!) втыкаем тонкую иглу, и уже к ней подключаемся щупом мультиметра.

В данном случае на фото вместо иглы использован вывод резистора МЛТ.

Естественно, нагрузить на максимум БП с помощью компьютера, скорее всего, не удастся. Если вы не ставите 300 Вт блок на систему с GeForce RTX 3080. Чтобы нагрузить блок питания на максимум, потребуется специальное оборудование. Существуют специальные нагрузки для проверки компьютерных блоков питания, а есть универсальные электронные нагрузки.

Впрочем, все это достаточно дорого. Специализированный стенд стоит как неплохая б/у иномарка. Если вы не хотите заниматься тестированием блоков, то тратить такие деньги бессмысленно.

Проверка на короткое замыкание

Согласно Power Supply Design Guide, короткое замыкание на выходе определяется как любое выходное сопротивление менее 0,1 Ом. Источник питания должен выдерживать длительное короткое замыкание на выходе без повреждения компонентов, дорожек на печатной плате и разъемов. Когда короткое замыкание устранено, питание должно восстановиться автоматически или повторным замыканием PS_ON на землю.

Большого смысла проверять наличие и работу системы защиты от короткого замыкания нет. Сегодня она имеется во всех современных блоках питания. Единственное исключение — самые бюджетные БП. В них могут сэкономить на защите низковольтных линий. Для 3,3 В это не так страшно. У нас нет доступных разъемов с таким напряжением, оно присутствует только на 24-контактном разъеме, и проблемы могут быть только при повреждении изоляции проводов 3,3 В, что бывает крайне редко.

А вот 5 В линия есть и на разъемах Molex, и SATA. Проверить работу защиты от КЗ можно тонкой проволочкой. Тонкой, потому что если защиты нет, или время ее срабатывания велико, пусть сгорит лучше эта проволочка, нежели провода БП или что-нибудь на плате. При этом ее желательно держать не пальцами. Плавящийся металл это не самое приятное, что можно пощупать 🙂

И напоследок несколько ответов на простые вопросы:

  1. При подключении кабеля питания к БП происходит щелчок, похожий на искрение. Это нормально, идет зарядка конденсаторов.
  2. При включении БП (и отключении) происходит щелчок внутри БП. Это нормально, срабатывает реле, коммутирующее термистор, защищающий от бросков тока. Есть не во всех БП.
  3. Почему вы говорите не использовать для проверки софт? У меня мультиметр показывает примерно такие же значения, как и программа. Потому как программа может некоторое время показывать вполне вменяемые значения, а потом вдруг выдать нечно совершенно неприемлимое и к реальности не имеющее никакого отношения.

Таким нехитрым способом можно проверить исправность компьютерного БП и обезопасить свои комплектующие от некачественного питания.

Источник



ПРОБНИК ДЛЯ ПРОВЕРКИ ИМПУЛЬСНЫХ БП

В связи с широким распространением импульсных блоков питания, в различной технике, требуется в случае поломки, уметь самостоятельно выполнять их ремонт. Все это, начиная от маломощных зарядных для смартфона, со стабилизацией напряжения, блоков питания цифровых приставок, ЖК и LED ТВ и мониторов, до тех же самых мощных компьютерных блоков питания, формата ATX, простейшие случаи ремонта которых, мы уже рассматривали ранее, это все будут импульсные блоки питания.

Читайте также:  Какое напряжение форсунок кайрон

Фото импульсный блок питания

Фото — импульсный блок питания

Также ранее было сказано, что нам для проведения большинства измерений, бывает достаточно обычного цифрового мультиметра. Но здесь есть один важный нюанс: при проверке, например измеряя сопротивление, либо в режиме звуковой прозвонки, мы можем определить только условно не рабочую деталь, по низкому сопротивлению, между ее ножками. Обычно оно составляет где-то от нуля, до 40-50 Ом, либо обрыв, но тогда для этого нужно знать, какое сопротивление должно быть, между ножками у рабочей детали, что не всегда есть возможность проверить. Но в случае проверки работоспособности ШИМ контроллера, этого обычно бывает недостаточно. Нужен либо осциллограф, либо определение его работоспособности, по косвенным признакам.

