Меню

Что такое нейтраль в трехфазной сети переменного тока

Нейтраль — это. Определение, устройство и назначение

Электроэнергетика – это сложный промышленный комплекс, который состоит из множества составных частей. Чтобы каждый элемент работал правильно и выполнял поставленные задачи, необходимо точное знание и понимание физических процессов, которые протекают в силовом оборудовании. Некоторые из них легко объяснить, поэтому предлагаем познакомиться с таким понятием, как «нейтраль».

Общее назначение нулевого провода в обмотках трансформатора

Нейтраль и исполнение обмоток силовых трансформаторов

Нейтраль – это общая, нулевая точка соединение проводника в трехфазных трансформаторах или генераторах. На текущий момент существует 4 основных разновидности присоединения нулевой точки:

  1. Изолированная. Этот тип характеризуется отсутствием нейтрали. Основной схемой соединения для представленной сети является треугольник. При однофазных замыканиях на землю на рабочих фазах не чувствуют изменений в энергопотреблении. Подобная разновидность применяется в распределительных сетях 6-35 кВ.
  2. Резонансно-заземленная. Указанный вариант предполагает использование заземления нулевой точки обмоток трансформатора или генератора через дугогасящие катушки или реакторы (ДГК, ДГР). Наличие специализированного оборудования компенсирует повышающийся уровень тока, позволяя избежать более сложных, межфазных повреждений.
  3. Глухозаземленная. Самый распространенный тип нейтрали, который используется в сетях бытового потребления. Обмотка трансформаторов по низкой стороне выполняется соединением разомкнутая звезда, а нулевая точка заземляется через контур заземления трансформатора или трансформаторной подстанции. При повреждениях на линии или возникновении однофазного замыкания создается потенциал относительно земли, что приводит в действие защиту, отключающую линию.
  4. Эффективно-заземленная. Разновидность заземленной нейтрали, которая используется в высоковольтных сетях 110 кВ и выше. Нулевая точка силовых трансформаторов и потенциал замыкания выносится на землю. Для повышения эффективности работы защит используется дополнительное оборудование заземлитель нейтрали одноколонковый (ЗОН). Положение коммутационного аппарата определяется режимными указаниями. Для распределительных сетей 6-35 кВ используется заземление через низкоомный резистор.

Типы соединения обмоток силовых трансформаторов

Типы соединения обмоток силовых трансформаторов

Как отмечалось выше, нейтраль – это соединение нулевого проводника трехфазного силового трансформатора или генератора. Чтобы определить тип заземления, достаточно посмотреть на схему энергетического оборудования. Для изолированной нейтрали принципиальная схема – это треугольник.

Остальные варианты реализованы через заземление нулевого проводника на землю, ДГК, низкоомный резистор. Последние в основном используются на подстанциях, которые преобразуют электрическую энергию высокого напряжения на низкое, потребительское. Принципиальная схема – звезда.

Изолированная нейтраль в электрических сетях

Сеть с изолированной нейтралью

Применяется в распределительных сетях 6-35 кВ. Что касается физических проявлений изолированной нейтрали, напряжение возрастает до линейного. Основное назначение подобного типа связывается со следующими моментам:

  1. Сеть не отключается, продолжает работать. Потребители на фазах без замыкания используют однофазные бытовые приборы до отключения линии. Перекос по напряжению в сетях 0,4 кВ отсутствует, в сетях 6-35 увеличивается до линейного.
  2. Реализация таких сетей в разы дешевле в обслуживании, что позволяет экономить значительные средства на распределение электрической энергии.
  3. Высокая надежность работы, особенно на воздушных линиях электропередач. Падение ветки не отключит фидер и обеспечит его работоспособность.

Главными недостатками изолированных сетей считаются:

  1. При однофазном замыкании сеть продолжает работать, защиты не срабатывают, что иногда приводит к несчастным случаям с населением.
  2. Наличие феррорезонансных процессов и возникновение реактивной мощности, которая ухудшает качество электрической энергии.

Резистор и напряжение 110 кВ и выше: как исполнена нулевая точка?

