Меню

Диод по току напряжению марка

Маркировка диодов и схема обозначений

Стандартная конструкция полупроводникового диода выполнена в виде полупроводникового прибора. В нем имеется два вывода и один выпрямляющий электрический переход. Вся система соединена в едином корпусе из пластмассы, стекла, металла или керамики. Часть кристалла с более высокой концентрацией примесей носит название эмиттера, а область, имеющая низкую концентрацию, называется базой. Маркировка диодов и схема обозначений применяются в соответствии с их индивидуальными свойствами, конструктивными особенностями и техническими характеристиками.

  1. Характеристики и параметры диодов
  2. Обозначения и цветовая маркировка диодов
  3. Маркировка импортных диодов
  4. Маркировка диодов анод катод

Характеристики и параметры диодов

В зависимости от применяемого материала, диоды могут быть выполнены из кремния или германия. Кроме того, для их изготовления используется фосфид индия и арсенид галлия. Диоды из германия обладают более высоким коэффициентом передачи, по сравнению с кремниевыми изделиями. У них большая проводимость при сравнительно невысоком напряжении. Поэтому, они широко используются в производстве транзисторных приемников.

Маркировка диодов и схема обозначений

В соответствии с технологическими признаками и конструкциями, диоды различаются как плоскостные или точечные, импульсные, универсальные или выпрямительные. Среди них следует отметить отдельную группу, куда входят светодиоды, фотодиоды и тиристоры. Все перечисленные признаки дают возможность определить диод по внешнему виду.

Характеристики диодов определяются такими параметрами, как прямые и обратные токи и напряжения, диапазоны температур, максимальное обратное напряжение и другие значения. В зависимости от этого, производится нанесение соответствующих обозначений.

Обозначения и цветовая маркировка диодов

Современные обозначения диодов соответствуют новым стандартам. Они разделяются на группы, в зависимости от предельной частоты, при которой происходит усиление передачи тока. Поэтому, диоды бывают низкой, средней, высокой и сверхвысокой частоты. Кроме того, у них различная рассеиваемая мощность: малая, средняя и большая.

Маркировка диодов и схема обозначений

Маркировка диодов представляет собой краткое условное обозначение элемента в графическом исполнении с учетом параметров и технических особенностей проводника. Материал, из которого изготовлен полупроводник, имеет обозначение на корпусе соответствующими буквенными символами. Эти обозначения проставляются вместе с назначением, типом, электрическими свойствами прибора и его условным обозначением. Это помогает, в дальнейшем, правильно подключить диод в электронную схему устройства.

Выводы анода и катода обозначаются стрелкой или знаками плюс или минус. Цветовые коды и метки в виде точек или полосок, наносятся возле анода. Все обозначения и цветовая маркировка позволяют быстро определить тип устройства и правильно использовать его в различных схемах. Подробная расшифровка данной символики приводится в справочных таблицах, которые широко используются специалистами в области электроники.

Маркировка импортных диодов

Маркировка диодов и схема обозначений

В настоящее время широко используются SMD-диоды зарубежного производства. Конструкция элементов выполнена в виде платы, на поверхности которой закреплен чип. Слишком маленькие размеры изделия не позволяют нанести на него маркировку. На более крупных элементах обозначения присутствуют в полном или сокращенном варианте.

В электронике SMD-диоды составляют около 80% всех используемых изделий этого типа. Такое разнообразие деталей заставляет внимательнее относиться к обозначениям. Иногда они могут не совпадать с заявленными техническими характеристиками, поэтому желательно провести дополнительную проверку сомнительных элементов, если они планируются к использованию в сложных и точных схемах. Следует учитывать, что маркировка диодов этого типа может быть разной на совершенно одинаковых корпусах. Иногда присутствует только буквенная символика, без каких-либо цифр. В связи с этим рекомендуется использовать таблицы с типоразмерами диодов от разных производителей.

Маркировка диодов и схема обозначений

Для SMD-диодов чаще всего используется тип корпуса SOD123. На один из торцов может наноситься цветная полоса или тиснение, что означает катод с отрицательной полярностью для открытия р-п-перехода. Единственная надпись соответствует обозначению корпуса.

Тип корпуса не играет решающей роли при использовании диода. Одной из основных характеристик является рассеивание некоторого количества тепла с поверхности элемента. Кроме того, учитываются значения рабочего и обратного напряжения, величина максимально допустимого тока через р-п-переход, мощность рассеивания и другие параметры. Все эти данные указаны в справочниках, а маркировка лишь ускоряет поиск нужного элемента.

Маркировка диодов и схема обозначений

По внешнему виду корпуса не всегда удается определить производителя. Для поиска нужного изделия существуют специальные поисковики, в которые нужно ввести цифры и буквы в определенной последовательности. В некоторых случаях диодные сборки вообще не несут какой-либо информации, поэтому в таких случаях сможет помочь только справочник. Подобные упрощения, делающие обозначение диода очень коротким, объясняются крайне ограниченным пространством для нанесения маркировки. При использовании трафаретной или лазерной печати удается разместить 8 символов на 4 мм2.

Стоит учесть и тот факт, что одним и тем же буквенно-цифровым кодом могут обозначаться совершенно разные элементы. В таких случаях анализируется вся электрическая схема.

Иногда в маркировке указывается дата выпуска и номер партии. Подобные отметки наносятся для возможности отслеживания более современных модификаций изделий. Выпускается соответствующая корректирующая документация с номером и датой. Это позволяет более точно установить технические характеристики элементов при сборке наиболее ответственных схем. Применяя старые детали для новых чертежей, можно не получить ожидаемого результата, готовое изделие в большинстве случаев просто отказывается работать.

Читайте также:  Класс напряжения для расчета

Маркировка диодов анод катод

Маркировка диодов и схема обозначений

Каждый диод, как и резистор, оборудован двумя выводами – анодом и катодом. Эти названия не следует путать с плюсом и минусом, которые означают совершенно другие параметры.

Тем не менее, очень часто требуется определить точное соответствие каждого диодного вывода. Существует два способа определения анода и катода:

  • Катод маркируется полоской, которая заметно отличается от общего цвета корпуса.
  • Второй вариант предполагает проверку диода мультиметром. В результате, не только устанавливается местонахождение анода и катода, но и проверяется работоспособность всего элемента.

Источник



Виды и классификация диодов

Диод – электронный прибор с двумя (иногда тремя) электродами, обладающий односторонней проводимостью. Электрод, подключенный к положительному полюсу прибора, называют анодом, к отрицательному – катодом. Если к прибору приложено прямое напряжение, то он находится в открытом состоянии, при котором сопротивление мало, а ток протекает беспрепятственно. Если прикладывается обратное напряжение, прибор, благодаря высокому сопротивлению, является закрытым. Обратный ток присутствует, но он настолько мал, что условно принимается равным нулю.

