Меню

Датчик кислорода широкополосный напряжение

Широкополосный лямбда зонд — кислородный датчик

Для снижения токсичных выбросов в автомобиле предусмотрена сложная система очистки выхлопного газа. Чтобы каталитический нейтрализатор стабильно обеспечивал уровень выброса в соответствие с эко протоколами Евро 4, 5, 6, двигатель авто должен получать корректно обогащенную топливную смесь, которая сгорает в цилиндрах блока на 99 %. Правильно сформировать процентный показатель: воздух/топливо помогают лямбда зонды — датчики присутствия кислорода. Элементы системы мониторят состав отработанного газа и передают сигналы на блок управления ДВС.

С ужесточением протоколов по нормам выбросов производители начали массово устанавливать на свои авто последнюю разработку кислородного улавливателя — широкополосный лямбда зонд, узел замеряет процент кислорода в отработанном газе в расширенных контрольных границах.

Датчики кислорода — разновидности

Функция всех датчиков, независимо от конструктивных особенностей, проводить постоянный количественный замер кислорода в отработанном газе и сравнивать показатель с эталоном. На основании количества остаточного кислорода, ЭБУ делает вывод о качестве сгорания топлива в блоке цилиндров. Эталонный показатель топливной смести носит название стехиометрическая (абсолютная) ТВС. Технически обозначается как λ=1.

В ее составе должно присутствовать соотношение 14.7/1, где 14.7 — кислород, 1 — топливо. При таком соотношении происходит полное сгорание солярки или бензина, распад твердых частиц, и как следствие, минимальные токсические отходы в выхлопе. Когда в ТВС преобладает воздух, смесь считается обедненной, если преобладает топливо — обогащенной.

Автомобили, с системой экологических выбросов под протокол Евро 5, 6 оснащаются широкополосными датчиками, усовершенствованные конструкции позволяют отслеживать процентное соотношение кислород/топливо в системе выпускного тракта максимально точно. Кроме широкополостных лямбда зондов авто оснащаются:

  • зондами на основе циркония;
  • титановыми.

Эти три разновидности контроллеров не могут быть взаимозаменяемыми. Принцип работы циркониевого зонда основан на гальваническом законе, где твердый наконечник из диоксида циркония действует как электролит. Широкополосный датчик имеет две камеры и работает на основе закона модуляции напряжения.

Каждый кислородный зонд предназначен под конкретную марку авто. Датчик кислорода синхронизирован с блоком управления ДВС, переустановка конструкций не допускается.

Конструктивные параметры широкополостного лямбда зонда

Место установки датчика на патрубке выходного коллектора перед блоком каталитического нейтрализатора. Для более четкого контроля за составом выхлопного газа и работой катализатора, после блока нейтрализатора может устанавливается второй кислородник. Конструкция широкополостного элемента.

  1. Камера электролизного (ионного) насоса.
  2. Опорные электроды (платиновое покрытие).
  3. Нагревательная пластина.
  4. Эталонный проход.
  5. Керамический блок (ZrO2).
  6. Диффузионная щель.
  7. Измерительная (опорная) камера.
  8. Платиновые электроды измерительной камеры.
  9. Электроды ионной электролизной камеры (насоса).

Широкополостные конструкции выдают значение лямбда (идеальная или стехиометрическая ТВС) в виде гиперболы по мере увеличения амперности. Циркониевые и титановые измерители лишены возможности точно отслеживать изменение параметров топливной смеси из-за особенности конструкции, единственный показатель, который доступен таким датчикам передавать на ЭБУ сигнал о состоянии ТВС в значениях: «Обогащенная», «Обедненная».

Рабочий цикл широкополосного датчика

Рабочую зону широкополосного лямбда зонда принято условно делить на 4 части. Это удобно для понимания принципа работы узла, во время диагностики, когда на приборной панели выходит ошибка системы.

  1. Камера ионого электролизного насоса — А.
  2. Чувствительный элемент или элемент Нернста — В.
  3. Электроцепь — С.
  4. ЭБУ — Д.

Отработанные газы, проходя по патрубку системы проникают в диффузионную щель, где происходит процесс дожигания. После дожига в камере образуется либо избыток, либо нехватка кислорода. Время каталитического сгорания твердых частиц в камере занимает 0.01 сек., но поскольку процесс дожига происходит только при высоком нагреве газа (от 200–300 градусов по Цельсию), камера нагревается через элемент нагревателя.

