Меню

Для чего предназначен мост постоянного тока

Как устроены и работают измерительные мосты постоянного тока

Устройство одинарных измерительных мостов постоянного тока

Одинарный мост постоянного тока состоит из трех образцовых резисторов (обычно регулируемых) R1, R2, R3 (рис. 1, а), которые включают последовательно с измеряемым сопротивлением Rx в мостовую схему.

К одной из диагоналей этой схемы подают питание от источника ЭДС GB, а в другую диагональ через выключатель SA1 и ограничивающее сопротивление Ro включают высокочувствительный гальванометр РА.

Схемы одинарных измерительных мостов постоянного тока

Рис. 1. Схемы одинарных измерительных мостов постоянного тока: а — общая; б — с плавным изменением отношения плеч и скачкообразным изменением плеча сравнения.

Схема работает следующим образом. При подаче питания через резисторы Rx, Rl, R2, R3 проходят токи I1 и I2 . Эти токи вызовут в резисторах падение напряжений U ab , U bc , U ad и Udc .

Если эти падения напряжения будут разными, то и потенциалы точек φa , φb и φc будут неодинаковы. Поэтому, если выключателем SA1 включить гальванометр, то через него будет проходить ток, равный I г= ( φb — φd) / Ro .

Задача измеряющего заключается в том, чтобы уравновесить мост, то есть сделать потенциалы точек φb и φd одинаковыми, другими словами, уменьшить ток гальванометра до нуля.

Для этого начинают изменять сопротивления резисторов Rl, R2 и R3 до тех пор, пока ток гальванометра не станет равным нулю.

При I г=0 можно утверждать, что φb = φd . Это возможно лишь тогда, когда падение напряжения U ab — U ad и U bc = U dc .

Подставив в эти выражения значения падений напряжений U ad = I2R3 , U bc = I1R1 , Udc = I2R2 и Uab =I1R х, получим два равенства: I1R х = I2R3 , I1R1 = I2R2

Разделив первое равенство на второе, получим R х / R1 = R3 / R2 или R х R2 = R1 R3

Последнее равенство есть условие балансировки одинарного моста постоянного тока .

Из него следует, что мост сбалансируется тогда, когда произведения сопротивлений противолежащих плеч будут одинаковыми. Отсюда измеряемое сопротивление определится по формуле R х = R 1 R 3 / R 2

В реальных одинарных мостах изменяют либо сопротивление резистора R1 (его называют плечом сравнения), либо отношение сопротивлений R 3 /R2.

Есть измерительные мосты, у которых меняется только сопротивление плеча сравнения, а отношение R3/R2 остается постоянным. И наоборот, изменяется только отношение R3/R2, а сопротивление плеча сравнения остается постоянным.

Наибольшее распространение получили измерительные мосты, у которых плавно изменяется сопротивление R1 и скачками, обычно кратными 10, изменяется отношение R3/R2 (рис. 1,б), например в распространенных измерительных мостах Р333.

Измерительный мост постоянного тока Р333

Рис. 2. Измерительный мост постоянного тока Р333

Каждый измерительный мост характеризуется пределом измерений сопротивлений от Rmin до Rmax. Важным параметром моста является его чувствительность S м = S г S сх, где Sг= d a/ dI г — чувствительность гальванометра, Scx= dI г/ dR — чувствительность схемы .

Подставляя Sг и Scx в Sм, получим Sм = d a / dR .

Иногда пользуются понятием относительной чувствительности измерительного моста:

где dR / R — относительнее изменение сопротивления в измеряемом плече, d a — угол отклонения стрелки гальванометра.

В зависимости от конструктивного оформления различают магазинные и линейные (реохордные) измерительные мосты .

измерительный мостВ магазинном измерительном мосте сопротивления плеч выполнены в виде штепсельных или рычажных многозначных мер электрических сопротивлений (магазинов сопротивлений), в реохордных мостах плечо сравнений делают в виде магазина сопротивлений, а плечи отклонения — в виде резистора, разделяемого ползунком на две регулируемые части.

По допустимой погрешности одинарные измерительные мосты постоянного тока имеют класс точности : 0,02; 0,05; 0,1; 0,2; 1,0; 5,0. Числовое значение класса точности соответствует наибольшему допустимому значению относительной погрешности.

Погрешность одинарного моста постоянного тока зависит от степени соизмеримости сопротивлений соединительных проводов и контактов с измеряемым сопротивлением. Чем меньше измеряемое сопротивление, тем больше погрешность. Поэтому для измерения малых сопротивлений применяют двойные мосты постоянного тока.

