Меню

Для чего заземляют сети низких напряжений

Режимы работы нейтрали в электроустановках и электрических сетях

Электрические сети, как известно, делятся в зависимости от класса напряжения – до и выше 1000В. Нейтраль – это общая точка обмоток у трансформаторов и генераторов, соединенных в звезду. Если же схема обмоток треугольник и необходим ноль, то можно вспомнить про схему «скользящий треугольник». Будем рассматривать только сети переменного тока.

Виды заземления нейтрали в сетях до 1кВ

В электрических сетях напряжением до 1000В принято использовать три системы заземления нейтрали – это TN, IT, TT. Каждая из букв несет определенный смысл, разберемся:

  • 1-ая буква описывает способ заземления нейтрали источника питания
  • 2-ая буква показывает способ заземления открытых проводящих частей (ОПЧ) с землей

В свою очередь система TN делится на три подсистемы – TN-C, TN-S и TN-C-S. В рамках данной подсистемы третьи буквы (C — combine, S — separe) обозначают совмещение или разделение в одном проводе функций нулевого защитного (PE) и нулевого рабочего (N) проводника.

Рассмотрим теперь каждую систему более подробно.

Система заземления TN

В этой системе нейтраль глухозаземлена, а открытые проводящие части заземлены через эту глухозаземленную нейтраль. Глухозаземленная – это значит что нейтраль присоединена непосредственно к заземляющему устройству (болтом, сваркой) или через малое сопротивление (трансформатор тока).

В сетях до 1кВ глузозаземленная нейтраль используется для питания однофазных и трехфазных нагрузок.

Система заземления TT

Система TT предполагает, что нейтраль источника питания глухозаземлена, а ОПЧ оборудования заземлены заземляющим устройством электрически несвязанным с нейтралью источника. То есть защитный PE-проводник создается у самого потребителя, а не идет от источника питания.

Система заземления IT

В системе IT нейтраль генератора или трансформатора изолирована или заземлена через устройства, имеющие высокое сопротивление, а ОПЧ заземлены независимо. Эта система не рекомендуется для жилых зданий, используется там, где при первом замыкании на землю не требуется перерыв питания. Это могут быть электроустановки с повышенными требованиями надежности снабжения электроэнергией.

Виды заземления нейтрали в электросетях выше 1кВ

В сетях напряжением выше 1000В используется изолированная (незаземленная) нейтраль, эффективно заземленная нейтраль и резонансно-заземленная нейтраль. Глухозаземленная нейтраль используется только в сетях до 1кВ.

Сети с незаземленной (изолированной) нейтралью

Исторически первая система заземления. Нейтральная точка источника питания не присоединена к заземляющему устройству. Обмотки соединены в треугольник и выходит, что нулевая точка отсутствует. Применяется на напряжение 3-35кВ.

Сети с эффективно-заземленной нейтралью

Этот вид заземления используется в сетях напряжением выше 110кВ. Достоинство заключается в том, что при однофазных замыканиях на неповрежденных фазах напряжение относительно земли будет равно 0,8 междуфазного в нормальном режиме работы. В этой системе сам контур заземления выполняется с учетом протекания больших токов КЗ, что делает его сложным и дорогим.

Сети с нейтралью, заземленной через резистор или реактор

Применяется в сетях 3-35кВ. Используется для уменьшения величины токов КЗ. Исторически был вторым способом заземления нейтрали. Заземление через резистор используется во всем мире, через реактор – в странах бывшего союза.

Заземление через реактор – при отсутствии замыкания ток через реактор мал. Когда происходит замыкание фазы на землю, то через место повреждения течет емкостной ток КЗ и индуктивный ток реактора. Если их величина равна, то в месте замыкания отсутствует ток (явление резонанса).

Заземление через резистор бывает низкоомным и высокоомным. Разница в величине тока, создаваемым резистором при замыкании на землю. Высокоомное применяется в сетях с малыми емкостными токами, в этом случае замыкание можно не отключать немедленно. Низкоомное заземление наоборот используется при больших емкостных токах.