Содержание статьи

  • Общая классификация
    • Неполупроводниковые
    • Полупроводниковые
  • Виды диодов по размеру перехода
  • Виды диодов по материалу изготовления
  • Виды диодов по частотному диапазону
  • Применение диодов
    • Выпрямительные диоды
    • Диодные детекторы
    • Ограничительные устройства
    • Диодные переключатели
    • Диодная искрозащита
    • Параметрические диоды
    • Смесительные диоды
    • Умножительные диоды
    • Настроечные диоды
    • Генераторные диоды
  • Виды диодов по типу конструкции
    • Стабилитроны (диоды Зенера)
    • Стабисторы
    • Диоды Шоттки
    • Варикапы
    • Туннельные диоды
    • Тиристоры
    • Симисторы
    • Динисторы
    • Диодные мосты
    • Фотодиоды
    • Светодиоды
    • Инфракрасные диоды
    • Диоды Ганна
    • Магнитодиоды
    • Лазерные диоды
    • Лавинные и лавинно-пролетные диоды
    • PIN-диоды
    • Триоды
  • Маркировка диодов

Общая классификация

Диоды делятся на большие группы – неполупроводниковые и полупроводниковые.

Неполупроводниковые

Одной из наиболее давних разновидностей являются ламповые (электровакуумные) диоды. Они представляют собой радиолампы с двумя электродами, один из которых нагревается нитью накала. В открытом состоянии с поверхности нагреваемого катода заряды движутся к аноду. При противоположном направлении поля прибор переходит в закрытую позицию и ток практически не пропускает.

Еще одни вид неполупроводниковых приборов – газонаполненные, из которых сегодня используются только модели с дуговым разрядом. Газотроны (приборы с термокатодами) наполняются инертными газами, ртутными парами или парами других металлов. Специальные оксидные аноды, используемые в газонаполненных диодах, способны выдерживать высокие нагрузки по току.

Полупроводниковые

В основе полупроводниковых приборов лежит принцип p-n перехода. Существует два типа полупроводников – p-типа и n-типа. Для полупроводников p-типа характерен избыток положительных зарядов, n-типа – избыток отрицательных зарядов (электронов). Если полупроводники этих двух типов находятся рядом, то возле разделяющей их границы располагаются две узкие заряженные области, которые называются p-n переходом. Такой прибор с двумя типами полупроводников с разной примесной проводимостью (или полупроводника и металла) и p-n-переходом называется полупроводниковым диодом. Именно полупроводниковые диодные устройства наиболее востребованы в современных аппаратах различного назначения. Для разных областей применения разработано множество модификаций таких приборов.

Виды диодов по размеру перехода

По размерам и характеру p-n перехода различают три вида приборов – плоскостные, точечные и микросплавные.

Плоскостные детали представляют одну полупроводниковую пластину, в которой имеются две области с различной примесной проводимостью. Наиболее популярны изделия из германия и кремния. Преимущества таких моделей – возможность эксплуатации при значительных прямых токах, в условиях высокой влажности. Из-за высокой барьерной емкости они могут работать только с низкими частотами. Их главные области применения – выпрямители переменного тока, устанавливаемые в блоках питания. Эти модели называются выпрямительными.

Точечные диоды имеют крайне малую площадь p-n перехода и приспособлены для работы с малыми токами. Называются высокочастотными, поскольку используются в основном для преобразования модулированных колебаний значительной частоты.

Микросплавные модели получают путем сплавления монокристаллов полупроводников p-типа и n-типа. По принципу действия такие приборы – плоскостные, но по характеристикам они аналогичны точечным.

Материалы для изготовления диодов

При производстве диодов используются кремний, германий, арсенид галлия, фосфид индия, селен. Наиболее распространенными являются первые три материала.

Очищенный кремний – относительно недорогой и простой в обработке материал, имеющий наиболее широкое распространение. Кремниевые диоды являются прекрасными моделями общего назначения. Их напряжение смещения – 0,7 В. В германиевых диодах эта величина составляет 0,3 В. Германий – более редкий и дорогой материал. Поэтому германиевые приборы используются в тех случаях, когда кремниевые устройства не могут эффективно справиться с технической задачей, например в маломощных и прецизионных электроцепях.

Читайте также:  При сбросе оборотов падает напряжение калина

Виды диодов по частотному диапазону

По рабочей частоте диоды делятся на:

  • Низкочастотные – до 1 кГц.
  • Высокочастотные и сверхвысокочастотные – до 600 мГц. На таких частотах в основном используются устройства точечного исполнения. Емкость перехода должна быть невысокой – не более 1-2 пФ. Эффективны в широком диапазоне частот, в том числе низкочастотном, поэтому являются универсальными.
  • Импульсные диоды используются в цепях, в которых принципиальным фактором является высокое быстродействие. По технологии изготовления такие модели разделяют на точечные, сплавные, сварные, диффузные.

Области применения диодов

Современные производители предлагают широкий ассортимент диодов, адаптированных для конкретных областей применения.

Выпрямительные диоды

Эти устройства служат для выпрямления синусоиды переменного тока. Их принцип действия основывается на свойстве устройства переходить в закрытое состояние при обратном смещении. В результате работы диодного прибора происходит срезание отрицательных полуволн синусоиды тока. По мощности рассеивания, которая зависит от наибольшего разрешенного прямого тока, выпрямительные диоды делят на три типа – маломощные, средней мощности, мощные.

  • Слаботочные диоды могут использоваться в цепях, в которых величина тока не превышает 0,3 А. Изделия отличаются малой массой и компактными габаритами, поскольку их корпус изготавливается из полимерных материалов.
  • Диоды средней мощности могут работать в диапазоне токов 0,3-10,0 А. В большинстве случаев они имеют металлический корпус и жесткие выводы. Производят их в основном из очищенного кремния. Со стороны катода изготавливается резьба для фиксации на теплоотводящем радиаторе.
  • Мощные (силовые) диоды работают в цепях с током более 10 А. Их корпусы изготавливают из металлокерамики и металлостекла. Конструктивное исполнение – штыревое или таблеточное. Производители предлагают модели, рассчитанные на токи до 100 000 А и напряжение до 6 кВ. Изготавливаются в основном из кремния.

Диодные детекторы

Такие устройства получают комбинацией в схеме диодов с конденсаторами. Они предназначены для выделения низких частот из модулированных сигналов. Присутствуют в большинстве аппаратов бытового применения – радиоприемниках и телевизорах. В качестве детекторов излучения используются фотодиоды, преобразующие свет, попадающий на светочувствительную область, в электрический сигнал.

Ограничительные устройства

Защиту от перегруза обеспечивает цепочка из нескольких диодов, которые подключают к питающим шинам в обратном направлении. При соблюдении стандартного рабочего режима все диоды закрыты. Однако при выходе напряжения сверх допустимого назначения срабатывает один из защитных элементов.

Диодные переключатели

Переключатели, представляющие собой комбинацию диодов, которые применяются для мгновенного изменения высокочастотных сигналов. Такая система управляется постоянным электрическим током. Высокочастотный и управляющие сигналы разделяют с помощью конденсаторов и индуктивностей.

Диодная искрозащита

Эффективную искрозащиту создают с помощью комбинирования шунт-диодного барьера, ограничивающего напряжение, с токоограничительными резисторами.

Параметрические диоды

Используются в параметрических усилителях, которые являются подвидом резонансных регенеративных усилителей. Принцип работы основан на физическом эффекте, который заключается в том, что при поступлении на нелинейную емкость разночастотных сигналов часть мощности одного сигнала можно направить на рост мощности другого сигнала. Элементом, предназначенным для содержания нелинейной емкости, и является параметрический диод.

Смесительные диоды

Смесительные устройства используются для трансформации сверхвысокочастотных сигналов в сигналы промежуточной частоты. Трансформация сигналов осуществляется, благодаря нелинейности параметров смесительного диода. В качестве смесительных СВЧ-диодов используются приборы с барьером Шоттки, варикапы, обращенные диоды, диоды Мотта.

