Меню

Что такое напряжение изоляции корпуса

Изоляция электроустановок и ее контроль. Применение малых напряжений.

Электрическая изоляция – это слой покрытия диэлектрика или диэлектрик, которым покрывается поверхность токоведущих частей, тоководов, или которыми токоведущие части отделяются друг от друга. Изоляция должна обладать высокими диэлектрическими свойствами, прочностью и сопротивляемостью к изменениям температурно-влажностной среды.
В электроустановках применяются следующие виды изоляции: рабочая, дополнительная, двойная и усиленная.
Рабочая изоляция обеспечивает нормальную работу электроустановок и защиту от поражения электрическим током.
Дополнительная — предусматривается как дополнение к рабочей для защиты от поражения электрическим током, в случаях ее повреждения.
Двойная изоляция состоит из двух независимых одной от другой рабочей и дополнительной изоляции. Рабочую (функциональную) называют основной изоляцией т.к. она должна обеспечить электробезопасность работающих (изоляция обмоток машин, жил тоководов и т.д.). Дополнительной изоляцией может быть пластмассовый корпус машины, изолирующие втулки, блоки и т.д.
При двойной изоляции заземление или зануление металлических частей запрещается, так как этим шунтируется дополнительная изоляция, и ее преимущества сводится на нет. Соединение корпуса машины, имеющей двойную изоляцию с заземляющим устройством недопустимо, так как это снижает безопасность работающего.
Усиленная – это улучшенная рабочая изоляция, которая обеспечивает такой же уровень защиты, как и двойная.
Как правило, двойная изоляция применяется для выключателей, розеток, вилок, патронов ламп, переносных светильников, электрифицированного ручного инструмента, электроизмерительных приборов и некоторых бытовых приборов. Область применения двойной электроизоляции – электроустановки небольшой мощности. Она является действенным защитным средством.
Согласно ПУЭ, сопротивление изоляции электроустановок должно быть не менее 1000Ом на 1В рабочего напряжения. Так для сетей переменного напряжения 380/220В сопротивление изоляции должно быть не менее 380 кОм. Для электросетей напряжением до 1000В сопротивление изоляции токопроводных частей должно быть не ниже 0,5 МОм.
Следует учитывать, что в процессе эксплуатации изоляция претерпевает различные изменения: старение, механические повреждения, растрескивание от перепада температурно-влажностной среды. Поэтому электроизоляция подлежит систематическому осмотру и испытаниям согласно Правилам устройства электроустановок (ПУЭ) и Правилам техники безопасности (ПТБ).
Сопротивление изоляции электрооборудования назначается в зависимости от электрической мощности электроустановки, Ом
(3.4.20)
где, U – напряжение, В; N – мощность, Вт.