Эффективно заземленная нейтраль в электрической сети

Эффективное заземление – это особый вид нулевого проводника, присоединенного к специализированному оборудования, который применяется в электроустановках выше 1 кВ. Для распределительных сетей используется вариант с заземлением через низкоомные резисторы, которые обеспечивают отключение линии при однофазном замыкании на землю без выдержки времени.

Линии высокого напряжения 110 кВ и выше также используют представленный тип нейтрали, что обеспечивает быстроту срабатывания защит. Для повышения чувствительности работы «релейки» у каждого силового трансформатора имеется специальное оборудование ЗОН. Одноколонковый заземлитель нейтрали обеспечивает также защиту от перегруза.

Заземление через низкоомные резисторы

Низкоомный резистор на подстанции

Использование низкоомных резисторов считается идеальным решением в плане безопасности людей в распределительных сетях, а также в вопросах сохранения изоляции кабельных линий. Реализация защит предполагает выведение нулевой точки на специализированное оборудование, которое обладает меньшим омическим сопротивлением и дает сигнал на отключение линии. Фидер отключается с минимальной выдержкой времени, что является одним из достоинств. К прочим необходимо отнести:

  • Первое, это нейтраль, которая при появление «земли» точно определяет поврежденное направление и отключает требуемую линию.
  • Второе: нет необходимости в дополнительных расчетах и составлении режимных карт при ограниченных возможностях кольцевания распределительных сетей.

Важными недостатками такого типа заземления:

  1. Не эффективен при больших токах замыкания на землю, так как появляются проблемы на подстанциях, где установлены низкоомные резисторы.
  2. Низкая эффективность на ВЛ, а также на линиях большой протяженности. В первом случае малейшее приближение веток деревьев станет причиной отключения фидера. Особенно актуально с потребителями 1 особой, 1 и 2 категории.
  3. Лишние отключения, которые возникают из-за неправильного срабатывания защит (отсутствие АПВ), предполагает простои в потреблении, материальные потери энергоснабжающей организации.

Глухое заземление силовых трансформаторов на землю

Глухозаземленная нейтраль в сети

Все, что связано с распределительной сетью 0,4 кВ – это нейтраль с глухим заземлением на землю. Представленному типу отводится особое место и роль в плане безопасности. При появлении короткого замыкания на землю срабатывает защита, в частности, перегорают ПН-2 или отключается автомат. Относительно такой сети разрабатываются и защиты для проводки в домах и квартирах. Ярким примером является действие УЗО, обеспечивающее выявление токов утечки.

Основными преимуществами такого типа нейтрали считаются:

  1. Идеально подходит для распределения электрической энергии, обеспечивает работоспособность бытового и специализированного однофазного/трехфазного оборудования.
  2. Схема защиты не требует специализированного и дорогого оборудования. Технические средства по типу предохранителей или автоматов легко справляются с глухим замыканием на землю.

К недостаткам относится:

  1. Защиты нечувствительны при дальнем КЗ. Необходимо точный расчет омического сопротивления петли фазы-нуль и правильный выбор автоматов или предохранителей.
  2. Срабатывания не возникает при отсутствии замыкания на землю. Это представляет опасность для человека, что корректируется через использование изолированных проводов.

Резонансно-заземленные или компенсированные нейтрали

Типы нейтралей для распределительной сети

Резонансно-заземленные нейтрали применяются в основном в распределительных сетях напряжением 6-35 кВ, где схема подключения выполняется кабельными линиями. Присоединение нулевой точки осуществляется через специальные плунжерные или регулируемые трансформаторы РУОМ. Подобная система позволяет определить индуктивность в сети при однофазном замыкании, что обеспечивает компенсацию уровня тока.