Умножительные диоды

Эти СВЧ устройства используются в умножителях частоты. Они могут работать в дециметровом, сантиметровом, миллиметровом диапазонах длин волн. Как правило, в качестве умножительных приборов используются кремниевые и арсенид-галлиевые устройства, часто – с эффектом Шоттки.

Настроечные диоды

Принцип работы настроечных диодов основан на зависимости барьерной емкости p-n перехода от величины обратного напряжения. В качестве настроечных используются приборы кремниевые и арсенид-галлиевые. Эти детали применяют в устройствах перестройки частоты в сверхчастотном диапазоне.

Генераторные диоды

Для генерации сигналов в сверхвысокочастотном диапазоне востребованы устройства двух основных типов – лавинно-пролетные и диоды Ганна. Некоторые генераторные диоды при условии включения в определенном режиме могут выполнять функции умножительных устройств.

Виды диодов по типу конструкции

Стабилитроны (диоды Зенера)

Эти устройства способны сохранять рабочие характеристики в режиме электрического пробоя. В низковольтных устройствах (напряжение до 5,7 В) используется туннельный пробой, в высоковольтных – лавинный. Стабилизацию невысоких напряжений обеспечивают стабисторы.

Стабисторы

Стабиистор, или нормистор, — это полупроводниковый диод, в котором для стабилизации напряжения используется прямая ветвь вольт-амперной характеристики (то есть в области прямого смещения напряжение на стабисторе слабо зависит от тока). Отличительной особенностью стабисторов по сравнению со стабилитронами является меньшее напряжение стабилизации (примерно 0,7-2 V).

Диоды Шоттки

Устройства, применяемые в качестве выпрямительных, умножительных, настроечных, работают на базе контакта металл-полупроводник. Конструктивно они представляют собой пластины из низкоомного кремния, на которые наносится высокоомная пленка с тем же типом проводимости. На пленку вакуумным способом напыляется металлический слой.

Читайте также:  Устройство автотрансформатора для регулирования анодного напряжения рентгеновской трубки

Варикапы

Варикапы выполняют функции емкости, величина которой меняется с изменением напряжения. Основная характеристика этого прибора – вольт-фарадная.

Туннельные диоды

Эти полупроводниковые диоды имеют падающий участок на вольтамперной характеристике, возникающий из-за туннельного эффекта. Модификация туннельного устройства – обращенный диод, в котором ветвь отрицательного сопротивления выражена мало или отсутствует. Обратная ветвь обращенного диода соответствует прямой ветви традиционного диодного устройства.

Тиристоры

В отличие от обычного диода, тиристор, кроме анода и катода, имеет третий управляющий электрод. Для этих моделей характерны два устойчивых состояния – открытое и закрытое. По устройству эти детали разделяют на динисторы, тринисторы, симисторы. При производстве этих изделий в основном используется кремний.

Симисторы

Симисторы (симметричные тиристоры) – это разновидность тиристора, используется для коммутации в цепях переменного тока. В отличие от тиристора, имеющего катод и анод, основные (силовые) выводы симистора называть катодом или анодом некорректно, так как в силу структуры симистора они являются тем и другим одновременно. Симистор остаётся открытым, пока протекающий через основные выводы ток превышает некоторую величину, называемую током удержания.

Динисторы

Динистором, или диодным тиристором, называется устройство, не содержащее управляющих электродов. Вместо этого они управляются напряжением, приложенным между основными электродами. Их основное применение – управление мощной нагрузкой при помощи слабых сигналов. Также динисторы используют при изготовлении переключающих устройств.

Диодные мосты

Это 4, 6 или 12 диодов, которые соединяются между собой. Число диодных элементов определяется типом схемы, которая бывает – однофазной, трехфазной, полно- или полумостовой. Мосты выполняют функцию выпрямления тока. Часто используются в автомобильных генераторах.

Фотодиоды

Предназначены для преобразования световой энергии в электрический сигнал. По принципу работы аналогичны солнечным батареям.

Светодиоды

Эти устройства при подключении к электрическому току излучают свет. Светодиоды, имеющие широкую цветовую гамму свечения и мощность, применяются в качестве индикаторов в различных приборах, излучателей света в оптронах, используются в мобильных телефонах для подсветки клавиатуры. Приборы высокой мощности востребованы в качестве современных источников света в фонарях.

Инфракрасные диоды

Это разновидность светодиодов, излучающая свет в инфракрасном диапазоне. Применяется в бескабельных линиях связи, КИП, аппаратах дистанционного управления, в камерах видеонаблюдения для обзора территории в ночное время суток. Инфракрасные излучающие устройства генерируют свет в диапазоне, который не доступен человеческому взгляду. Обнаружить его можно с помощью фотокамеры мобильного телефона.

Диоды Ганна

Эта разновидность сверхчастотных диодов изготавливается из полупроводникового материала со сложной структурой зоны проводимости. Обычно при производстве этих устройств используется арсенид галлия электронной проводимости. В этом приборе нет p-n перехода, то есть характеристики устройства являются собственными, а не возникающими на границе соединения двух разных полупроводников.

Магнитодиоды

В таких приборах ВАХ изменяется под действием магнитного поля. Устройства используются в бесконтактных кнопках, предназначенных для ввода информации, датчиках движения, приборах контроля и измерения неэлектрических величин.

Лазерные диоды

Эти устройства, имеющие сложную структуру кристалла и сложный принцип действия, дают редкую возможность генерировать лазерный луч в бытовых условиях. Благодаря высокой оптической мощности и широким функциональным возможностям, приборы эффективны в высокоточных измерительных приборах бытового, медицинского, научного применения.

Лавинные и лавинно-пролетные диоды

Принцип действия устройств заключается в лавинном размножении носителей заряда при обратном смещении p-n перехода и их преодолении пролетного пространства за определенный временной промежуток. В качестве исходных материалов используются арсенид галлия или кремний. Приборы в основном предназначаются для получения сверхвысокочастотных колебаний.

PIN-диоды

PIN-устройства между p- и n-областями имеют собственный нелегированный полупроводник (i-область). Широкая нелегированная область не позволяет использовать этот прибор в качестве выпрямителя. Однако зато PIN-диоды широко применяются в качестве смесительных, детекторных, параметрических, переключательных, ограничительных, настроечных, генераторных.

Триоды

Триоды – это электронные лампы. Он имеет три электрода: термоэлектронный катод (прямого или косвенного накала), анод и управляющую сетку. Сегодня триоды практически полностью вытеснены полупроводниковыми транзисторами. Исключение составляют области, где требуется преобразование сигналов с частотой порядка сотен МГц — ГГц высокой мощности при маленьком числе активных компонентов, а габариты и масса не имеют большого значения.

Маркировка диодов

Маркировка полупроводниковых диодных устройств включает цифры и буквы:

  • Первая буква характеризует исходный материал. Например, К – кремний, Г – германий, А – арсенид галлия, И – фосфид индия.
  • Вторая буква – класс или группа диода.
  • Третий элемент, обычно цифровой, обозначает применение и электрические свойства модели.
  • Четвертый элемент – буквенный (от А до Я), обозначающий вариант разработки.

Пример: КД202К – кремниевый выпрямительный диффузионный диод.