В зависимости от вида электроизоляции электротехнические изделия подразделяются на следующие классы:0, 01, І, ІІ, ІІІ при этом:
— к классу 0 относятся изделия, в которых имеется рабочая изоляция, но отсутствует элементы для заземления (если они не относятся к классу ІІ или ІІІ);
— к классу 01 относятся изделия, имеющий рабочую изоляцию и элемент для заземления, а также провод без заземляющей жилы для подсоединения к источнику питания;
— к классу І относятся изделия, имеющие рабочую изоляцию и элемент для заземления, а также провод для подсоединения к источнику питания с заземляющей жилой и вилку с замыкающим контактом;
— к классу ІІ относятся изделия, имеющие двойную или усиленную изоляцию и не имеющие элементов для заземления;
— к классу ІІІ относятся изделия, в которых отсутствуют внутренняя и внешняя электрические цепи с напряжением более 42В.
Изделия, получающие питание от внешнего источника относятся к ІІІ классу в том случае, если они предназначены для присоединения непосредственно к источнику питания с напряжением не выше 42 В.
Электрическое разделение сети. Разветвленные электрические сети большой протяженности имеют значительную электрическую емкость. При этом даже прикосновение к одной фазе является очень опасным. Однако если сеть разделить на ряд небольших сетей такого же напряжения, которые обладают небольшой емкостью и высоким сопротивлением изоляции, то опасность поражения резко снижается.
Электрическое разделение сетей осуществляется путем подключения отдельных электроустановок через разделительные трансформаторы. Область применения защитного разделения сетей – электроустановки напряжением до 1000В, эксплуатация которых связана с повышенной опасностью (в передвижных установках, ручном электрифицированном инструменте и т.д.)
Защитные ограждения.
Важную роль в обеспечении электробезопасности работающих играет вынесение, по возможности, электрооборудования с рабочей зоны: размещение в местах, исключающих контакт, и на недостижимой высоте (в первую очередь, токоведущих частей и приводов).
При этом отдается предпочтение дистанционному управлению технологическими процессами со специально оборудованных пунктов управления. Высоту расположения проводов воздушных линий электропередачи назначают с учетом напряжения (табл.3.4.1)
Для исключения возможного контакта или опасного приближения к неизолированным токоведущим частям предусматриваются стационарные ограждения: сплошные и сетчатые. Сплошные ограждения применяются в электроустановках до 1000В в виде крышек, кожухов и т.д. Сетчатые ограждения имеют двери, которые закрывают на замок.
Часто применяют при ведении профилактических работ переносные ограждения: щиты, изолирующие колпаки, изолирующие накладки. Они также оборудуются дверьми или крышками, которые закрываются на замок или обеспечены защитной блокировкой.
Под блокировкой понимают автоматическое устройство, при помощи которого предотвращается попадание людей под напряжение в результате ошибочных действий. По принципу действия различают: механическую, электромагнитную и электрическую блокировки.

§ Применение малых напряжений

Малое напряжение — номинальное напряжение не более 42 В, применяемое в целях уменьшения опасности поражения электри­ческим током.

Наибольшая степень безопасности достигается при напряже­ниях до 10 В, так как при таком напряжении ток, проходящий через человека, не превысит 1—1,5 мА. В помещениях с повы­шенной опасностью и особо опасных, где сопротивление электрической цепи человека может быть значительно снижено. Однако даже если принять сопротивление тела че­ловека R ch=1кОм, то при напряжении 10 В ток не превышает 10 мА.

На практике применение очень малых безопасных напряже­ний ограничено шахтерскими лампами (2,5 В) и некоторыми бы­товыми приборами. В производственных переносных электроустановках для повышения безопасности применяются малые напряжения 12 и 36 В. В помещениях с повышенной опасностью для переносных электроприемников рекомендуется номинальное напряжение 36В, R тела человека при этом U принимаем 2 кОм и ток, проходящий через че­ловека (2 фазы), мо­жет быть I h=36/2=18 мА. Такой ток для большинства людей является неотпускающим. ТЕ, 2-фазное прикос­новение при напряжении 36 В опасно. Безопасность обеспечива­ется только при однофазном прикосновении. В особо опасных по­мещениях, где ручной электроинструмент питается от источника напряжением 36 В, а ручные лампы—12 В, ток, проходящий че­рез человека, может быть еще выше.

Читайте также:  Болит плечо при напряжении мышц

В европейских и других странах в сетях напряжением до 1 кВ уже много лет широко применяются устройства защитного отключения (УЗО) различных систем.

Функционально УЗО можно определить как быстродействующий защитный выключатель, реагирующий на дифференциальный ток в проводниках, подводящих электроэнергию к защищаемой электроустановке.

В нормальном режиме, при отсутствии дифференциального тока – тока утечки, в силовой цепи по проводникам, проходящим сквозь окно магнитопровода трансформатора тока 1, протекает рабочий ток нагрузки. Эти проводники образуют встречно включенные первичные обмотки дифференциального трансформатора тока. Если обозначить ток, протекающий по направлению к нагрузке, как I 1, а от нагрузки как I 2, то можно записать равенство: I 1 = I 2

Равные токи во встречно включенных обмотках наводят в магнитном сердечнике трансформатора тока равные, но векторно встречно направленные магнитные потоки Ф 1 и Ф 2. Результирующий магнитный поток равен нулю, ток во вторичной обмотке дифференциального трансформатора также равен нулю. Пусковой орган 2 находится в этом случае в состоянии покоя.