Нейтраль такого типа снижает риск развития аварии, переход однофазного замыкания в межфазное. Достоинствами для напряжения 6-35 кВ являются:

  1. Основное преимущество связывается с назначением оборудования. Высокая степень защиты изоляции кабельных линий при правильной подстройке.
Читайте также:  Графит при нормальных условиях проводит электрический ток или нет

Недостатками сети с таким типом нейтрали считаются:

  1. Трудность настройки. Может возникнуть недокомпенсация или перекомпенсация, что не позволит правильно использовать оборудование. Для выстраивания необходим расчет индуктивности токов в зависимости от длины линии, мощности трансформаторов. В случае изменения схемы или добавления энергооборудования, плунжерные трансформаторы не всегда справляются с поставленными задачами.
  2. Неправильно настроенное оборудование и высокий износ кабельных линий приводит к цепной реакции, которая предполагает выход из строя нескольких слабых участков сети.
  3. Повышение технических потерь, которые возникают во время работы, а также проблемы безопасности. Компенсация тока на подстанции реализовывается относительно земли.
  4. Невозможность определения линии, где произошло замыкание. Процесс выбора фидера с «землей» осуществляется через сравнение токов гармоник, что не всегда считается эффективным средством получения достоверной информации.

Нулевой проводник и дугогасящая катушка, реактор

Дугогосящий рекатор шведского производства

Разница резонансно-заземленной нейтрали связывается с используемым оборудованием. Как отмечалось выше, нулевая точка может располагаться на дугогасящей катушке плунжерного типа или на регулируемом реакторе. Основные отличия связываются со следующими моментами:

  1. ДГК предполагает компенсацию через отстроенную систему плунжерных трансформаторов. Настройка реализована через расчеты реальной сети службой релейной защиты. При возникновении замыкания на землю происходит компенсация токов, основанная на индуктивности. Процесс не регулируется и не подстраивается, что является неприятным моментом в случае появления «земли» в нескольких точках разных линий.
  2. ДГР – более современное оборудование, которое предполагает использование автоматических систем определения индуктивности сети. Среди популярных вариантов считаются реакторы типа «РУОМ» с подстройкой «САМУР». Реализация опроса выполняется в реальном времени, что обеспечивает работоспособность даже при нескольких повреждениях с замыканием на землю.

Неважно глухозаземлена нейтраль или изолирована, применение каждого типа найдет место в современной электроэнергетике. А знание особенностей позволит разобраться с физической сущностью вопроса.

Источник

Изолированная нейтраль. Устройство и работа. Применение

Изолированная нейтраль — в процессе передачи, распределения и потребления электрической энергии применяется симметричная 3-фазная система. Такую симметричность можно достичь, приведя в одинаковое положение линейные и фазные напряжения. Поэтому на всех фазах создается равномерная нагрузка по току, равный фазный сдвиг напряжений и токов.

Но при эксплуатации такой системы часто возникают аварийные режимы, приводящие к различным неисправностям проводников. Вследствие этого возникает нарушение симметричности трехфазной системы. Такие нарушения необходимо быстро устранять. На это оказывает большое влияние быстродействие релейной защиты.

Ее правильное функционирование зависит от нейтралей, которые бывают изолированными или глухозаземленными. Каждая из них имеет свои недостатки и преимущества, и используется в соответствующих условиях работы. От технического состояния релейной защиты зависит ее нормальная эксплуатация.

Устройство

Изолированная нейтраль создает режим, который нашел применение в российских энергосистемах для трансформаторов, а также генераторов. Их нейтральные точки не имеют соединения с контуром заземления. В сетях высокого напряжения (от 6 до 10 кВ) нейтральная точка не обязательна, так как обмотки трансформаторов выполнены по схеме треугольника.

Izolirovannaia neitral skhema 1

По правилам имеется возможность ограничить режим изолированной нейтрали током емкости. Этот ток возникает при замыкании одной фазы.

Ток замыкания можно компенсировать путем использования дугогасящих реакторов в следующих случаях:
  • Более 30 А, напряжение от 3 до 6 кВ.
  • Больше 20 А, напряжение 10 кВ.
  • Ток более 15 А, напряжение от 15 до 20 кВ.
  • Ток больше 10 А, напряжение от 3 до 20 кВ, с опорами линий передач электроэнергии.
  • Все сети питания на напряжение 35 кВ.
  • В группе «генератор-трансформатор» при нагрузке 5 А и напряжении на генераторе от 6 до 20 кВ.