Устройство двойных мостов постоянного тока

Плечами двойного (шестиплечего) измерительного моста служат измеряемое сопротивление Rx (выполняют четырехзажимным для уменьшения влияния переходных контактных сопротивлений и включают в сеть через специальное четырехзажимное приспособление), образцовый резистор Ro и две пары вспомогательных резисторов Rl, R2, R3, R4.

Читайте также:  Обзор тока бока больница

Схема двойного измерительного моста постоянного тока

Рис. 3 Схема двойного измерительного моста постоянного тока

Равновесие моста определяется формулой:

R х = Ro х (R1/R2) — (r R3 / (r +R3 +R4)) х (R1/R2 — R4/R3)

Отсюда видно, что если два отношения плеч R1/R2 и R4/R3 равны между собой, то вычитаемое равно нулю.

Несмотря на то, что сопротивления R1 и R4, перемещая движок D, устанавливают одинаковыми, из-за разброса параметров сопротивлений R2 и R4 этого добиться очень сложно.

Для уменьшения ошибки измерений надо сопротивление перемычки, соединяющей образцовый резистор Ro и измеряемое сопротивление Rx, брать как можно меньшим. Обычно к прибору придается специальный калиброванный резистор r . Тогда вычитаемое выражения практически становится равным нулю.

Значение измеряемого сопротивления можно определить по формуле: R х = Ro R1 / R2

Двойные измерительные мосты постоянного тока рассчитаны на работу только с переменным отношением плеч. Чувствительность двойного моста зависит от чувствительности нулевого указателя, параметров мостовой схемы и значения рабочего тока. С увеличением рабочего тока чувствительность увеличивается.

Наибольшее распространение получили комбинированные измерительные мосты постоянного тока , рассчитанные на работу по схемам одинарного и двойного моста.

Источник

Измерительный мост

Измерительный мост – электрическая схема, усовершенствованная английским физиком Чарльзом Уинстоном. Она источник постоянного тока и базовая мостовая схема, которую применяют в конструкциях многих измерительных приборов. Например, в устройствах контроля и измерения температур – термометрах.

Что такое измерительный мост?

Как пример, объясняющий электросхему моста, возьмём терморезистор или термометр. В таких системах механизм ставят в одной ветви схемы. Можно провести аналогию с аптечными весами. Разница только в том, что мост — электрическое устройство.

Рычажные весы и приборы с мостовой схемой действуют компенсационным способом. Величина тока в по Уинстону есть разница между сопротивлениями — чем она выше, тем обширнее протекает электрический ток. При изменении разности меняется и количество электрических зарядов.

Это свойство применяют в различных системах и приборах контроля. Точность замеров достигается за счет изменения сопротивления. Во время измерения электричества, проходящего через измерительный мост постоянного тока, обнаруживаются любые изменения физической величины сопротивления.

Принцип работы моста Уитстона

Мостовая схема Ч. Уинстона состоит из 2-х плеч. В каждом 2 резистора. Соединяет 2 параллельные ветви еще одна. Ее название – мостик. Ток проходит от клеммы с минусом к верхнему пику мостовой схемы.

Разделившись по 2 параллельным ветвям, ток идёт к положительной клемме. Величина сопротивления в каждой ветви непосредственно влияет на количество тока. Равное сопротивление на обеих ветвях говорит о том, что в них течет аналогичное количество тока. В таких условиях мостовой элемент уравновешен.

Если в ветвях неравное сопротивление, ток в электросхеме начинает движение от ветви с высоким уровнем сопротивления к ветви с наименьшим. Так продолжается, пока 2 верхних элемента цепей остаются равны по своей величине. Аналогичное положение резисторы имеют в схемах, которые используют в системах контроля и измерения.

Типы и модификации измерительных мостов

Основная схема измерительного моста – Уинстона. Одинарный мост меряет сопротивление от 1 Ом до 100 Мом. Но есть и модификации, позволяющие измерять разные типы сопротивлений — те, для которых базовая схема не годится.

Разновидности

  1. Небольшие сопротивления измеряются посредством прибора Кери Фотера. Можно узнать разницу между противодействиями больших значений.
  2. Еще один тип – делитель Кельвина-Варлея. Применяется в приборах лабораторного оборудования. Максимальная измеряющая способность, зафиксированная этим делителем напряжения, достигает 1,0*10-7.
  3. Мост Кельвина, который в некоторых странах называют именем Томсона, предназначен для замера неизвестных сопротивлений небольших величин (меньше 1 Ом). По принципу работы похож на одинарный мост Уинстона. Разница лишь в наличии дополнительного сопротивления, снижающего погрешности в измерении, которые появляются в результате падения напряжения в одном из плеч.
  4. Еще один тип – мост Максвелла. Измеряет низкодобротную индуктивность неизвестной величины.
Читайте также:  Решение задач по теме плотность тока

Схемы измерительных мостов

Измерительные мосты переменного тока делят на 2 группы: двойные и одинарные. Одинарные имеют 4 плеча. В них 3 ветви создают цепь с 4 точками подключения.