При прикосновении человека к открытым токопроводящим частям или к корпусу электроприемника, на который произошел пробой изоляции, по фазному проводнику через УЗО кроме тока нагрузки I 1 протекает дополнительный ток – ток утечки I D , являющийся для трансформатора тока дифференциальным (разностным).

6. Электрическое разделение сетей и компенсация емкостных токов замыкания на землю. 3.4. ЭЛЕКТРИЧЕСКОЕ РАЗДЕЛЕНИЕ СЕТЕЙ Разветвленная электрическая сеть большой протяженности имеет значительную ем- кость и небольшое емкостное сопротивление изоляции относительно земли. Как показано в § 2.2.1, ток замыкания на землю в такой сети может быть значительным и однофазное прикос- Рис. 3.4. Схема трех вольтметров 43 новение в сети даже с изолированной нейтралью является опасным. Если единую протяжен- ную сеть с большой емкостью и малым сопротивлением изоляции разделить на ряд коротких сетей с небольшой емкостью и высоким сопротивлением изоляции, опасность поражения че- ловека резко снижается. Электрическое разделение протяженных сетей на несколько гальванически не связан- ных коротких участков осуществляет- ся постановкой разделительных трансформаторов, как это показано на рис. 3.5. В разделительных трансформа- торах, предназначенных для электри- ческого разделения сетей, не происхо- дит преобразование энергии, т.к. чис- ло витков и величины напряжений в первичных и вторичных обмотках рав- ны между собой, т.е. коэффициент трансформации Кт равен единице. В представленной на рис. 3.5 схеме установка двух разделительных трансформаторов РТ1 и РТ2 сократила протяженность отдельных участков по сравнению с общей длиной сети в три раза. Соответственно произошло уменьшение емкости и повышение общего сопротивления сети, а следова- тельно, повышение безопасности ее эксплуатации. На практике распространение получила схема питания отдельных электроприемников от разветвленной сети через разделительные трансформаторы (рис.3.6). Защита с помощью разделительных трансформаторов используется для отделения электроприемников от общей сети напряжением 380, 220 и 127 В, в которой могут произойти повреждения изоляции и замыкания на корпус, вызывающие повышенную опасность для че- ловека. НП ФП Uф Rh Рис. 3.5. Электрическое разделение сети: ЛТ – линейные трансформаторы; РТ1, РТ2 – раздели- тельные трансформаторы; l – протяженность сети, км; l/3 – протяженность отдельных участков, км Рис. 3.6. Схема электрической сети с разделительным трансформатором: 1 – разделительный трасформатор; 2 – электроприемник (электродрель); 3 – заземление корпуса трансформатора 44 На рис. 3.6 изображена двухпроводная электрическая сеть с разделительным транс- форматором 1, от которого, согласно «Правил», должен питаться только один электроприем- ник 2. При этом сеть, связывающая трансформатор с электроприемником, (например с элек- тродрелью), как правило, является непротяженной. В этих условиях при прикосновении че- ловека (Rh) к корпусу электроприемника, замкнутого на фазу, через его тело потечет ток, значение которого определяется известной из § 2.1 формулой (2.2): 2/ A., ф из I U R r n = h + Если принять сопротивление тела человека Rh=1000 Ом, а сопротивление изоляции участка сети за разделительным трансформатором rиз=500 кОм, то при фазном напряжении Uф=220 В значение тока Ih будет менее 0,5 мА. Такое значение тока является безопасным, т. к.находится ниже порового ощутимого тока. В случае подсоединения второго электроприемника к разделительному трансформатору опасность поражения человека возрастает в связи с тем, что на обеих установках может произойти замыкание на корпус или пробой изоляции одновременно. При этом одна из установок будет связана с землей напрямую через сверло электродрели, и заземлённым изделием. И в том случае, если вторая установка связана с землей, то ток Ih будет определяться полным напряжением сети и сопротивлением человека Rh. Опасность поражения в данном случае высокая, поэтому в применяемых схемах с раз- делительным трансформаторами при напряжениях 380, 220 и 127 В заземление корпусов электроприемников не допускается. Корпус самого разделительного трансформатора необ- ходимо заземлять. Это объясняется тем, что при пробое изоляции первичной обмотки на корпус трансформатора и при отсутствии заземления ток через человека, прикоснувшемуся к корпусу, замыкается через небольшое емкостное сопротивление протяженной первичной се- ти. Значение этого тока будет опасным. Установка предохранителей в рассматриваемой схе- ме объясняется необходимостью отключения электроприемника в случаях замыкания фазы на корпус установки, соединенной с землей, и повреждения изоляции на другой фазе, а так- же при межфазном коротком замыкании.