Источник

Диод по току напряжению марка

Диод по току напряжению марка

Полупроводниковый диод или просто диод представляет из себя радиоэлемент, который пропускает электрический ток только в одном направлении и блокирует его прохождение в другом направлении. По аналогии с гидравликой диод можно сравнить с обратным клапаном: устройством, которое пропускает жидкость только в одном направлении.

обратный клапан

обратный клапан

Диод – это радиоэлемент с двумя выводами. Некоторые диоды выглядят почти также как и резисторы:

диод 1N4007 диод

А некоторые выглядят чуточку по-другому:

д226б диод д214 диод

Есть также и SMD исполнение диодов:

Выводы диода называются – анод и катод. Некоторые по ошибке называют их “плюс” и “минус”. Это неверно. Так говорить нельзя.

На схемах диод обозначается так

Он может пропускать электрический ток только от анода к катоду.

Из чего состоит диод

В нашем мире встречаются вещества, которые отлично проводят электрический ток. Сюда в основном можно отнести металлы, например, серебро, медь, алюминий, золото и так далее. Такие вещества называют проводниками. Есть вещества, которые ну очень плохо проводят электрический ток – фарфор, пластмассы, стекло и так далее. Их называют диэлектриками или изоляторами. Между проводниками и диэлектриками находятся полупроводники. Это в основном германий и кремний.

После того, как германий или кремний смешивают с мельчайшей долей мышьяка или индия, образуется полупроводник N-типа, если смешать с мышьяком; или полупроводник P-типа, если смешать с индием.

Теперь если эти два полупроводника P и N -типа приварить вместе, на их стыке образуется PN-переход. Это и есть строение диода. То есть диод состоит из PN-перехода.

строение диода

строение диода

Полупроводник P-типа в диоде является анодом, а полупроводник N-типа – катодом.

Давайе вскроем советский диод Д226 и посмотрим, что у него внутри, сточив часть корпуса на наждачном круге.

диод Д226

диод Д226

Вот это и есть тот самый PN-переход

PN-переход диода

PN-переход диода

Как определить анод и катод диода

1) на некоторых диодах катод обозначают полоской, отличающейся от цвета корпуса

катод смд smd диода

2) можно проверить диод с помощью мультиметра и узнать, где у него катод, а где анод. Заодно проверить его работоспособность. Этот способ железный ;-). Как проверить диод с помощью мультиметра можно узнать в этой статье.

Где находится анод, а где катод очень легко запомнить, если вспомнить воронку для наливания жидкостей в узкие горлышки бутылок. Воронка очень похожа на схему диода. Наливаем в воронку, и жидкость у нас очень хорошо бежит, а если ее перевернуть, то попробуй налей-ка через узкое горлышко воронки ;-).

воронка диод

Диод в цепи постоянного тока

Как мы уже говорили, диод пропускает электрический ток только в одном направлении. Для того, чтобы это показать, давайте соберем простую схему.

прямое включение диода

прямое включение диода

Так как наша лампа накаливания на 12 Вольт, следовательно, на блоке питания тоже выставляем значение в 12 В и собираем всю электрическую цепь по схеме выше. В результате, лампочка у нас прекрасно горит. Это говорит о том, что через диод проходит электрический ток. В этом случае говорят, что диод включен в прямом направлении.

диод в прямом включении

диод в прямом включении

Давайте теперь поменяем выводы диода. В результате, схема примет такой вид.

обратное включение диода

обратное включение диода

Как вы видите, лампочка не горит, так как диод не пропускает электрический ток, то есть блокирует его прохождение, хотя источник питания и выдает свои честные 12 Вольт.

обратное включение

обратное включение диода

Какой вывод можно из этого сделать? Диод проводит постоянный ток только в одном направлении.

Диод в цепи переменного тока

Кто забыл, что такое переменный ток, читаем эту статью. Итак, для того, чтобы рассмотреть работу диода в цепи переменного тока, давайте составим схему. Здесь мы видим генератор частоты G, диод и два клеммника Х1 и Х2, с которых мы будем снимать сигнал с помощью осциллографа.

диод в цепи переменного тока

Мой генератор частоты выглядит вот так.

генератор частоты

генератор частот

Осциллограмму будем снимать с помощью цифрового осциллографа

цифровой осциллограф OWON

Генератор выдает переменное синусоидальное напряжение.

синусоидальный сигнал

синусоидальный сигнал

Что же будет после диода? Цепляемся к клеммам X1 и X2 и видим вот такую осциллограмму.

переменное напряжение после диода

переменное напряжение после диода

Диод вырезал нижнюю часть синусоиды, оставив только верхнюю часть.

А что будет, если мы поменяем выводы диода? Схема примет такой вид.

переменый ток после диода

переменый ток после диода

Что же получим на клеммах Х1 и Х2 ? Смотрим на осциллограмму.

переменный ток после диода

переменный ток после диода

Ничего себе! Диод срезал только положительную часть синусоиды!

Характеристики диода

Давайте рассмотрим характеристику диода КД411АМ. Ищем его характеристики в интернете, вбивая в поиск “даташит КД411АМ”

параметры диода КД411

Для объяснения параметров диода, нам также потребуется его ВАХ

вольтамперная характеристика диода

1) Обратное максимальное напряжение Uобр – это такое напряжение диода, которое он выдерживает при подключении в обратном направлении, при этом через него будет протекать ток Iобр – сила тока при обратном подключении диода. При превышении обратного напряжения в диоде возникает так называемый лавинный пробой, в результате этого резко возрастает ток, что может привести к полному тепловому разрушению диода. В нашем исследуемом диоде это напряжение равняется 700 Вольт.

2) Максимальный прямой ток Iпр – это максимальный ток, который может течь через диод в прямом направлении. В нашем случае это 2 Ампера.

3) Максимальная частота Fd , которую нельзя превышать. В нашем случае максимальная частота диода будет 30 кГц. Если частота будет больше, то наш диод будет работать неправильно.

Виды диодов

Стабилитроны

Стабилитроны представляют из себя те же самые диоды. Даже из названия понятно, чтоб стабилитроны что-то стабилизируют. А стабилизируют они напряжение. Но чтобы стабилитрон выполнял стабилизацию, требуется одно условие. Они должны подключатся противоположно, чем диоды. Анод на минус, а катод на плюс. Странно не правда ли? Но почему так? Давайте разберемся. В Вольт амперной характеристике (ВАХ) диода используется положительная ветвь – прямое направление, а вот в стабилитроне другая часть ветки ВАХ – обратное направление.

Снизу на графике мы видим стабилитрон на 5 Вольт. Сколько бы у нас не изменялась сила тока, мы все равно будем получать 5 Вольт ;-). Круто, не правда ли? Но есть и подводные камни. Сила тока не должны быть больше, чем в описании на диод, иначе он выйдет из строя от высокой температуры – Закон Джоуля-Ленца. Главный параметр стабилитрона – это напряжение стабилизации (Uст). Измеряется в Вольтах. На графике вы видите стабилитрон с напряжением стабилизации 5 Вольт. Также есть диапазон силы тока, при котором будет работать стабилитрон – это минимальный и максимальный ток (Imin, Imax). Измеряется в Амперах.