Допускается производить компенсацию тока замыкания на заземляющий контур путем замены ее на заземление нейтрали специальным резистором. В таком случае порядок действия релейной защиты изменится. Изолированная нейтраль впервые была заземлена в электрических устройствах с небольшой величиной напряжения.

В отечественных сетях питания изолированная нейтраль применяется в:
  • 2-проводных сетях постоянного тока.
  • 3-фазных сетях переменного тока до 1 кВ.
  • 3-фазных сетях от 6 до 35 киловольт при условии допустимого тока замыкания.
  • Низковольтных сетях, имеющих защитные устройства в виде разделяющих трансформаторов, защитной изоляции, для создания безопасных условий человека.
Принцип действия

Изолированная нейтраль применяется в схемах сетей питания в случаях соединения вторичных обмоток трансформаторов по схеме треугольника, а также при невозможности отключения питания при аварии. Поэтому точка нейтрали отсутствует.

Замыкание фазы на землю не считается коротким при схеме сети с изолированной нейтралью, так как нет соединения между землей и проводниками сети. Но это не значит, что не будет тока утечки при замыкании.

Это объясняется тем, что изоляция кабеля – это не абсолютный диэлектрик, как и другие изоляторы, которые имеют некую минимальную проводимость. Чем больше длина линии, тем выше ток утечки. Представим жилу кабеля обкладкой конденсатора. Второй обкладкой будет земля. Воздух и изоляция будет диэлектриком между токоведущими частями без напряжения, и кабелем. Емкость такого воображаемого конденсатора будет тем выше, чем длиннее линия передач.

Izolirovannaia neitral skhema 2

Сеть с изолированной нейтралью представляет собой цепь замещения, учитывая удельную электроемкость сети и сопротивление изоляции. Это изображено на рисунке.

Такие компоненты цепи создают ток утечки. При различных условиях в таких сетях 380 вольт ток утечки незначителен, и составляет несколько миллиампер. Несмотря на это, такое замыкание приводит к аварии сети, хотя сеть еще может некоторое время работать.

Нельзя забывать, что в аналогичных сетях при замыкании 1-фазы на землю значительно повышается напряжение между землей и исправными фазами. Это напряжение приближается к величине 380 вольт (линейное напряжение). Этот факт может привести к удару электрическим током электротехнических работников.

Также, изолированная нейтраль при замыкании одной фазы на землю способствует пробиванию изоляции и появлению замыкания на других фазах, то есть, может возникнуть межфазное замыкание с большими токами. Чтобы обеспечить защиту в такой ситуации, необходимы плавкие вставки или автоматические выключатели.

Двойное замыкание на землю очень опасно для работников, обслуживающих сети. Поэтому, если в сети имеется однофазное замыкание, то такую сеть считают аварийной, так как условия безопасности резко снижаются. Наличие «земли» повышает опасность удара током при касании к элементам под напряжением. Поэтому замыкания даже одной фазы на землю немедленно должны устраняться.

Читайте также:  Дома часто бьет током

Незначительная величина тока 1-фазного замыкания при изолированной нейтрали является причиной такого фактора, что такое замыкание невозможно отключить предохранителями и автоматами защиты. Поэтому потребуется вспомогательные релейные электроустановки, которые предупредят об аварийном режиме.

Эта система питания требует значительного числа сигнализаций и защитных устройств, а к работникам, которые обслуживают сети, предъявляются высокие квалификационные требования.

Преимущества

Режим изолированной нейтрали обладает достоинством, которое заключается в отсутствии надобности оперативного отключения первого 1-фазного замыкания на землю. В местах неисправности появляется незначительный ток, при условии небольшой емкости тока на заземление.

Изолированная нейтраль применяется ограниченно, так как имеет несколько серьезных недостатков.