Читайте также:  Преобразователь напряжения инвертор для авто

3.5. КОМПЕНСАЦИЯ ЕМКОСТНЫХ ТОКОВ ЗАМЫКАНИЯ НА ЗЕМЛЮ

Источник

Что такое электрическая прочность изоляции и как ее контролировать?

Передача электрической энергии на любые расстояния осуществляется по металлическим проводникам, которые обязательно должны отделятся диэлектриком. От качества изоляции во многом зависят не только эффективность работы энергосистемы, но и безопасность человека. Однако со временем технические характеристики диэлектрика утрачиваются, из-за чего во всех устройствах периодически должна проверяться электрическая прочность изоляции.

Электрическое старение может ускоряться из-за воздействия ряда факторов, чтобы разобраться в них мы более детально рассмотрим строение и физические процессы, протекающие в диэлектрических материалах.

Что такое электрическая прочность?

Под электрической прочностью для любой изоляции следует понимать такую минимальную разность потенциалов, приложенную к единице толщины, при которой начинают происходить разряды. Электрическая прочность представляет собой нелинейную функцию, изменение которой зависит от таких факторов:

  • Толщины изоляции;
  • Диэлектрической проницаемости;
  • Температуры как окружающего пространства, так и самой изоляции;
  • Тип диэлектрика;
  • Род приложенного напряжения (переменное или постоянное).

Таким образом, можно сказать, что прочность изоляции определяет пробивное напряжение. На практике для каждого материала этот параметр вычисляется эмпирическим путем после проведения многочисленных испытаний.

Величина измеряется как В/мм или кВ/см и т.д., к примеру, сухой воздух, в среднем, обладает прочностью 32кВ/см.

Однако прочность изоляции будет зависеть и от агрегатного состояния материала:

  • Твердые диэлектрики – наиболее распространенные в кабельно-проводниковой продукции, предназначены для изготовления изоляции жил, корпусов приборов, прокладок и т.д. После пробоя или микро пробоя происходит разрушение изоляции, образуются каналы, по которым повторный пробой будет происходить уже при меньшем напряжении.
  • Жидкие диэлектрики – наиболее распространенный вариант – трансформаторное масло, используемое в трансформаторах, выключателях, кабелях высокого напряжения. За счет подвижной структуры обладают способностью к восстановлению, благодаря чему они отлично проявляют себя в тех же масляных выключателях, где изоляция одновременно гасит дугу, а после этого восстанавливается.
  • Газообразная изоляция – вокруг обмоток трансформатора или других электрических аппаратов используется воздух, то же можно сказать о некоторых типах высоковольтных выключателей. Но в современных приборах часто применяется элегаз или азот. Газы также легко восстанавливаются после пробоя.

Физически электрическая прочность диэлектриков обеспечивается за счет отсутствия свободных носителей заряда в материале. Молекулы диэлектрика настолько прочно удерживают электроны на крайних орбитах, что даже приложенное напряжение не может вырвать их с орбит. Разумеется, что если рассмотреть идеальный вариант – расположение материала между двумя пластинами, на которые подано напряжение, то через него протекать не будет. Однако все атомы будут получать дополнительную энергию, что создаст большую напряженность электрического поля, как во всей твердой изоляции, так и в каждом отдельном атоме.

Но, если между вышеприведенными пластинами поместить не один кусок диэлектрика, а две из разных материалов или половину из воздуха, а вторую из пластика, то напряженность электрического поля в этих материала будет отличаться из-за того, что у них разная диэлектрическая проницаемость. Это является одним из важнейших факторов снижения электрической прочности.