Выглядят стабилитроны точно также, как и обычные диоды:

Диод

На схемах обозначаются вот так:

Светодиоды

Светодиоды – особый класс диодов, которые излучают видимый и невидимый свет. Невидимый свет – это свет в инфракрасном или ультрафиолетовом диапазоне. Но для промышленности все таки большую роль играют светодиоды с видимым светом. Они используются для индикации, оформления вывесок, светящихся баннеров, зданий а также для освещения. Светодиоды имеют такие же параметры, как и любые другие диоды, но обычно их максимальный ток значительно ниже.

Предельное обратное напряжение (Uобр) может достигать 10 Вольт. Максимальный ток (Imax) будет ограничиваться для простых светодиодов порядка 50 мА. Для осветительных больше. Поэтому при подключении обычного диода нужно вместе с ним последовательно подключать резистор. Резистор можно рассчитать по нехитрой формуле, но в идеале лучше использовать переменный резистор, подобрать нужное свечение, замерять номинал переменного резистора и поставить туда постоянный резистор с таким же номиналом.

Читайте также:  Преобразователь напряжения 12 700

светодиоды осветительные светодиоды

Лампы освещения из светодиодов потребляют копейки электроэнергии и стоят дешево.

Диод

Очень большим спросом пользуются светодиодные ленты, состоящие из множества SMD светодиодов. Смотрятся очень красиво.

На схемах светодиоды обозначаются так:

Не забываем, что светодиоды делятся на индикаторные и осветительные. Индикаторные светодиоды обладают слабым свечением и используются для индикации каких-либо процессов, происходящих в электронной цепи. Для них характерно слабое свечение и малый ток потребления

светодиоды

Ну и осветительные светодиоды – это те, которые используются в ваших китайских фонариках, а также в LED-лампах

Диод

Светодиод – это токовый прибор, то есть для его нормальной работы требуется номинальный ток, а не напряжение. При номинальном токе на светодиоде падает некоторое напряжение, которое зависит от типа светодиода (номинальной мощности, цвета, температуры). Ниже табличка, показывающая какое падение напряжения бывает на светодиодах разных цветов свечения при номинальном токе:

Как проверить светодиод можно узнать из этой статьи.

Тиристоры

Тиристоры представляют собой диоды, проводимость которых управляется с помощью третьего вывода – управляющего электрода (УЭ). Основное применение тиристоров – это управление мощной нагрузкой с помощью слабого сигнала, подаваемого на управляющий электрод. Выглядят тиристоры примерно как диоды или транзисторы. У тиристоров параметров столько, что не хватит статьи для их описания. Главный параметр – Iос,ср. – среднее значение тока, которое должно протекать через тиристор в прямом направлении без вреда для его здоровья. Немаловажным параметром является напряжение открытия тиристор – (Uу), которое подается на управляющий электрод и при котором тиристор полностью открывается.

тиристор

а вот так примерно выглядят силовые тиристоры, то есть тиристоры, которые работают с большой силой тока:

На схемах триодные тиристоры выглядят вот таким образом:

Существуют также разновидности тиристоров – динисторы и симисторы. У динисторов нет управляющего электрода и он выглядит, как обычный диод. Динисторы начинают пропускать через себя электрический ток в прямом включении, когда напряжение на нем превысит какое-то значение. Симисторы – это те же самые триодные тиристоры, но при включении пропускают через себя электрический ток в двух направлениях, поэтому они используются в цепях с переменным током.

Диодный мост и диодные сборки

Производители также несколько диодов заталкивают в один корпус и соединяют их между собой в определенной последовательности. Таким образом получаются диодные сборки. Диодные мосты – одна из разновидностей диодных сборок.

маломощный диодный мост

На схемах диодный мост обозначается вот так:

Существуют также и другие виды диодов, такие как варикапы, диод Ганна, диод Шоттки и тд. Для того, чтобы их всех описать, нам не хватит и вечности.

Очень интересное видео про диод

Похожие статьи по теме “диод”

Источник

Системы нумерации (условных кодовых обозначений) диодов

Информация о назначении, основных электрических параметрах, типе исходного полупроводникового материала, конструктивно-технологических особенностях и т.п. как правило включается в условное обозначение (маркировку) полупроводниковых диодов в виде буквенно-цифрового кода.

Условное обозначение отечественных полупроводниковых диодов производилось по целому ряду ГОСТов и отраслевых стандартов (ОСТов). В т.ч. для диодов малой и средней мощности по ГОСТ 10862‑64, ГОСТ 10862‑72, затем по ОСТ 11.336.038‑77, ОСТ 11.336.919‑81, а для диодов большой мощности по ГОСТ 20859-75 и ГОСТ 20859-79.

Условные обозначения диодов малой мощности до 1964г. состояли из трех элементов.

Первый элемент — буква “Д” — характеризует всю группу полупроводниковых диодов.

Второй элемент — число (серийный номер) — указывает на область применения и конструктивные особенности диода:

1. 100 — точечные германиевые диоды;

101. 200 — точечные кремневые диоды;

201. 300 — плоскостные кремневые диоды;

301. 400 — плоскостные германиевые диоды;

401. 500 — смесительные и детекторные диоды;

501. 600 — умножительные диоды;

601. 700 — видеодетекторные диоды;

701. 800 — параметрические кремневые диоды;

801. 900 — стабилитроны;

901. 950 — варикапы;

951. 1000 — туннельные диоды;

1001. 1100 — выпрямительные столбы.

Третий элемент — буква — указывает на разновидность прибора.

В 1964г. была утверждена новая система обозначений маломощных полупроводниковых приборов (ГОСТ 10862-64), она действовала до 1973г. В соответствии с этой системой вновь разработанным приборам присваивались обозначения из четырех элементов.

Первый элемент — буква или цифра — определяет полупроводниковый материал, из которого изготовлен прибор:

1 или Г — германий;

2 или К — кремний;

3 или А — арсенид галлия или другие соединения галлия.

Второй элемент — буква — характеризует подкласс прибора:

Д — выпрямительные диоды;

А — сверхвысокочастотные диоды;

И — туннельные диоды;

Ц — выпрямительные столбы и блоки.

Третий элемент — трехзначное число — указыват назначение или электрические свойства прибора в пределах подкласса.

    Диоды низкой и высокой частоты:

101. 399 — выпрямительные;

401. 499 — универсальные;

501. 599 — импульсные.

101. 999 — варикапы.

101. 199 — смесительные;

201. 299 — видеодетекторные;

301. 399 — модуляторные;

401. 499 — параметрические;

501. 599 — переключательные;

601. 699 — умножительные.

101. 199 — усилительные;

201. 299 — генераторные;

301. 399 — переключательные;

401. 499 — обращенные.

701. 799 — с напряжением стабилизации от 0,1 до 9,9 В;

801. 899 — с напряжением стабилизации от 10 до 99 В;

901. 999 — с напряжением стабилизации от 100 до 199 В.

Две последние цифры в этой трехзначной группе соответствуют номинальному напряжению стабилизации стабилитронов, например: 2С162А — кремневый стабилитрон малой мощности с напряжением стабилизации \(U_<ст.ном>\) = 6,2 В.

Четвертый элемент — буква — указывает классификационную группу (разновидность типа) прибора.

Начиная с 1973г. вновь разрабатываемым приборам присваивались обозначения в соответствии с ГОСТ 10862-72. Обозначения состоят из четырех элементов.

Первый элемент — буква или цифра — указывает полупроводниковый материал, из которого изготовлен прибор:

1 или Г — германий или его соединения;

2 или К — кремний или его соединения;

3 или А — арсенид галлия или другие соединения галлия.