Выбор виды заземления нейтрали зависит от следующих факторов:

  • величина емкостного тока сети
  • допустимая величина однофазного замыкания
  • возможности отключения однофазного замыкания
  • вида и типа релейных защит
  • безопасности персонала
  • наличия резерва

Вы находитесь на странице, адап­ти­ро­ван­ной для быстрой загрузки

Источник

Системы заземления TN-S, TN-C, TNC-S, TT, IT

При проектировании, монтаже и эксплуатации электроустановок, промышленного и бытового электрооборудования, а также электрических сетей освещения, одним из основополагающих факторов обеспечения их функциональности и электробезопасности является точно спроектированное и правильно выполненное заземление. Основные требования к системам заземления содержатся в пункте 1.7 Правил устройства электроустановок (ПУЭ). В зависимости от того, каким образом, и с каким заземляющими конструкциями, устройствами или предметами соединены соответствующие провода, приборы, корпуса устройств, оборудование или определенные точки сети, различают естественное и искусственное заземление.

Естественными заземлителями являются любые металлические предметы, постоянно находящиеся в земле: сваи, трубы, арматура и другие токопроводящие изделия. Однако, ввиду того, что электрическое сопротивление растеканию в земле электротока и электрических зарядов от таких предметов плохо поддается контролю и прогнозированию, использовать естественное заземление при эксплуатации электрооборудования запрещается. В нормативной документации предусмотрено использование только искусственного заземления, при котором все подключения производятся к специально созданным для этого заземляющим устройствам.

Основным нормируемым показателем, характеризующим, насколько качественно выполнено заземление, является его сопротивление. Здесь контролируется противодействие растеканию тока, поступающего в землю через данное устройство — заземлитель. Величина сопротивления заземления зависит от типа и состояния грунта, а также особенностей конструкции и материалов, из которых изготовлено заземляющее устройство. Определяющим фактором, влияющих на величину сопротивления заземлителя, является площадь непосредственного контакта с землей составляющих его пластин, штырей, труб и других электродов.

Виды систем искусственного заземления

Основным документом, регламентирующим использование различных систем заземления в России, является ПУЭ (пункт 1.7), разработанный в соответствии с принципами, классификацией и способами устройства заземляющих систем, утвержденных специальным протоколом Международной электротехнической комиссии (МЭК). Сокращенные названия систем заземления принято обозначать сочетанием первых букв французских слов: «Terre» — земля, «Neuter» — нейтраль, «Isole» — изолировать, а также английских: «combined» и «separated» — комбинированный и раздельный.

  • T — заземление.
  • N — подключение к нейтрали.
  • I — изолирование.
  • C — объединение функций, соединение функционального и защитного нулевых проводов.
  • S — раздельное использование во всей сети функционального и защитного нулевых проводов.
Читайте также:  Напряжение для работы микроволновки

В приведенных ниже названиях систем искусственного заземления по первой букве можно судить о способе заземления источника электрической энергии (генератора или трансформатора), по второй – потребителя. Принято различать TN, TT и IT системы заземления. Первая из которых, в свою очередь, используется в трех различных вариантах: TN-C, TN-S, TN-C-S. Для понимания различий и способов устройства перечисленных систем заземления следует рассмотреть каждую из них более детально.

1. Системы с глухозаземлённой нейтралью (системы заземления TN)

Это обозначение систем, в которых для подключения нулевых функциональных и защитных проводников используется общая глухозаземленная нейтраль генератора или понижающего трансформатора. При этом все корпусные электропроводящие детали и экраны потребителей следует подключить к общему нулевому проводнику, соединенному с данной нейтралью. В соответствии с ГОСТ Р50571.2-94 нулевые проводники различного типа также обозначают латинскими буквами:

  • N — функциональный «ноль»;
  • PE — защитный «ноль»;
  • PEN — совмещение функционального и защитного нулевых проводников.

Построенная с использованием глухозаземленной нейтрали, система заземления TN характеризуется подключением функционального «ноля» — проводника N (нейтрали) к контуру заземления, оборудованному рядом с трансформаторной подстанцией. Очевидно, что в данной системе заземление нейтрали посредством специального компенсаторного устройства — дугогасящего реактора не используется. На практике применяются три подвида системы TN: TN-C, TN-S, TN-C-S, которые отличаются друг от друга различными способами подключения нулевых проводников «N» и «PE».

Система заземления TN-C

Система заземления TN-C

Система заземления TN-C

Как следует из буквенного обозначения, для системы TN-C характерно объединение функционального и защитного нулевых проводников. Классической TN-C системой является традиционная четырехпроводная схема электроснабжения с тремя фазными и одним нулевым проводом. Основная шина заземления в данном случае – глухозаземленная нейтраль, с которой дополнительными нулевыми проводами необходимо соединить все открытые детали, корпуса и металлические части приборов, способные проводить электрический ток..