В диагонали моста есть электромагнитный гальванометр, показывающий равновесие. В другой диагонали моста действует источник постоянного питания. Измерения могут происходить с погрешностями, которые зависят от их диапазона. По мере роста сопротивления чувствительность прибора уменьшается.

Двойной мост называют шестиплечим. Его плечи – измеряемое сопротивление (Rx), резистор (Ro) и 2 пары дополнительных резисторов (Rl, R2, R3, R4).

Двойные измерительные мосты

Небольшие сопротивления измеряются двойными мостами, состоящими из таких компонентов:

  • резисторы R (4);
  • гальванометр;
  • резистор образцовый;
  • источник питания;
  • амперметр;
  • резистор, устанавливающий рабочий ток.

Чтобы узнать условия, при которых возникает равновесие, для замкнутых контуров применяют уравнение Кирхгофа. Соблюдается условие: по гальванометру должен идти нулевой ток.

Где используют измерительный мост Уитстона?

Измерительные элементы применяют в работе с кабельными линиями из металла. Они позволяют нейтрализовать постороннее влияние для более эффективной локализации дефектов. Гарантированы высокоточные результаты в рамках диапазона измеряемых величин.

С помощью мостовой схемы Уитстона можно вычислить сопротивление изменяющегося элемента. Схемы используют в конструкциях электронных весов, электронных термометров и терморезисторов.

Среди промышленных образцов широко известны приборы с ручной калибровкой равновесия:

  • ММВ – измеряет сопротивление проводника постоянного напряжения;
  • Р333 – схема одинарного моста, с помощью которой выявляется поврежденный участок кабеля.

Заключение

С помощью прибора Уинстона можно мерить индуктивность, содержание газа в воздухе или другом веществе, емкость и иные физические величины. Подробно о данных схемах можно прочитать в учебнике «Измерительные соединения». В книге представлены основные понятия, базовые методики, примеры, иллюстрирующие принцип действия.

Источник



Большая Энциклопедия Нефти и Газа

Мост — постоянный ток

Мосты постоянного тока применяются для измерения сопротивлений, работающих на этом виде тока, или сопротивлений, значение которых слабо зависит от частоты. При измерении малых сопротивлений схемы обычных мостов непригодны, так как в величину измеряемого сопротивления войдут сопротивления соединительных проводов и зажимов. Поэтому для измерения малых сопротивлений применяются мосты, собранные по специальным схемам. [1]

Мосты постоянного тока измерительные. [2]

Мосты постоянного тока рекомендуется применять при измерении температуры в пожароопасных помещениях, а для взрывоопасных помещений эти мосты должны иметь искробезо-пасное исполнение. [3]

Мост постоянного тока , применяемый в сочетании с детектором в описываемом приборе, показан на рис. П-6. Термисторы А и В составляют переменные сопротивления в двух плечах моста. Постоянные сопротивления 230 ом составляют остальное сопротивление ветвей моста и приближаются к сопротивлению 2000-ом-ных термисторов при 100 С. Переменное сопротивление С ( 25 ом) служит для грубой регулировки, а переменное сопротивление D ( 0 5 ом) — для тонкой регулировки нуля. Низкое значение переменного сопротивления может быть получено простым шунтированием микропотенциометра. Тонкая регулировка нуля не изменяет тока на соответствующей стороне моста; следовательно, не происходит никакого изменения энергии рассеяния термистора, и термическое равновесие не нарушается. [4]

Мосты постоянного тока применяются для измерения сопротивления электрической цепи постоянному току, а также для преобразования сопротивления в ток или напряжение. Мосты переменного тока применяются для измерения или преобразования в электрический сигнал комплексных сопротивлений, а также в качестве фильтров. [5]

Мосты постоянного тока часто выполняют самобалансирующимися. Сигнал ошибки, снимаемый с диагонали, воздействует на схему управления образцовыми резисторами плеч моста. С помощью схе-мы управления поочередно включают образцовые резисторы, пока не будет достигнут баланс. Самобалансирующиеся мосты часто конструктивно совмещены с вольтметрами постоянного напряжения, работающими по методу уравновешивающего преобразования. Делитель напряжения вольтметра вместе с устройством коммутации используется как образцовый резистор. [6]