Второй элемент — буква — указывает подкласс прибора:

Ц — выпрямительные столбы и блоки;

А — сверхвысокочастотные диоды;

И — диоды туннельные и обращенные;

С — стабилитроны и стабисторы;

Третий элемент — число — указывает назначение и качественные свойства прибора, а также порядковый номер разработки.

101. 199 — малой мощности (\(I_<пр ср>\) 150 нс);

601. 699 — импульсные (30 нс 0,3 А;

3 — диодные преобразователи.

4 — с временем восстановления обратного сопротивления более 500 нс;

5 — с временем восстановления обратного сопротивления от 150 до 500 нс;

6 — с временем восстановления обратного сопротивления от 30 до 150 нс;

7 — с временем восстановления обратного сопротивления от 5 до 30 нс;

8 — с временем восстановления обратного сопротивления от 1 до 5 нс;

9 — с эффективным временем жизни неосновных носителей заряда менее 1 нс.

1 — со средним значением прямого тока не более 0,3 А;

2 — со средним значением прямого тока от 0,3 до 10 А.

3 — со средним значением прямого тока не более 0,3 А;

4 — со средним значением прямого тока более 0,3 А.

5 — переключательные и ограничительные;

6 — умножительные и настроечные;

1 — с напряжением стабилизации (ограничения) менее 10 В;

2 — с напряжением стабилизации (ограничения) от 10 до 100 В;

Читайте также:  Действия снимающие нервное напряжение

3 — с напряжением стабилизации (ограничения) более 100 В;

4 — с напряжением стабилизации (ограничения) менее 10 В;

5 — с напряжением стабилизации (ограничения) от 10 до 100 В;

6 — с напряжением стабилизации (ограничения) более 100 В;

7 — с напряжением стабилизации (ограничения) менее 10 В;

8 — с напряжением стабилизации (ограничения) от 10 до 100 В;

9 — с напряжением стабилизации (ограничения) более 100 В.

1 — излучающие диоды инфракрасного излучения;

2 — излучающие модули инфракрасного излучения;

3 — светоизлучающие диоды визуального представления информации;

4 — знаковые индикаторы;

5 — знаковые табло;

Четвертый элемент — двухзначные числа от 01 до 99 — указывают порядковый номер разработки. Допускается использование трехзначных чисел от 101 до 999 при условии, что порядковый номер разработки превышает число 99.

Пятый элемент — буква — определяет классификацию (разбраковку по параметрам) приборов, изготовленных по единой технологии. В качестве классификационной литеры применяются буквы русского алфавита (за исключением З, О, Ч, Ы, Ш, Щ, Ю, Я, Ь, Ъ, Э).

Дополнительными элементами обозначения могут быть следующие символы.

  • Цифры 1. 9 — для обозначения модификаций прибора, приводящих к изменению его конструкции или электрических параметров.
  • Буква “С” после третьего элемента обозначения — для собранных в одном корпусе однотипных приборов, не соединенных электрически или соединенных одноименными выводами.
  • Цифра, написанная через дефис после пятого элемента обозначения ­— для бескорпусных приборов:

1 — с гибкими выводами без кристоллодержателя (подложки);

2 — с гибкими выводами на кристоллодержателе;

3 — с жесткими выводами без кристоллодержателя;

4 — с жесткими выводами на кристоллодержателе;

5 — с контактными площадками без кристоллодержателя и без выводов (кристалл);

6 — с контактными площадками на кристоллодержателе и без выводов (кристалл на подложке).

Р — с парным подбором;

Т — с подбором в тройки;

Г — с подбором в четверки;

К — с подбором в шестерки;

Н — с подбором в восьмерки.

Система обозначений мощных силовых диодов отлична от приведенных выше систем обозначения маломощных приборов. До 1975г. для обозначения мощных диодов использовался код, состоявший из четырех элементов, между которыми ставился дефис.

Первый элемент — буквы, описывающие тип прибора, далее (при необходимости) следуют цифры, указывающие номер разработки, например:

ВК — вентиль кремневый;

ВК2 — вентиль кремневый, 2-й модификации;

ВКДЛ — вентиль кремневый, диффузионный, лавинный.

Второй элемент — цифры, указывающие номинальный (средний) ток прибора в амперах.

Третий элемент — цифры, указывающие соответствующий класс прибора по номинальному напряжению в сотнях вольт.

Четвертый элемент — цифры, обозначающее значение прямого среднего падения напряжения в сотых долях вольта при номинальном токе.

Пример: ВКДЛ-100-11-0,65 — вентиль кремневый, диффузионный, лавинный, номинальный ток 100 А, 11 класс по напряжению, соответствующий напряжению 1100 В, среднее падение напряжения 0,65 В.

С 1975г. с введением ГОСТ 20859-75 установился следующий порядок обозначения силовых диодов:

Первый элемент — буква, обозначающая подкласс (группу) прибора (для диодов буква “В”).

Второй элемент — буква, определяющая функциональное назначение (свойства) прибора:

Ч — высокочастотный (для приборов с \(f_<раб>\)

Интерпретация четвертого элемента маркировки силовых диодов по ГОСТ 20859-79

Пятый элемент — цифра от 1 до 5 — конструктивное исполнение корпуса прибора:

1 — штыревое с гибким выводом;

2 — штыревое с жестким выводом;

4 — под запрессовку;

Шестой элемент — цифры, которые указывают значение максимального допустимого среднего тока или импульсного тока в амперах. Перед обозначением тока ставится дефис.

Дополнительные элементы обозначения могут быть следующими:

  • буква “Х” — обозначает приборы с обратной проводимостью (катодом является основание);
  • класс по напряжению — числа, соответствующие сотням вольт (1 –100 В, 2 – 200 В, 3 – 300 В, . 13 – 1300 В, . 20 – 2000 В, . 50 – 5000 В);
  • группа по времени обратного восстановления — цифры от 1 до 9, обозначающие, соответственно, не более 5; 4; 3,2; 2,5; 2; 1,6; 1; 0,63; 0,4 мкс (для высокочастотных и импульсных диодов).

Пример условного обозначения по ГОСТ 20859-79: Д161-200Х-8 — диод первой модификации, размер шестигранника под ключ 32 мм, штыревой конструкции с гибким выводом, максимально допустимый средний ток 200 А, обратной полярности, повторяющееся обратное напряжение 800 В.

За рубежом существует множество разнообразных систем маркировки (обозначения) полупроводниковых приборов. Наиболее распространены три системы: JEDEC, Pro Electron и JIS. Многие фирменные системы обозначений базируются на какой-либо из этих систем.

Система JEDEC принята в США и поддерживается ассоциацией предприятий электронной промышленности (Electronic Industries Alliance).

Обозначение полупроводниковых приборов в системе JEDEC имеет следующую форму:

[суффикс]

Первая цифра — цифра, отражающая количество переходов в элементе (1 для диодов).

Буква —всегда буква “N”.

Серийный номер — двух-, трех- или четырехзначное число, которое отражает порядковый номер регистрации полупроводникового прибора в EIA. Никакой дополнительной информации за исключением, возможно, времени регистрации этот номер не несет.

Суффикс — отражает разбивку приборов одного типа на различные типономиналы по характерным параметрам. Суффикс может состоять из одной или нескольких букв.