Данная система имеет несколько существенных недостатков, главный из которых – утеря защитных функций в случае обрыва или отгорания нулевого провода. При этом на неизолированных поверхностях корпусов приборов и оборудования появится опасное для жизни напряжение. Так как отдельный защитный заземляющий проводник PE в данной системе не используется, все подключенные розетки земли не имеют. Поэтому используемое электрооборудование приходится занулять – соединять корпусные детали с нулевым проводом. .

Если при таком подключении фазный провод коснется корпуса, из-за короткого замыкания сработает автоматический предохранитель, и опасность поражения электрическим током людей или возгорания искрящего оборудования будет устранена быстрым аварийным отключением. Важным ограничением при вынужденном занулении бытовых приборов, о чем следует знать всем проживающим в помещениях, запитанных по системе TN-C, является запрет использования дополнительных контуров уравнивания потенциалов в ванных комнатах.

В настоящее время данная система заземления сохранилась в домах, относящихся к старому жилому фонду, а также применяется в сетях уличного освещения, где степень риска минимальна.

Система TN-S

Система заземления TN-S

Система заземления TN-S

Более прогрессивная и безопасная по сравнению с TN-C система с разделенными рабочим и защитным нолями TN-S была разработана и внедрена в 30-е годы прошлого века. При высоком уровне электробезопасности людей и оборудования это решение имеет один, но достаточно очень существенный недостаток — высокую стоимость. Так как разделение рабочего (N) и защитного (PE) ноля реализовано сразу на подстанции, подача трехфазного напряжения производится по пяти проводам, однофазного — по трем. Для подключения обоих нулевых проводников на стороне источника используется глухозаземленная нейтраль генератора или трансформатора.

В ГОСТ Р50571 и обновленной редакции ПУЭ содержится предписание об устройстве на всем ответственных объектах, а также строящихся и капитально ремонтируемых зданиях энергоснабжения на основе системы TN-S, обеспечивающей высокий уровень электробезопасности. К сожалению, широкому распространению и внедрению системы TN-S препятствует высокий уровень затрат и ориентированность российской энергетики на четырехпроводные схемы трехфазного электроснабжения.

Система TN-C-S

Система заземления TN-C-S

Система заземления TN-C-S

С целью удешевления оптимальной по безопасности, но финансово емкой системы TN-S с разделенными нулевыми проводниками N и PE, было создано решение, позволяющее использовать ее преимущества с меньшим бюджетом, незначительно превышающим расходы на энергоснабжение по системе TN-C. Суть данного способа подключения состоит в том, что с подстанции осуществляется подача электричества с использованием комбинированного нуля «PEN», подключенного к глухозаземленной нейтрали. Который при входе в здание разветвляется на «PE» — ноль защитный, и еще один проводник, исполняющий на стороне потребителя функцию рабочего ноля «N».

Данная система имеет существенный недостаток — в случае повреждения или отгорания провода PEN на участке подстанция — здание, на проводнике PE, а, следовательно, и всех связанных с ним корпусных деталях электроприборов, появится опасное напряжение. Поэтому при использовании системы TN-C-S, которая достаточно распространена, нормативные документы требуют обеспечения специальных мер защиты проводника PEN от повреждения.

Система заземления TT

Система заземления TT

Система заземления TT

При подаче электроэнергии по традиционной для сельской и загородной местности воздушной линии, в случае использования здесь небезопасной системы TN-C-S трудно обеспечить надлежащую защиту проводника комбинированной земли PEN. Здесь все чаще используется система TT, которая предполагает «глухое» заземление нейтрали источника, и передачу трехфазного напряжения по четырем проводам. Четвертый является функциональным нолем «N». На стороне потребителя выполняется местный, как правило, модульно-штыревой заземлитель, к которому подключаются все проводники защитной земли PE, связанные с корпусными деталями.

Читайте также:  Светодиодные лампы для авто со стабилизатором напряжения

Совсем недавно разрешенная к использованию на территории РФ, данная система быстро распространилась в российской глубинке для энергоснабжения частных домовладений. В городской местности TT часто используется при электрификации точек временной торговли и оказания услуг. При таком способе устройства заземления обязательным условием является наличие приборов защитного отключения, а также осуществление технических мер грозозащиты.