Недостатки
  • Сложное обнаружение неисправностей.
  • Все электроустановки требуется изолировать на линейное напряжение.
  • Если замыкание продолжается длительное время, то существует действительная опасность удара человека электрическим током.
  • При 1-фазных замыканиях не обеспечивается нормальное функционирование релейной защиты, так как величина действительного тока замыкания напрямую зависит от работы сети питания, а именно от числа подключенных веток цепи.
  • Снижается срок службы изоляции из-за постепенного накапливания дефектов вследствие воздействия на нее дуговых перенапряжений в течение длительного времени.
  • Повреждения могут появиться в различных местах из-за пробоя изоляции в других местах, где появляются дуговые перенапряжения. Поэтому многие кабели выходят из строя, так же, как электродвигатели и другие электроустановки.
  • Возможно появление дуговых перенапряжений, дуги незначительного тока в местах 1-фазного замыкания на землю.

В результате можно сказать, что значительное число недостатков превосходит все преимущества этого режима. Но при некоторых условиях такой способ вполне проявляет свою эффективность и не нарушает требований правил электроустановок.

Источник



Как работает сеть трехфазного тока с изолированной нейтралью

Электрические сети могут работать с заземленной или изолированной нейтралью трансформаторов и генераторов . Сети 6, 10 и 35 кВ работают с изолированной нейтралью трансформаторов. Сети 660, 380 и 220 В могут работать как с изолированной, так и с заземленной нейтралью. Наиболее распространены четырехпроводные сети 380/220, которые в соответствии с требованиями правил устройства электроустановок (ПУЭ) должны иметь заземленную нейтраль.

Рассмотрим сети с изолированной нейтралью . На рисунке 1,а изображена схема такой сети трехфазного тока. Обмотка изображена соединенной в звезду, однако все сказанное ниже относится также и к случаю соединения вторичной обмотки в треугольник.

Рис. 1. Схема сети трехфазного тока с изолированной нейтралью (а). Замыкание на землю в сети с изолированной нейтралью (б).

Как бы хороша ни была в целом изоляция токоведущих частей сети от земли, все же проводники сети имеют всегда связь с землей. Связь эта двоякого рода.

1. Изоляция токоведущих частей имеет определенное сопротивление (или проводимость) по отношению к земле, обычно выражаемое в мегомах. Это означает, что через изоляцию проводников и землю проходит ток не которой величины. При хорошей изоляции этот ток весьма мал.

Допустим, например, что между проводником одной фазы сети и землей напряжение равно 220 В, а измеренное мегомметром сопротивление изоляции этого провода равно 0,5 МОм. Это значит, что ток на землю 220 этой фазы равен 220 / (0,5 х 1000000) = 0,00044 А или 0,44 мА. Этот ток называется током утечки.

Условно для наглядности на схеме сопротивления изоляции трех фаз r1 , r2 , r3 изображаются в виде сопротивлений, присоединенных каждое к одной точке провода. На самом деле токи утечки в исправной сети распределяются равномерно по всей длине проводов, в каждом участке сети они замыкаются через землю и их сумма (геометрическая, т. е. с учетом сдвига фаз) равна нулю.

2. Связь второго рода образуется емкостью про водников сети по отношению к земле. Как это понимать?

Каждый проводник сети и землю можно представить себе как две обкладки протяженного конденсатора. В воздушных линиях проводник и земля — это как бы обкладки конденсатора, а воздух между ними — диэлектрик. В кабельных линиях обкладками конденсатора являются жила кабеля и металлическая оболочка, соединенная с землей, а диэлектриком — изоляция.

При переменном напряжении изменение зарядов конденсаторов вызывает возникновение и прохождение через конденсаторы переменных токов. Эти так называемые емкостные токи в исправной сети равномерно распределены по длине проводов и в каждом отдельном участке также замыкаются через землю. На рис. 1,а сопротивления емкостей трех фаз на землю х1, х2, х3 условно показаны присоединенными каждое к одной точке сети. Чем больше длина сети, тем большую величину имеют токи утечки и емкостные токи.

Посмотрим, что же произойдет в изображенной на рисунке 1,а сети, если в одной из фаз (например, А) произойдет замыкание на землю , т. е. провод этой фазы будет соединен с землей через относительно малое сопротивление. Такой случай изображен на рисунке 1,б. Поскольку сопротивление между проводом фазы А и землей мало, сопротивления утечки и емкости на землю этой фазы шунтируются сопротивлением замыкания на землю. Теперь под воздействием линейного напряжения сети UB через место замыкания и землю будут проходить токи утечки и емкостные токи двух исправных фаз. Пути прохождения тока показаны стрелками на рисунке.