Причины уменьшения электрической прочности

Самое сильное влияние на состояние изоляции оказывает подача переменного напряжения и температурные скачки до предельных норм и выше. Температурные колебания в большую сторону ускоряют движение атомарных частиц, что повышает проводимость изоляции, и, соответственно, снижает ее электрическую прочность. Понижение температуры имеет обратный эффект – для атомов требуется больше энергии, чтобы предоставить свободу электронам или ионам в толщине диэлектрика.

Переменное напряжение создает поляризацию частиц, которые 100 раз в секунду изменяют свое направление на противоположное. Для материалов с высокой степенью чистоты данный фактор не представляет большой угрозы, однако все включения инородных веществ ведут себя иначе. Из-за неоднородности поля при переходе от изоляции к включению происходит изменение физических параметров электрических величин. Со временем включения расширяются и достигают величины микротрещин, что и приводит к старению изоляции.

Конечным результатом снижения прочности изоляции является электрический пробой, который может привести к разрушению диэлектрика и выходу со строя соответствующего оборудования.

По виду они подразделяются на:

  • Электрический – происходит в твердых изоляционных материалах, характеризуется лавинообразным процессом при котором разрываются естественные связи внутри атома;
  • Тепловой пробой – происходит когда изоляция получает больше тепловой энергии, чем способна отвести. Возникает как следствие размягчения, которое приводит к деформации и уменьшению толщины материала;
  • Электромеханический – характерен для хрупкой изоляции (фарфора, керамики) где внутренние разряды приводят к механическим повреждениям;
  • Электрохимический – обуславливается изменением химического состава изоляции. Чаще всего, в результате старения, иногда за счет диффузии металла проводника в поры диэлектрика, что и снижает электрическую прочность;
  • Ионизационный – присущ тем диэлектрикам, где присущи газовые включения или другие неоднородности, в которых происходит ионизация частиц.

На практике вышеперечисленные виды, чаще всего, дополняют друг друга, поэтому электрическая прочность снижается не сразу, а со временем старения.

Читайте также:  Tl431 стабилизатор напряжения расчет

Методы контроля

Контроль состояния и электрической прочности позволяет вовремя выявлять дефекты или старение диэлектрика в обмотках силовых трансформаторов, проходных и опорных изоляторах, высоковольтных вводах, силовых кабелях и других видах оборудования. Благодаря этому устройства можно заменить или отремонтировать, просушить изоляционную среду или установить новую обмотку. Современные испытательные установки для проверки электрической прочности могут применять различные методики.

Наиболее популярными являются:

  • Измерение сопротивления изоляции – производится при помощи мегаомметра напряжением в 500, 1000 или 2500В, в зависимости от номинала испытуемого агрегата. Длительность и нормы регламентируются Приложением 3 ПТЭЭП, на внутреннюю изоляцию подается напряжение и происходит измерение сопротивления.
  • Испытание повышенным напряжением – выполняется путем подачи на внешнюю изоляцию, устройство или его часть через испытательный трансформатор кенотронной установки повышенного напряжения. Данная процедура носит временный, а в некоторых случаях и импульсный характер, технология и нормы испытательных напряжений регламентируются ГОСТ 246060.1-81, а также более современным ГОСТ Р55195-2012 для различных видов оборудования, бумажной изоляции и прочих.
  • Измерение угла диэлектрических потерь – в идеальном диэлектрике этот параметр должен равняться 0, но чем меньше электрическая прочность, тем больше потери в изоляции. Возникает разница между активной и реактивной составляющей переменного тока, из-за чего и возрастает tg δ, что показано на рисунке ниже:

Примеры расчетов

Для вычисления электрической прочности любого диэлектрика вам необходимо знать условия эксплуатации и геометрические параметры, которые затем сравниваются с табличными данными. Например, если у вас имеется промежуток с воздушным диэлектриком 2 см, к которому будет приложено напряжение в 20 кВ.

Источник



номинальное напряжение изоляции

3.20 номинальное напряжение изоляции (rated insulation voltage): Значение действующего выдерживаемого напряжения, указанное изготовителем для оборудования или его части, характеризующее указанную (долгосрочную) прочность его изоляции.

[Определение 1.3.9.1 МЭК 60664-1].

Примечание — Номинальное напряжение изоляции не обязательно равно номинальному напряжению оборудования, которое прежде всего связано с функциональными характеристиками.