2. Системы с изолированной нейтралью

Во всех описанных выше системах нейтраль связана с землей, что делает их достаточно надежными, но не лишенными ряда существенных недостатков. Намного более совершенными и безопасными являются системы, в которых используется абсолютно не связанная с землей изолированная нейтраль, либо заземленная при помощи специальных приборов и устройств с большим сопротивлением. Например, как в системе IT. Такие способы подключения часто используются в медицинских учреждениях для электропитания оборудования жизнеобеспечения, на предприятиях нефтепереработки и энергетики, научных лабораториях с особо чувствительными приборами, и других ответственных объектах.

Система IT

Система заземления IT

Система заземления IT

Классическая система, основным признаком которой является изолированная нейтраль источника – «I», а также наличие на стороне потребителя контура защитного заземления – «Т». Напряжение от источника к потребителю передается по минимально возможному количеству проводов, а все токопроводящие детали корпусов оборудования потребителя должны быть надежно подключены к заземлителю. Нулевой функциональный проводник N на участке источник – потребитель в архитектуре системы IT отсутствует.

Надежное заземление — гарантия безопасности

Все существующие системы устройства заземления предназначены для обеспечения надежного и безопасного функционирования электрических приборов и оборудования, подключенных на стороне потребителя, а также исключения случаев поражения электрическим током людей, использующих это оборудование. При проектировании и устройстве систем энергоснабжения, необъемлемыми элементами которых является как функциональное, так и защитное заземление, должна быть уменьшена до минимума возможность появления на токопроводящих корпусах бытовых приборов и промышленного оборудования напряжения, опасного для жизни и здоровья людей.

Система заземления должна либо снять опасный потенциал с поверхности предмета, либо обеспечить срабатывание соответствующих защитных устройств с минимальным запаздыванием. В каждом таком случае ценой технического совершенства, или наоборот, недостаточного совершенства используемой системы заземления, может быть самое ценное — жизнь человека.

Источник



Для чего нужно заземление и как его сделать

Создаем контур заземления по периметру дома

Каждый человек знает, что такое электричество. Каждый судит о нем по-разному. Для кого-то это телевизор, люстра и выключатель, для кого-то — источник энергии, но все понимают, что это такая штука, которая может и долбануть. И они правы, поскольку тряхнуть может действительно крепко, а порой и вообще убить.

Организм человека — почти вода с растворенными солями в ней. Одни говорят: на 60 % из воды, другие — на 99. Оставим это, важно другое: человек электропроводен! То есть, он способен проводить через себя ток. И если этот ток достаточной силы, в организме возникают порой необратимые процессы, ведущие к гибели.

Зачем нужно заземление

Не будем скрупулезно считать, какой силы ток может убить, все равно это достаточно неприятно. Я испытал это на себе, нисколько не совру, не один десяток раз. Причины: по малолетству — незнание, а далее — обычный русский авось и пофигизм.

Исход ситуации, когда человек касается оголенного проводника, находящегося под напряжением, может быть разным. Если представить себе такое, что человек висит в воздухе, ничего более не касаясь, то ничего не происходит. Он остается целехонек и здоровехонек, он даже не поймет, что провод под напряжением. Потому что действует правило: если нет цепи, то нет и тока. К примеру, сидит ворона на проводе — и ничего, жива-здорова, еще и каркает сверху.

Совсем другая ситуация, когда человек стоит босыми ногами на мокрой земле и хватается за провод. Создается замкнутая цепь: силовой трансформатор — провод — человек — земля — и снова трансформатор. Обмотки трансформатора тоже заземлены определенным образом, а земля — прекрасный проводник.

И даже совсем не обязательны босые ноги и мокрая земля. И обувь сырая — тоже проводник, и пол бетонный, и плитка, и даже гидроизоляция гарантий не дает. И вот по этой замкнутой цепи побежали электроны, а у несчастного закатились глаза и пошла клочьями пена изо рта. Хорошо, если он в судорогах отцепился от провода, но чаще всего совсем наоборот: еще больше сжал его скрюченными пальцами. Кошмарная картина.

И воронам тоже несдобровать, если их слишком много на проводах соберется, да еще крыльями начнут размахивать. Я не однажды наблюдал, как от такого вороньего шабаша только перья летят, потому что замыкают они собою два провода, тем самым создавая опять же замкнутую цепь для протекания тока.

У электриков, кстати, в правилах безопасности предусмотрены не только диэлектрические перчатки и изолированный инструмент, а еще и диэлектрические коврики, боты. Эти коврики и эта обувь — дополнительная защита, которая не позволяет создавать замкнутую цепь при случайном касании проводника голой рукой. Короче, нет замкнутой цепи — нет тока.