Мосты постоянного тока применяют для точных измерений сопротивлений в тех случаях, когда измерительное напряжение на образце по условиям испытаний не превышает 100 В. В качестве индикатора равновесия ИН используют усилитель постоянного тока с высоким входным сопротивлением. [8]

Читайте также:  Трансформатор это устройство предназначенное для измерения частоты переменного тока

Мосты постоянного тока измерительные. [9]

Мосты постоянного тока часто применяются при исследовании кабелей и линий связи для установления места их повреждения ( если таковое имеется), измере ния асимметрии проводов, а также сопротивления изоляции. Для этих целей наша промышленность выпускает специальные мосты типов РЗЗЗ, Р334, КМ-61С и некоторые другие. [11]

Мосты постоянного тока измерительные. [12]

Мосты постоянного тока применяются для измерения сопротивления электрической цепи постоянному току, а также для преобразования сопротивления в ток или напряжение. Мосты переменного тока применяются для измерения или преобразования в электрический сиг-нал комплексных сопротивлений, а также в качестве фильтров. [13]

Мосты постоянного тока часто применяются при исследовании кабелей и линий связи для установления места их повреждения ( если таковое имеется), измерения асимметрии проводов, а также сопротивления изоляции. Для этих целей наша промышленность выпускает специальные мосты типов РЗЗЗ, Р334, КМ-61С и некоторые другие. [15]

Источник

Электронные измерительные приборы — мосты

Если электрические компоненты расположены в форме моста или кольцевой структуры, то эта электрическая цепь называется мостом . В общем, мост образует петлю с набором из четырех плеч или ветвей. Каждая ветвь может содержать один или два электрических компонента.

Типы Мостов

Мы можем классифицировать мостовые схемы или мосты по следующим двум категориям на основе сигнала напряжения, с которым они могут работать.

  • Мосты постоянного тока
  • Мосты переменного тока

Теперь давайте кратко обсудим эти два моста.

Мосты постоянного тока

Если мостовая схема может работать только с сигналом напряжения постоянного тока, то это мостовая цепь постоянного тока или просто мост постоянного тока . Мосты постоянного тока используются для измерения значения неизвестного сопротивления. Принципиальная схема моста постоянного тока выглядит так, как показано на рисунке ниже.

Мосты постоянного тока

Вышеупомянутый мост постоянного тока имеет четыре плеча, каждый из которых состоит из резистора. Среди которых два резистора имеют фиксированные значения сопротивления, один резистор является переменным резистором, а другой имеет неизвестное значение сопротивления.

Вышеупомянутая мостовая схема постоянного тока может возбуждаться источником постоянного напряжения , помещая его в одну диагональ. Гальванометр расположен в другой диагонали моста постоянного тока. Это показывает некоторое отклонение, пока мост не сбалансирован.

Изменяйте значение сопротивления переменного резистора, пока гальванометр не покажет null (нулевое) отклонение. Теперь вышеупомянутый мост постоянного тока называется сбалансированным. Таким образом, мы можем найти значение неизвестного сопротивления , используя узловые уравнения.

Мосты переменного тока

Если мостовая схема может работать только с сигналом переменного напряжения, то она называется мостовой цепью переменного тока или просто мостом переменного тока . Мосты переменного тока используются для измерения значения неизвестной индуктивности, емкости и частоты.

Принципиальная схема моста переменного тока выглядит так, как показано на рисунке ниже.

Мосты переменного тока

Принципиальная схема моста переменного тока аналогична схеме моста постоянного тока. Вышеупомянутый мост переменного тока имеет четыре плеча, и каждый рычаг состоит из некоторого сопротивления. Это означает, что каждое плечо будет иметь один или комбинацию пассивных элементов, таких как резистор, индуктор и конденсатор.

Среди четырех импедансов два импеданса имеют фиксированные значения, один импеданс является переменным, а другой — неизвестным импедансом.

Вышеупомянутая мостовая цепь переменного тока может возбуждаться источником переменного напряжения , помещая его в одну диагональ. Детектор расположен в другой диагонали моста переменного тока. Это показывает некоторое отклонение, пока мост не сбалансирован.

Вышеупомянутая мостовая цепь переменного тока может возбуждаться источником переменного напряжения , помещая его в одну диагональ. Детектор расположен в другой диагонали моста переменного тока. Это показывает некоторое отклонение, пока мост не сбалансирован.

Изменяйте значение импеданса переменного импеданса, пока детектор не покажет null (нулевое) отклонение. Теперь упомянутый выше мост переменного тока называется сбалансированным. Таким образом, мы можем найти значение неизвестного сопротивления , используя сбалансированное состояние.

Источник