Мультиметр дешёвый DT

Сопротивление между ножками может быть и выше этих пределов, а микросхема на деле, может быть нерабочая. Но недавно столкнулся с таким случаем: разъем шлейфа питания, идущий с блока питания на скалер, сверху имел доступ для измерения только к верхнему, из двух рядов контактов на разъеме, нижний был скрыт корпусом, и доступ к нему имелся только с обратной стороны платы, что сильно затрудняет ремонт. Даже простое измерение напряжения на разъемах, в такой ситуации, бывает затруднено. Требуется второй человек, который согласится держать плату, на разъеме которой, ты будешь проводить измерения напряжения на выводах, с обратной стороны платы, причем часть деталей там, находится под сетевым напряжением, а сама плата находится на весу. Это не всегда возможно, часто люди, которых просишь подержать плату, просто боятся брать ее в руки, особенно если это платы питания, с одной стороны они правильно делают, меры предосторожности с не подготовленным персоналом, всегда должны быть более строгими.

ШИМ контроллер — микросхема

Так как же быть? Как можно быстро и без заморочек, условно проверить работу ШИМ контроллера, а если быть более точным, цепей питания, а одновременно и импульсного трансформатора, повышающего трансформатора, питающего лампы подсветки? А очень просто. Недавно нашел один интересный способ на Ю-тубе, для мастеров, автор очень доступно объяснял все. Начну издалека.

Что есть, упрощенно говоря, обычный трансформатор? Это две, или более обмоток, на одном сердечнике. Но здесь есть один нюанс, которым мы и воспользуемся, сердечник, как и сами обмотки, в теории могут быть раздельными, и просто находиться рядом, близко друг от друга. Параметры при этом сильно ухудшатся, но для наших целей, этого будет более чем достаточно. Так вот, вокруг каждого трансформатора, или дросселя, со значительным количеством витков, после включения питания схемы, присутствует магнитное поле, и оно тем больше, чем больше витков у обмотки трансформатора, или дросселя. Что же будет, если мы к обмотке трансформатора или дросселя, включенного в сеть устройства, поднесем другой дроссель, например с индуктивностью 470 мкГн, а нам для нашего пробника нужен именно такой, нагруженный светодиодом? Например такой, как на фото ниже:

Пробник для проверки импульсных бп

Пробник для проверки импульсных бп

Другими словами, магнитное поле дросселя или трансформатора, будет пронизывать у нас, витки нашего дросселя, и на выводах его появится напряжение, которое можно будет использовать, в нашем случае, для индикации работоспособности схемы блока питания. Подносить пробник разумеется, нужно как можно ближе к проверяемой детали, и дросселем вниз. Как выглядят детали на плате, к которым нужно подносить наш пробник?

Плата монитора

На плате обведены импульсный трансформатор красным, и трансформатор ламп подсветки зеленым. Если схема работает исправно, при поднесении пробника к ним, должен загореться светодиод. Это означает что питание на нашу, образно говоря проверяемую индуктивность, поступает. Разберем на практике. Если выходной транзистор пробит, не будет работать импульсный трансформатор.

Схема импульсного блока питания

Схема импульсного блока питания

На схеме снова выделено красным. Если пробит диод Шоттки, на выходе, после трансформатора, не будет индикации на дросселе фильтра. Но здесь есть один нюанс, если у дросселя на плате, небольшое количество витков, свечение будет либо еле заметным, либо вообще будет отсутствовать. Аналогично, если пробиты, например транзисторные ключи, или диодные сборки, через которые приходит питание на повышающий трансформатор, для ламп подсветки, LCD монитора или телевизора, не будет индикации при проверке на этом трансформаторе.

Фото дроссель для пробника

Фото дроссель для пробника

Стоимость данного дросселя в радиомагазине всего 30 рублей, также иногда они встречаются в блоках питания ATX, обычного светодиода, в стеклянной колбе 5 рублей. В результате мы имеем, простой, дешевый, и очень полезный при ремонтах прибор, который позволяет провести предварительную диагностику, импульсного блока питания, в течение буквально одной минуты. Условно говоря, данным пробником можно проверить, наличие напряжения на всех деталях, представленных на следующем фото.

Дросселя и трансформаторы

Дросселя и трансформаторы

Я пользуюсь данным пробником пока всего 3-4 дня, но уже считаю, что могу рекомендовать его к использованию, всем начинающим радиолюбителям – ремонтникам, пока еще не имеющим, в своей домашней мастерской, осциллографа. Также этот пробник, может быть полезен тем, кто чинит электронную технику на выездах. Всем удачных ремонтов — AKV.

Источник