Система Pro Electron широко распространена в Европе. Она поддерживается европейской ассоциацией производителей электронных компонентов (European Electronic Component Manufacturers Association ).

Обозначение полупроводниковых приборов в системе Pro Electron состоит из четырех элементов.

Первый элемент — буква, обозначающая тип полупроводникового материала, используемого в приборе:

C — арсенид галлия;

R — другие полупроводниковые материалы.

Второй элемент — буква, обозначающая тип полупроводникового прибора:

A — маломощные импульсные и универсальные диоды;

C — маломощные низкочастотные транзисторы;

D — мощные низкочастотные транзисторы;

E — туннельные диоды;

F — маломощные высокочастотные транзисторы;

G — приборы специального назначения (например, генераторные), а также сложные приборы, содержащие в одном корпусе несколько различных компонентов;

H — магниточувствительные диоды;

K — приборы на основе эффекта Холла;

L — мощные высокочастотные транзисторы;

M — модуляторы и умножители на основе эффекта Холла;

P — светочувствительные приборы (фотодиоды, фототранзисторы и т.п.);

Q — светоизлучающие приборы (светодиоды, ИК-диоды и т.п.);

R — маломощные переключательные приборы (тиристоры и т.п.);

S — маломощные переключательные транзисторы;

T — мощные переключательные приборы;

U — мощные переключательные транзисторы;

X — умножительные диоды (варакторы и т.п.);

Y — выпрямительные диоды, бустеры;

Z — стабилитроны, стабисторы, ограничители.

Третий элемент — буква, которя ставится только для приборов, предназначенных для применения в аппаратуре специального назначения (промышленной, профессиональной, военной и т.п.). Обычно используются буквы “Z”, “Y”, “X” или “W”. В обозначениях приборов общего назначения этот элемент отсутствует.

Четвертый элемент — двух-, трех- или четырехзначный серийный номер прибора.

В обозначении могут присутствовать и некоторые дополнительные элементы. Например, такой же как и в системе JEDEC суффикс, который отражает разбивку приборов одного типа на различные типономиналы по характерным параметрам.

Для некоторых типов приборов (таких как стабилитроны, мощные диоды и тиристоры) может применяться дополнительная классификация. При этом к основному обозначению через дефис или дробь добавляется дополнительный код. Например, для стабилитронов часто применяется дополнительный код, содержащий сведения о напряжении стабилизации и его возможном разбросе (“A” – 1%, “B” – 2%, “C” – 5%, “D” – 10%, “E” – 15%). Если напряжение стабилизации — не целое число, то вместо запятой ставится буква V. В дополнительном коде для выпрямительных диодов указывается максимальная амплитуда обратного напряжения.

Например, BXY85‑C6V8 — это кремниевый стабилитрон специального назначения с регистрационным номером 85, напряжением стабилизации 6,8 В с максимальным отклонением этого напряжения от номинального значения ±5%.

Система JIS используется в Японии и различными производителями в азиатско-тихо-океанском регионе. Она разработана ассоциацией предприятий электронной промышленности Японии (Electronic Industries Association of Japan).

Условное обозначение полупроводниковых приборов в системе JIS состоит из пяти элементов.

Первый элемент — цифра, обычно отражающая количество переходов в элементе (0 – фотодиоды, фототранзисторы; 1 – диоды; 2 – транзисторы; 3 – тиристоры ).

Второй элемент — буква “S”, обозначающая полупроводниковые приборы (Semiconductors).

Третий элемент — буква, обозначающая тип полупроводникового прибора:

A — высокочастотные транзисторы типа \(p\)-\(n\)-\(p\);

B — низкочастотные транзисторы типа \(p\)-\(n\)-\(p\);

C — высокочастотные транзисторы типа \(n\)-\(p\)-\(n\);

D — низкочастотные транзисторы типа \(n\)-\(p\)-\(n\);

H — однопереходные транзисторы;

J — полевые транзисторы с \(p\)-каналом;

K — полевые транзисторы с \(n\)-каналом;

M — симметричные тиристоры;

Q — светоизлучающие диоды;

R — выпрямительные диоды;

S — малосигнальные диоды;

T — лавинные диоды;

V — варикапы, \(p\)-\(i\)-\(n\)-диоды, диоды с накоплением заряда;

Z — стабилитроны, стабисторы, ограничители.

Четвертый элемент — это серийный (регистрационный) номер прибора.

Пятый элемент — модификация прибора (“A” – первая, “B” – вторая и т.д.).

После стандартной маркировки может следовать дополнительный индекс (“N”, “M”, “S”), отражающий некоторые специальные свойства прибора.

Помимо JEDEC, Pro Electron и JIS существует множество фирменных систем обозначения (маркировки) полупроводниковых компонентов. Фирмы производители вводят такие маркировки из коммерческих и рекламных соображений. Как правило, они состоят из специального префикса, обозначающего тип (группу, технологию, назначение) прибора, серийного номера и ряда дополнительных суффиксов.

Например, система обозначений силовых диодов фирмы Motorola состоит из шести основных элементов: двух префиксов, двух цифровых значений и двух суффиксов.

Первый элемент — префикс типа, обозначающий тип и технологию производства прибора:

MRU — сверхбыстродействующий выпрямительный диод;

MBR, XBR — выпрямительный диод с барьером Шоттки;

MR — стандартный выпрямительный диод;

MGR — быстродействующий арсенид-галлиевый выпрямительный диод;

MSR — выпрямительный диод с нерезким восстановлением (soft-recovery).

Второй элемент — префикс способа монтажа на плату (типа корпуса):

A — поверхностный монтаж (SMA);

S — поверхностный монтаж (SMB/SMC);

M — поверхностный монтаж (POWERMITE ® );

F — полностью изолированный;

P — POWERTRAP TM II;

H — полностью изолированный мегагерцовый.

Третий элеиент — максимальный допустимый прямой ток диода (одна, две или три цифры), выраженный в амперах.

Четвертый элемент — максимальное обратное напряжение на диоде.

Пятый и шестой элементы — буквенно-цифровые суффиксы различного назначения.

Фирма NEC (Nippon Electric Company) использует маркировку, состоящую из двух элементов:

Первый элемент — две буквы, обозначающие тип прибора:

AD — лавинно-пролетные диоды;

GD — диоды Ганна;

GH — смесительные германиевые диоды;

SD — малосигнальные диоды;

SE — светоизлучающие ИК-диоды;

SG — светоизлучающие диоды зеленого цвета свечения;

SH — точечно-контактные кремниевые диоды;

SM — арсенид-галлиевые диоды с барьером Шоттки;

SR — светоизлучающие диоды красного цвета свечения;

SY — светоизлучающие диоды желтого цвета свечения;

V — новые полупроводниковые приборы;

Второй элемент — серийный номер прибора.

Источник



Диоды выпрямительные более 1000

  • 20
  • 40
  • 60

Диоды выпрямительные – полупроводниковые устройства, которые используются для преобразования переменного тока в постоянный. Иногда из них изготавливают диодные мосты (4 диода, объединённых в один корпус).

Диапазон частот таких диодов невелик. Промышленный переменный ток преобразовывается при частоте 50 Гц, а максимальная рабочая частота выпрямительных диодов составляет 20 кГц.

Исходя из максимально допустимого среднего прямого тока такие диоды делятся на 3 вида: малой (меньше 0.3 А), средней (от 0.3 до 10 А) и высокой мощности (больше 10 А).