Замыкание, показанное на рисунке 1,б, называется однофазным замыканием на землю, а возникающий при этом аварийный ток — током однофазного замыкания.

Представим себе теперь, что однофазное замыкание вследствие повреждения изоляции произошло не непосредственно на землю, а на корпус какого-нибудь электроприемника — электродвигателя, электрического аппарата, либо на металлическую конструкцию, по которой проложены электрические провода (рис. 2). Такое замыкание называется замыканием на корпус. Если при этом корпус электроприемника или конструкция не имеют связи с землей, тогда они приобретают потенциал фазы сети или близкий к нему.

Рис. 2. Замыкание на корпус в сети с изолированной нейтралью

Прикосновение к корпусу равносильно прикосновению к фазе. Через тело человека, его обувь, пол, землю, сопротивления утечки и емкостные сопротивления исправных фаз образуется замкнутая цепь (для простоты на рис. 2 емкостные сопротивления не показаны).

Ток в этой цепи замыкания зависит от ее сопротивления и может нанести человеку тяжелое поражение или оказаться для него смертельным.

Читайте также:  Только измерительные клещи постоянного тока

Рис. 3. Прикосновение человека к проводнику в сети с изолированной нейтралью при наличии в сети замыкания на землю

Из сказанного следует, что для прохождения тока через землю необходимо наличие замкнутой цепи (иногда представляют себе, что ток «уходит в землю» — это неверно). В сетях с изолированной нейтралью напряжением до 1000 В токи утечки и емкостные токи обычно невелики. Они зависят от состояния изоляции и длины сети. Даже в разветвленной сети они находятся в пределах нескольких ампер и ниже. Поэтому эти токи, как правило, недостаточны для расплавления плавких вставок или отключения автоматических выключателей.

При напряжениях выше 1000 В основное значение имеют емкостные токи, они могут достигать нескольких десятков ампер (если не предусмотрена их компенсация). Однако в этих сетях отключение поврежденных участков при однофазных замыканиях обычно не применяется, чтобы не создавать перерывов в электроснабжении.

Таким образом, в сети с изолированной нейтралью при наличии однофазного замыкания (о чем сигнализируют приборы контроля изоляции) продолжают работать электроприемники. Это возможно, так как при однофазных замыканиях линейное (междуфазное) напряжение не изменяется и все электроприемники получают энергию бесперебойно. Но при всяком однофазном замыкании в сети с изолированной нейтралью напряжения неповрежденных фаз по отношению к земле возрастают до линейных, а это способствует возникновению второго замыкания на землю в другой фазе. Образовавшееся двойное замыкание на землю создает серьезную опасность для людей. Следовательно, любая сеть с наличием в ней однофазного замыкания должна рассматриваться как находящаяся в аварийном состоянии , так как общие условия безопасности при таком состоянии сети резко ухудшаются.

Так, наличие «земли» увеличивает опасность поражения электрическим током при прикосновении к частям, находящимся под напряжением. Это видно, например, из рисунка 3, где показано прохождение тока поражения при случайном прикосновении к токоведущему проводу фазы А и неустраненной «земле» в фазе С. Человек при этом оказывается под воздействием линейного напряжения сети. Поэтому однофазные замыкания на землю или на корпус должны устраняться в кратчайший срок.

Источник

Виды нейтралей в электрических сетях

Электрические сети, как известно, делятся в зависимости от класса напряжения – до и выше 1000В. Нейтраль – это общая точка обмоток у трансформаторов и генераторов, соединенных в звезду. Если же схема обмоток треугольник и необходим ноль, то можно вспомнить про схему «скользящий треугольник». Будем рассматривать только сети переменного тока.