После догара топливного выхлопа в блоке, чувствительный элемент Нернста проводит сравнение, полученный состав воздуха с эталонным и передает информацию на ЭБУ мотора в одном из трех вариантов:

  • недостаток кислорода (лямбда «минус»), смесь обедненная;
  • переизбыток (лямбда «плюс»), смесь обогащенная;
  • стехиометрия (лямбда =1) — уравновешенный параметр.

На основе показателей ЭБУ посылает импульс на ионный насосный блок. В зависимости от первичных данных блок управления передает одну из трех команд.

  1. При переизбытке кислорода формируется положительный ток, смесь обедненная, необходимо провести лишний кислород в выхлопной патрубок.
  2. Если смесь обогащенная, необходимо закачать кислород из коллектора выхлопной системы в камеру и сформировать отрицательный ток.
  3. При стехиометрии ЭБУ не дает сигнал.

Во время формирования положительного или отрицательного тока в блоке ионного насоса, формируется показатель качественного состава выхлопной смеси. ЭБУ считывает параметр тока на сторонах насоса и формирует сигналы на корректировку подачи топлива в систему впрыска.

После внедрения широкополостных датчиков в систему выходного коллектора значительно упростился процесс диагностики и отпала необходимость использовать газоанализаторы. Но не все так однозначно в работе современных датчиков.

Нулевой показатель тока

Существует еще одна ситуация, когда во время работы ДВС кислородный зонд отправляет на ЭБУ сигнал нулевой силы тока. Это обозначает, что контроллер не смог вывести параметр лямбда на «1» или стехиометрию, существуют несколько распространенных причин:

  • критичный дефект;
  • неисправность зонда.

На практике водитель в одном случае из десяти увидит код ошибки, говорящей, что датчики не работает. ЭБУ не проверяет качество работы лямбда зонда, поскольку для мониторинга необходимо принудительно обогатить топливную смесь, затем критически увеличить поступление воздуха в цилиндры. Это способствует токсичному выхлопу. Поскольку вся система направлена на поддержку экологического стандарта отработанного газа, проверить рабочее состояние датчика можно только принудительно, вручную.

Критичный дефект возникает на исправном датчике, если его система корректировки на пределе параметров настройки. В этом случае на доске приборов появляется код ошибки «Превышение предела корректировки топливной смеси».

Читайте также:  Как снять напряжение скальпа

И в первом и во втором случае проводится демонтаж датчика, его проверка на работоспособность, вторым шагом идет проверка топливного состава. Если смесь подается в цилиндры блока неправильного состава, проводится корректировка качества смеси через настройку форсунок, зажигания, других элементов системы топливоподачи.

Признаки поломки

По своему техническому регламенту широкополостные кислородные зонды корректируют лямбду в настройке 0.7–1.6 λ. Признаки выхода из строя кислородника во многом схожи с поломками катализатора, поэтому перед диагностикой лямбда зонда проверяется сигнал от каталитического нейтрализатора. Характерные симптомы неисправности:

  • высокая токсичность выхлопа (проверяется СО2 измерителем);
  • нарушение динамики разгона;
  • на оборотах выше средних может появляться секундный «Чек» на приборной панели;
  • увеличенный расход топлива;
  • нестабильный, плавающий холостой ход (симптом также может указывать на поломку ДХО);
  • систематический перегрев каталитического нейтрализатора, под днищем слышаться потрескивающие звуки после того как мотор заглушен;
  • коды ошибок лямбда зондов на приборной панели.

Перечисленные признаки могут свидетельствовать о нарушении в работе других узлов и агрегатов: разрушенном катализаторе, растянутом ремне ГРМ и прочем.

Причины неисправности

Средний срок службы широкополостных датчиков 100–130 тыс. пробега. Значительно сократить работоспособность прибора могут следующие показатели:

  • некачественный бензин;
  • соляра с большим содержанием серы, присадок;
  • использование низкотемпературных герметиков при монтаже (покрытие разрушается, попадает в выпускной коллектор и блок датчика);
  • износ масляных колпачков, колец, масло проникает в систему выпускного коллектора;
  • некорректно выставленное зажигание, систематическое поступление в цилиндры обогащенной ТВС;
  • трещина в корпусе;
  • нарушение проводки, нестабильный контакт, обрыв цепи.