3.13 номинальное напряжение изоляции (rated insulation voltage), UНм (UNm): Напряжение при номинальной частоте, прикладываемое между выводом обмотки и какой-либо другой цепью или проводящей частью, находящейся вне обмотки.

Смотри также родственные термины:

4.1.2. Номинальное напряжение изоляции (цепи НКУ)

Номинальное напряжение изоляции (Ui) цепи НКУ есть значение напряжения, которое характеризует конструкцию НКУ и в соответствии с которым проводят испытания диэлектрических свойств, проверяют зазоры и расстояния путей утечки.

Максимальное номинальное рабочее напряжение любой цепи НКУ не должно превышать его номинального напряжения изоляции. Предлагается, что рабочее напряжение любой цепи НКУ не должно даже временно превышать 110 % номинального напряжения изоляции этой цепи.

1. Стандартные значения номинального напряжения изоляции главных цепей находятся в стадии рассмотрения.

2. Для однофазных цепей с изолированной нейтралью и заземленными открытыми токопроводящими частями (IT) (см. ГОСТ 30331.2-95 (здесь и далее).

Словарь-справочник терминов нормативно-технической документации . academic.ru . 2015 .

Смотреть что такое «номинальное напряжение изоляции» в других словарях:

номинальное напряжение изоляции — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN nominal insulation voltage … Справочник технического переводчика

номинальное напряжение изоляции — vardinė izoliacijos atsparumo įtampa statusas T sritis Standartizacija ir metrologija apibrėžtis Matuoklio gamintojo nustatyta arba nurodyta įtampa, apibūdinanti norminę jo izoliacijos atsparumo gebą. atitikmenys: angl. rated insulation voltage… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

номинальное напряжение изоляции цепи НКУ — Номинальное напряжение изоляции (Uc) цепи НКУ есть значение напряжения, которое характеризует конструкцию НКУ и в соответствии с которым проводят испытания диэлектрических свойств, проверяют зазоры и длины путей утечки. Максимальное номинальное… … Справочник технического переводчика

номинальное напряжение изоляции (аппарата), Ui — Значение напряжения, по которому определяют испытательное напряжение при испытании изоляционных свойств, расстояние утечки и воздушные зазоры. Максимальное значение номинального рабочего напряжения не должно превышать наибольшего значения… … Справочник технического переводчика

номинальное напряжение изоляции (соединительного устройства) — напряжение по изоляции Напряжение, определяемое изготовителем для данного соединителя и его составных частей, с которыми соотносятся испытания на электрическую прочность изоляции, воздушные зазоры и расстояния утечки. [ГОСТ Р 51323.1 99]… … Справочник технического переводчика

Номинальное напряжение изоляции (цепи НКУ) — 4.1.2. Номинальное напряжение изоляции (цепи НКУ) Номинальное напряжение изоляции (Ui) цепи НКУ есть значение напряжения, которое характеризует конструкцию НКУ и в соответствии с которым проводят испытания диэлектрических свойств, проверяют… … Словарь-справочник терминов нормативно-технической документации

номинальное напряжение — 3.17 номинальное напряжение (rated voltage): Напряжение, установленное для выключателя изготовителем. Источник: ГОСТ Р 51324.1 2005: Выкл … Словарь-справочник терминов нормативно-технической документации

номинальное напряжение прочности изоляции — vardinė izoliacijos atsparumo įtampa statusas T sritis Standartizacija ir metrologija apibrėžtis Matuoklio gamintojo nustatyta arba nurodyta įtampa, apibūdinanti norminę jo izoliacijos atsparumo gebą. atitikmenys: angl. rated insulation voltage… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

номинальное напряжение распределительной системы — 3.104 номинальное напряжение распределительной системы (nominal voltage of the distribution system) Un: Напряжение, указанное в обозначении распределительной системы электроснабжения или оборудования, к которому относятся их установленные рабочие … Словарь-справочник терминов нормативно-технической документации

Номинальное напряжение — У этого термина существуют и другие значения, см. Напряжение. Эта статья или раздел описывает ситуацию применительно лишь к одному региону (Россия). Вы можете помочь Википедии, добавив информацию для друг … Википедия

Источник