Посмотреть и купить товар вы можете в наших магазинах в городах: Москва, Санкт-Петербург, Архангельск, Барнаул, Белгород, Владимир, Волгоград, Вологда, Воронеж, Гомель, Екатеринбург, Иваново, Ижевск, Казань, Калуга, Кемерово, Киров, Кострома, Краснодар, Красноярск, Курск, Липецк, Минск, Набережные Челны, Нижний Новгород, Новосибирск, Омск, Орёл, Пермь, Псков, Ростов-на-Дону, Рязань, Самара, Саранск, Саратов, Смоленск, Ставрополь, Тверь, Томск, Тула, Тюмень, Уфа, Чебоксары, Челябинск, Ярославль. Доставка заказа почтой, через систему доставки Pickpoint или через салоны «Связной» в следующие города: Тольятти, Барнаул, Ульяновск, Иркутск, Хабаровск, Владивосток, Махачкала, Томск, Оренбург, Новокузнецк, Астрахань, Пенза, Чебоксары, Калининград, Улан-Удэ, Сочи, Иваново, Брянск, Сургут, Нижний Тагил, Архангельск, Чита, Курган, Владикавказ, Грозный, Мурманск, Тамбов, Петрозаводск, Кострома, Нижневартовск, Новороссийск, Йошкар-Ола и еще в более чем 1000 городов и населенных пунктов по всей России.

Товары из группы «Диоды выпрямительные» вы можете купить оптом и в розницу.

Источник

СПРАВОЧНИК ПО ВЫПРЯМИТЕЛЬНЫМ ДИОДАМ

СПРАВОЧНИК ПО ВЫПРЯМИТЕЛЬНЫМ ДИОДАМ

КД201А
КД201Б
КД201В
КД201Г
КД202А
КД202Б
КД202В
КД202Г
КД202Д
КД202Е
КД202Ж
КД202И
КД202К
КД202Л
КД202М
КД202Н
КД202Р
КД202С
2Д202Т
КД203А
КД203Б
КД203В
КД203Г
КД203Д
КД203Е
КД203Ж
КД203И
КД203К
КД203Л
КД203М
КД204А
КД204Б
КД204В
КД205А
КД205Б
КД205В
КД205Г
КД205Д
КД205Е
КД205Ж
КД205И
КД205К
КД205Л
КД206А
КД206Б
КД206В
2Д207А
КД208А
КД209А
КД209Б
КД209В
КД209Г
КД210А
КД210Б
КД210В
КД210Г
КД212А
КД212Б
КД212В
КД212Г
КД213А
КД213Б
КД213В
КД213Г
2Д215А
2Д215Б
2Д215В
2Д216А
2Д216Б
2Д217А
2Д217Б
2Д218А
2Д219А
2Д219Б
2Д220А
2Д220Б
2Д220В
2Д220Г
2Д220Д
2Д220Е
2Д220Ж
2Д220И
КД221А
КД221Б
КД221В
КД221Г
2Д222АС
2Д222БС
2Д222ВС
2Д222ГС
2Д222ДС
2Д222ЕС
КД223А
2Д225АС
2Д225БС
2Д225ВС
КД226А
КД226Б
КД226В
КД226Г
КД226Д
КД226Е
КД227А
КД227Б
КД227В
КД227Г
КД227Д
КД227Е
КД227Ж
2Д228А
2Д229АС
2Д229БС
2Д229ВС
2Д230А
2Д230Б
2Д230В
2Д230Г
2Д230Д
2Д230Е
2Д230Ж
2Д230И
2Д231А
2Д231Б
2Д231В
2Д231Г
2Д232А
2Д232Б
2Д232В
2Д234А
2Д234Б
2Д234В
2Д235А
2Д235Б
2Д236А
2Д236Б
2Д237А
2Д237Б
2Д238АС
2Д238БС
2Д238ВС
2Д239А
2Д239Б
2Д239В
КД241А
КД243А
КД243Б
КД243В
КД243Г
КД243Д
КД243Е
КД243Ж
КД244А
КД244Б
КД244В
КД244Г
2Д245А
2Д245Б
2Д245В
КД247А
КД247Б
КД247В
КД247Г
КД247Д
КД247Е
КД248А
КД248Б
КД248В
КД248Г
КД248Д
КД248Е
КД248Ж
КД248И
КД248К
2Д249А
2Д249Б
2Д249В
2Д250А

2Д251А
2Д251Б
2Д251В
2Д251Г
2Д251Д
2Д251Е
2Д252А
2Д252Б
2Д252В
2Д253А
2Д253Б
2Д253В
2Д253Г
2Д253Д
2Д253Е
2Д254А
2Д254Б
2Д254В
2Д254Г
2Д255А5
2Д255Б5
2Д255Б5
КД257А
КД257Б
КД257В
КД257Г
КД257Д
КД258А
КД258Б
КД258В
КД258Г
КД258Д
КД259А
КД259Б
КД259В
2Д260А5
2Д260Б5
КД275А
КД275Б
КД275В
КД275Г
КД275Д
КД275Е
КД282А
2Д2990А
2Д2990Б
2Д2990В
КД2991А
2Д2992А
2Д2992Б
2Д2992В
2Д2993А
2Д2993Б
2Д2993В
КД2994А
2Д2995А
2Д2995Б
2Д2995В
2Д2995Г
2Д2995Д
2Д2995Е
2Д2995Ж
2Д2995И
2Д2997А
2Д2997Б
2Д2997В
КД2998А
КД2998Б
КД2998В
КД2998Г
КД2998Д
2Д2999А
2Д2999Б
2Д2999В

100/
100/
200/
200/
35/50
35/50
70/100
70/100
140/200
140/200
210/300
210/300
280/400
280/400
350/500
350/500
420/600
420/600
560/800
420/600
560/800
560/800
700/1000
700/1000
560/800
560/800
700/1000
700/1000
280/400
420/600
400/400
200/200
50/ 50
/500
/400
/300
/200
/100
/500
/600
/700
/100
/200
400/
500/
600/
600/
100/100
400/400
600/600
800/800
1000/1000
800/
800/
1000/
1000/
200/
200/
100/
100/
200/200
200/200
200/200
100/100
400/400
600/600
200/200
100/100
200/200
100/100
100/100
100/135
/15
/20
400/400
600/600
800/800
1000/1000
400/400
600/600
800/800
1000/1000
/100
/200
/400
/600
/20
/30
/40
/20
/30
/40
200/230
/15
/25
/35
100/100
200/200
400/400
600/600
800/800
600/600
100/150
200/250
300/450
400/600
500/700
600/850
800/1200
100/100
/15
/25
/35
400/400
600/600
800/800
1000/1000
400/400
600/600
800/800
1000/1000
/150
/200
/150
/200
15/15
25/25
35/35
100/100
200/200
400/400
40/40
30/30
600/600
800/800
100/100
200/200
25/25
35/35
45/45
100/100
150/150
200/200
1500/1500
50/ 50
100/100
200/200
400/400
600/600
800/800
1000/1000
100/100
100/100
200/200
200/200
400/450
200/250
100/150
100/100
200/200
400/400
600/600
800/800
50/50
1000/1000
1000/1000
800/800
800/800
600/600
600/600
400/400
400/400
1000/1200
40/40
30/30
20/20
125/140

Источник