Каждая из причин влияет на срок службы кислородного датчика. При замене детали используют только оригинальные изделия, сверяясь по каталожным номерам. Производители настаивают — кислородные широкополостные датчики можно менять только на аналогичные с совпадающими каталожными номерами.

Как провести диагностику широкополостного лямбда зонда

Диагностика широкополосного датчика начинается с визуального осмотра наконечника элемента, проверки токопроводящих выводов. Это самый простой способ провести диагностику, осматривать датчики нужно каждые 10 000 пробега, вынимая детали с посадочного места на выходном коллекторе. Что проверяют.

  1. Надежность контакта клеммы с зондом.
  2. Наличие механических повреждений.
  3. Выкручивают элемент проверяют кожух.

На рабочем зонде могут быть незначительные отложения, которые легко счищаются (даже ногтем). На наконечнике не должно быть окисла. Зонд необходимо поменять, если после демонтажа на наконечнике замечают изменение покрытия.

Сажевые отложения возникают при систематически переобогащенной топливной смеси, если вышел из строя нагреватель зонда. Сажа засоряет внутренние блоки, снижает скорость реакции и точность передачи данных.

Серые, белые отложения свидетельствуют, что в моторном масле или топливе большое количество присадок. Отложения забивают проходы в камеру, снижают точность сигнала в 5 раз.

Свинец накапливается на наконечнике зонда и снижает чувствительность платиновых панелей. Возникает при использовании некачественного топлива (чаще на дизельных моторах).

Диагностика зонда мультиметром

Если визуально датчик не имеет следов неисправности, нет отложений, проверяется работоспособность цепи. В широкополостных датчиках Bosch, которые чаще других устанавливаются на авто присутствует шесть проводов подключения:

  • Красный — сигнальный плюс;
  • Желтый — опорный плюс;
  • Черный — опорный минус;
  • Белый — нагреватель минус;
  • Серый — нагреватель плюс;
  • Зеленый — сигнальный минус.

Для проверки работоспособности определенный провод будет подключаться на щуп мультиметра. Проверка целостности электроцепи узла делится на четыре этапа.

  1. Диагностика напряжения в нагревательном элементе.
  2. Напряжения в опорном блоке зонда (опорное напряжение).
  3. Сопротивление нагревательного элемента (проверка состояния).
  4. Сигнал.

Для проверки напряжения в нагревательном элементе, включают зажигание, зонд остается в разъеме. Щупы мультиметра присоединяются к проводам подогрева (белый, серый). Если цепь рабочая, цифры напряжения на экране тестера совпадут с напряжением бортовой сети — 12 В.

Напряжение в проводке опорного блока проверяется аналогично. Щупы устанавливаются на сигнальный провод и массу (желтый, черный), рабочая проводка выдаст на экран тестера показание 0.45 В.

Широкополостные конструкции зондов могут работать только после нагрева. Работоспособность нагревательной части датчика проверяют по сопротивлению элемента. Датчик снимают с разъема, проверяют сопротивление между контактами нагревателя. Для каждого зонда характерны индивидуальные параметры сопротивления, но в любом случае они находятся в границах 2–10 Ом.

Замена датчика

Проверка проводки зонда достаточно кропотливая работа, в большинстве случаев на СТО предлагают только поменять узел, если нарушена проводка, но учитывая, стоимость оригинального широкополостного датчика начинается с 10 000 руб. многие водители успешно находят неисправность в цепи и устраняют пробой.

Переустановка зонда занимает 10–15 минут при выключенном и желательно остывшем моторе. Отключается АКБ, специальным ключом снимается затяжка датчика, деталь вынимается с выходного коллектора и отсоединяется от ЭБУ. Установка нового происходит аналогично, зонд вкручивается в посадочное место рукой, затягивается. При замене проверяется состояние седла, степень износа уплотнительных колец. При необходимости проводится замена.

Широкополосные кислородные лямбда зонды достаточно сложный прибор, которые синхронизирован с прошивкой электронного блока конкретного автомобиля. Если газоанализатор можно было легко переделать из старого датчика своими руками, то в случае с кислородниками проводить такие работы опасно. Исключение — большой опыт в программировании и достаточные знания по настройке данного типа оборудования.