Виды заземления нейтрали в сетях до 1кВ

В электрических сетях напряжением до 1000В принято использовать три системы заземления нейтрали – это TN, IT, TT. Каждая из букв несет определенный смысл, разберемся:

  • 1-ая буква описывает способ заземления нейтрали источника питания
    • T (terra) – нейтраль глухозаземленная
    • I (isolate) – нейтраль изолирована (и – изолирована, легко запомнить)
  • 2-ая буква показывает способ заземления открытых проводящих частей (ОПЧ) с землей
    • N (neutral) – ОПЧ заземлены через глухозаземленную нейтраль источника питания
    • T – ОПЧ заземлены независимо от источника питания

В свою очередь система TN делится на три подсистемы – TN-C, TN-S и TN-C-S. В рамках данной подсистемы третьи буквы (C — combine, S — separe) обозначают совмещение или разделение в одном проводе функций нулевого защитного (PE) и нулевого рабочего (N) проводника.

Рассмотрим теперь каждую систему более подробно.

Система заземления TN

система заземления TN

В этой системе нейтраль глухозаземлена, а открытые проводящие части заземлены через эту глухозаземленную нейтраль. Глухозаземленная – это значит что нейтраль присоединена непосредственно к заземляющему устройству (болтом, сваркой) или через малое сопротивление (трансформатор тока).

В сетях до 1кВ глузозаземленная нейтраль используется для питания однофазных и трехфазных нагрузок.

Система заземления TT

система заземления TT

Система TT предполагает, что нейтраль источника питания глухозаземлена, а ОПЧ оборудования заземлены заземляющим устройством электрически несвязанным с нейтралью источника. То есть защитный PE-проводник создается у самого потребителя, а не идет от источника питания.

Система заземления IT

система заземления IT

В системе IT нейтраль генератора или трансформатора изолирована или заземлена через устройства, имеющие высокое сопротивление, а ОПЧ заземлены независимо. Эта система не рекомендуется для жилых зданий, используется там, где при первом замыкании на землю не требуется перерыв питания. Это могут быть электроустановки с повышенными требованиями надежности снабжения электроэнергией.

Виды заземления нейтрали в электросетях выше 1кВ

В сетях напряжением выше 1000В используется изолированная (незаземленная) нейтраль, эффективно заземленная нейтраль и резонансно-заземленная нейтраль. Глухозаземленная нейтраль используется только в сетях до 1кВ.

Сети с незаземленной (изолированной) нейтралью

Сети с незаземленной (изолированной) нейтралью

Исторически первая система заземления. Нейтральная точка источника питания не присоединена к заземляющему устройству. Обмотки соединены в треугольник и выходит, что нулевая точка отсутствует. Применяется на напряжение 3-35кВ.

Сети с эффективно-заземленной нейтралью

Сети с эффективно-заземленной нейтралью

Этот вид заземления используется в сетях напряжением выше 110кВ. Достоинство заключается в том, что при однофазных замыканиях на неповрежденных фазах напряжение относительно земли будет равно 0,8 междуфазного в нормальном режиме работы. В этой системе сам контур заземления выполняется с учетом протекания больших токов КЗ, что делает его сложным и дорогим.

Сети с нейтралью, заземленной через резистор или реактор

Сети с нейтралью, заземленной через резистор или реактор

Применяется в сетях 3-35кВ. Используется для уменьшения величины токов КЗ. Исторически был вторым способом заземления нейтрали. Заземление через резистор используется во всем мире, через реактор – в странах бывшего союза.

Заземление через реактор – при отсутствии замыкания ток через реактор мал. Когда происходит замыкание фазы на землю, то через место повреждения течет емкостной ток КЗ и индуктивный ток реактора. Если их величина равна, то в месте замыкания отсутствует ток (явление резонанса).

Заземление через резистор бывает низкоомным и высокоомным. Разница в величине тока, создаваемым резистором при замыкании на землю. Высокоомное применяется в сетях с малыми емкостными токами, в этом случае замыкание можно не отключать немедленно. Низкоомное заземление наоборот используется при больших емкостных токах.

Выбор виды заземления нейтрали зависит от следующих факторов:

  • величина емкостного тока сети
  • допустимая величина однофазного замыкания
  • возможности отключения однофазного замыкания
  • вида и типа релейных защит
  • безопасности персонала
  • наличия резерва

Сохраните в закладки или поделитесь с друзьями

Источник