Источник

Проверяем лямбда-зонд

На написание этого материала натолкнуло обилие вопросов на интернет-форуме, связанных с непониманием (или недопониманием) принципа работы датчика кислорода, или лямбда-зонда.

Читайте также:  Вдох при напряжении мышц

Датчик кислорода: от общего к частному

Прежде всего, нужно идти от общего к частному и понимать работу системы в целом. Только тогда сложится правильное понимание работы этого весьма важного элемента ЭСУД и станут понятны методы диагностики.

Обучение Автодиагностике

Чтоб не углубляться в дебри и не перегружать читателя информацией, поведу речь о циркониевом лямбда-зонде, используемом на автомобилях ВАЗ. Желающие разобраться более глубоко могут самостоятельно найти и прочитать материалы про титановые датчики, про широкополосные датчики кислорода (ШДК) и придумать методы их проверки. Мы же поговорим о самом распространенном датчике, знакомом большинству диагностов.

Когда-то очень давно датчик кислорода представлял собой только лишь чувствительный элемент, без какого-либо подогревателя. Нагрев датчика осуществлялся отработанными газами и занимал весьма продолжительное время. Жесткие нормы токсичности требовали быстрого вступления датчика в полноценную работу, вследствие чего лямбда-зонд обзавелся встроенным подогревателем. Поэтому датчик кислорода ВАЗ имеет 4 вывода: два из них — подогреватель, один — масса, еще один — сигнал.

Из всех этих выводов нас интересует только сигнальный.

Форму напряжения на нем можно увидеть двумя способами:

  • сканером
  • мотортестером, подключив щупы и запустив самописец

Второй вариант предпочтительнее. Почему? Потому, что мотортестер дает возможность оценить не только текущие и пиковые значения, но и форму сигнала, и скорость его изменения. Скорость изменения — это как раз и есть характеристика исправности датчика.

Итак, главное: датчик кислорода реагирует на кислород . Не на состав смеси. Не на угол опережения зажигания. Не на что-либо еще. Только на кислород. Это нужно осознать обязательно.

О физическом принципе работы датчика рассказано во многих книгах, посвященных электронным системам управления двигателем, и мы на нем останавливаться не будем.

На сигнальный вывод датчика с ЭБУ подается опорное напряжение 0.45 В. Чтобы быть полностью уверенным, можно отключить разъем датчика и проверить это напряжение мультиметром или сканером. Все в порядке? Тогда подключаем датчик обратно.

К слову, на старых иномарках опорное напряжение «уплывает», и в итоге нормальная работа зонда и всей системы нарушается. Чаще всего опорное напряжение при отключенном датчике бывает выше необходимых 0.45 В. Проблема решается путем подбора и установки резистора, подтягивающего напряжение к «массе», тем самым возвращая опорное напряжение на необходимый уровень.

Дальше схема работы датчика проста. Если кислорода в газах, омывающих датчик, много, то напряжение на нем упадет ниже опорного 0.45 В, примерно до 0.1В. Если кислорода мало, напряжение станет выше, около 0.8-0.9 В. Прелесть циркониевого датчика в том, что он «перепрыгивает» с низкого на высокое напряжение при таком содержании кислорода в отработанных газах, которое соответствует стехиометрической смеси. Это замечательное его свойство используется для поддержания состава смеси на стехиометрическом уровне.

Методика проверки датчика кислорода

Поняв, как работает датчик кислорода, легко понять методику его проверки.

Предположим, ЭБУ выдает ошибку, связанную с этим датчиком. Например, Р0131 «Низкий уровень сигнала датчика кислорода 1». Нужно понимать, что датчик отображает состояние системы, и если смесь действительно бедная, то он это отразит. И замена его абсолютно бессмысленна.

Как нам выяснить, в чем кроется проблема — в датчике или в системе? Очень просто. Смоделируем ту или иную ситуацию.

  1. Например, при жалобе на бедную смесь и низком напряжении на сигнально выводе датчика увеличим подачу топлива, пережав шланг обратного слива. Или, при его отсутствии, брызнув во впускной коллектор бензина из шприца. Как отреагировал датчик? Показал ли обогащенную смесь? Если да — то нет никакого смысла его менять, нужно искать причину, почему система подает недостаточное количество топлива.
  2. Если же смесь богатая, и зонд это отображает, попробуйте создать искусственный подсос, сняв какой-нибудь вакуумный шланг. Напряжение на датчике упало? Значит, он абсолютно исправен.
  3. Третий вариант (достаточно редкий, но имеющий место). Создаем подсос, пережимаем «обратку» — а сигнал на датчике не меняется, так и висит на уровне 0.45 В, либо меняется, но очень медленно и в небольших пределах. Все, датчик умер. Ибо он должен чутко реагировать на изменения состава смеси, быстро меняя напряжение на сигнальном выводе.

Для более глубокого понимания добавлю, что при наличии небольшого опыта легко установить степень изношенности датчика. Это делается по крутизне фронтов перехода с богатой смеси на бедную и обратно. Хороший, исправный датчик реагирует быстро, переход почти что вертикальный (смотреть, само собой, мотортестером). Отравленный либо просто изношенный датчик реагирует медленно, фронты переходов пологие. Такой датчик требует замены.

Понимая, что датчик реагирует на кислород, можно легко уяснить еще один распространенный момент. При пропусках воспламенения, когда из цилиндра в выпускной тракт выбрасывается смесь атмосферного воздуха и бензина, лямбда-зонд отреагирует на большое количество кислорода, содержащееся в этой смеси. Поэтому при пропусках воспламенения очень возможно возникновение ошибки, указывающей на бедную топливно-воздушную смесь.

Хочется обратить внимание еще на один важный момент: возможный подсос атмосферного воздуха в выпускной тракт перед лямбда-зондом.

Мы упоминали, что датчик реагирует на кислород. Что же будет, если в выпуске будет свищ до него? Датчик отреагирует на большое содержание кислорода, что эквивалентно бедной смеси.

Обратите внимание: эквивалентно

Смесь при этом может быть (и будет) богатой, а сигнал зонда ошибочно воспринимается системой как наличие бедной смеси. И ЭБУ ее обогатит! В итоге имеем парадоксальную ситуацию: ошибка «бедная смесь», а газоанализатор показывает, что она богатая. Кстати сказать, газоанализатор в данном случае — очень хороший помощник диагноста.

Читайте также:  Формула для определения нормальных напряжений при центральном растяжении

Как пользоваться извлекаемой с его помощью информацией, рассказано в статье «Газоанализ и диагностика».

Источник



Датчик кислорода широкополосный напряжение

Широкополосные датчики топливовоздушной смеси TOYOTA

02t_01.jpg

02t_1.jpg

Обратим наше внимание на выходное напряжение датчика B1S1 на экране сканера. Напряжение колеблется в районе 3.2-3.4 вольт.

02t_2.jpg

Датчик способен измерять действительное соотношение топливовоздушной смеси в широком диапазоне (от бедной, до богатой). Выходное напряжение датчика не показывает богатая/бедная, как это делает обычный датчик кислорода. Широкополосный датчик информирует блок управления о точном соотношении топливо/воздух, основываясь на содержании кислорода в выхлопных газах.

Испытание датчика должно проводиться совместно со сканером. Тем не менее, существует ещё пара способов диагностики. Исходящий сигнал это не изменение напряжения, а двунаправленное изменение тока (до 0.020 ампер.). Блок управления преобразует аналоговое изменение тока в напряжение.

Это изменение напряжения и будет отображаться на экране сканера.

02t_3.jpg

На сканере напряжение датчика 3.29 вольта с соотношением смеси AF FT B1 S1 0.99 (1% богатая), что почти идеально. Блок управляет составом смеси близко к стехиометрической. Падение напряжения датчика на экране сканера (от 3.30 до 2.80) говорит об обогащении смеси (дефицит кислорода). Увеличение напряжения (от 3.30 до 3.80) есть признак обеднения смеси (избыток кислорода). Это напряжение нельзя снять осциллографом, как у обычного датчика О2 .

Напряжение на контактах датчика относительно стабильно, а напряжение на сканере будет изменяться в случае значительного обогащения или обеднения смеси, регистрируемого по составу выхлопных газов.

02t_4.jpg

На экране мы видим ,что смесь обогащена на 19%, показания датчика на сканере 2.63В.

На этих скриншотах хорошо видно, что блок всегда отображает реальное состояние смеси. Значение параметра AF FT B1 S1 и есть лямбда.

ENGINE SPD. 694rpm

AF FT B1 S1. 0.99

What type of exhaust? 1% rich

ENGINE SPD. 1154rpm

AF FT B1 S1. 0.93

What type of exhaust? 7% rich

ENGINE SPD. 1786rpm

AF FT B1 S1. 1.27

What type of exhaust? 27% lean

ENGINE SPD. 757rpm

AF FT B1 S1. 0.86

What type of exhaust? 14% rich

Некоторые сканеры OBD II поддерживают параметр широкополосных датчиков на экране, отображая напряжение от 0 до 1 вольта. То есть заводское напряжение датчика делится на 5. На таблице видно как определять соотношение смеси по напряжению датчика, отображаемому на экране сканера

02t_5.jpg

Обратите внимание на верхний график, который показывает напряжение широкополосного датчика. Оно почти всё время находится около 0.64 вольта (умножим на 5,получим 3.2 вольта). Это для сканеров не поддерживающих широкополосных датчиков и работающих по версии EASE Toyota software.

Устройство и принцип работы широкополосного датчика.

02t_6.jpg

Устройство очень похоже на обычный датчик кислорода. Но датчик кислорода генерирует напряжение, а широкополосник генерирует ток, а напряжение постоянно(напряжение изменяется только в текущих параметрах на сканере).

02t_7.jpg

Блок управления задаёт постоянную разность напряжений на электродах датчика. Это фиксированные 300 милливольт. Ток будет генерироваться такой, чтобы удерживать эти 300 милливольт, как фиксированное значение. В зависимости от того, бедная смесь или богатая направление тока будет меняться.

02t_8.jpg

02t_9.jpg

02t_10.jpg

02t_11.jpg

На данных рисунках даны внешние характеристики широкополосного датчика. Хорошо видны величины тока при разных составах выхлопного газа.

02t_12.jpg

На этих осциллограммах: верхняя — ток цепи нагрева датчика, а нижняя — управляющий сигнал этой цепи с блока управления. Значения тока более 6 ампер.

Тестирование широкополосных датчиков.

02t_13.jpg

Датчики четырёхпроводные. На рисунке обогрев не показан.

Напряжение (300 милливольт) между двумя сигнальными проводами не меняется. Обсудим 2 метода тестирования. Так как рабочая температура датчика 650º, во время тестирования цепь обогрева всегда должна функционировать. Поэтому рассоединяем разъём датчика и сразу восстанавливаем цепь обогрева. Подсоединяем к сигнальным проводам мультиметр.

02t_14.jpg

02t_15.jpg

Теперь обогатим смесь на ХХ пропаном или снятием разряжения с вакуумного регулятора давления топлива. На шкале мы должны увидеть изменение напряжения как при работе обычного датчика кислорода. 1 вольт — максимальное обогащение.

02t_16.jpg

Следующий рисунок показывает реакцию датчика на обеднение смеси, посредством отключения одной из форсунок).Напряжение при этом снижается с 50 милливольт до 20 милливольт.

02t_17.jpg

Второй способ тестирования требует другого подключения мультиметра. Включаем прибор в линию 3.3 вольта. Соблюдаем полярность как на рисунке (красный + , чёрный –).

02t_18.jpg

Положительные значения тока отображают обеднённую смесь, отрицательные значения говорят об обогащённой смеси.

02t_19.jpg

При использовании графического мультиметра получается вот такая кривая тока (изменение состава смеси инициируем дроссельной заслонкой).Вертикальная шкала ток, горизонтальная время

02t_20.jpg

На этом графике отображается работа двигателя с отключенной форсункой, смесь бедная. В это время на сканере отображается напряжение 3.5 вольта для испытуемого датчика. Вольтаж выше 3.3 вольта говорит о бедной смеси.

02t_21.jpg

Горизонтальная шкала в миллисекундах.

Здесь форсунка снова включена и блок управления старается выйти на стехиометрический состав смеси.

02t_22.jpg

Так выглядит кривая тока датчика при открытии и закрытии дросселя со скорости 15 км/ч.

02t_23.jpg

А такую картинку можно воспроизвести на экране сканера для оценки работы широкополосного датчика, используя параметр его напряжения и МАФ сенсора. Обращаем внимание на синхронность пиков их параметров во время работы.

J ohn Thornton,
Underhood Service,
January 2002

Перевод с английского

Большая заочная Признательность
Автору статьи за столь Полное и
Информативное изложение материала.

Источник