Читайте также:  Постоянное напряжение роман сенчин

Что нужно заземлять

Все, что выше — лишь преамбула, но теперь мы понимаем, зачем заземление. Оно служит для защиты человека при прикосновении к металлическим частям оборудования, находящегося под напряжением.

Пример: сделал Вася систему отопления в доме, поставил батареи, скрутил/сварил нужные трубы, да встроил еще и электрический котел с электротэнами. Включил — все работает, все прекрасно, Вася ходит, трубы щупает, радуется: тепло!

А в один прекрасный момент (какой уж тут «прекрасный»?) его ТЭН вышла из строя, да замкнула фазу на корпус котла. Батареи и трубы теперь под напряжением, ждут не дождутся, когда кто-нибудь или что-нибудь не создаст цепь для протекания тока. И вот жена Васина пол только что в кухне вымыла да вздумала тряпку на батарею повесить, посушить. Пол сырой, ноги босые, тряпка мокрая. Ох и достанется Васе, если жена жива останется, тут-то и усвоит Вася раз и навсегда, для чего заземление да зачем…

А вот если бы Вася сделал нормальный контур заземления, да котел свой надежно заземлил — ничего бы не было. Говоря простецким языком, ушла бы фаза на землю, ток получился бы огромный, автоматический выключатель не выдержал бы и давно уже отключил бы этот котел. И даже если бы не отключил, то потенциал на батареях да трубах, соединенных с землей, был бы практически нулевой, а жене уж ничего бы не досталось.

Заземлять надо все, что имеет металлический корпус.

Котлы разного рода, даже если греют они не электричеством, а газом. Ведь к ним тоже подводятся провода, питают автоматику. Перетрется где-нибудь от времени фазный провод, или мышь, вечно голодная зараза, изоляцию погрызет — и здрасьте: фаза на корпусе. Станки бытовые разные, инструменты. У обмотки двигателя изоляция нарушилась — опять привет, опять корпус под напряжением. Или насос, к примеру, да мало ли еще чего электрического нагорожено в доме!

А еще нельзя пренебрегать заземлением при использовании бетоносмесителя. Тут уж прямая дорога к беде в случае чего. Работаем с водой, все вокруг сырое, обувь, земля вокруг. Упаси господи!

А возьмем чайник. Чего тут может быть, безвредный такой электроприбор! Корпус пластмассовый, изоляция, как-никак. Но и чайник может оказаться мокрым. Подсунул Вася чайник под кран, налил воды, да неаккуратно налил и на корпус попало. Только у Васи теперь все в ажуре, и третий контакт в евророзетке не пустой висит, а все чин по чину: заземлен. Молодец Вася, все правильно сделал.

Как сделать контур заземления

Это совсем несложно. Ведь для заземления что нужно: организовать так называемый контур из нескольких металлических штырей, вбитых в землю и соединенных меж собой прутом или полосой на сварке. Штыри эти располагаются по периметру дома, таким образом создается как бы защитная зона, в которой выровнен электрический потенциал. Четыре штыря по углам — хорошо. Шесть таких точек — еще лучше. Можно и больше, срок службы увеличится.

Длина штырей — не менее 3-х метров. Диаметр стального штыря — 16 мм или более. Никакой краски на нем не должно быть. Если штырь оцинкованный или медный — допускается 12 мм.

Если грунт податливый, вобьешь их кувалдой в считанные минуты. Не забудь только заострить конец. Концы штырей соедини меж собой по всему периметру стальной полосой сечением не менее 100 кв. мм на сварку. Останется только покрыть полосу горячим битумом, чтоб меньше ржавело. Можно все это заглубить в землю, это допускается.

Сама по себе эта конструкция панацеей не является, ничего не даст, если к ней не подключать ничего. Шинка должна быть в дом введена и на ней в удобном месте должны быть болты приварены, с их помощью и подключаются провода заземления от того же Васиного котла и третий провод евророзеток.

Остается только одно: проверить параметры этого устройства, насколько они отвечают нормативам. Здесь придется обратиться к электрикам, у которых имеются соответствующие приборы для замера сопротивлений, соответствующие методики. Вообще, замеры необходимо проводить периодически, хотя бы 1 раз в 10 лет, потому как штыри в земле со временем ржавеют, электрическое сопротивление увеличивается. Исправить это тоже несложно: вбить рядом еще по штырю и приварить к ним шинку.

Вот и все, и пусть ни одна микроволновка никогда не щиплет твоих домочадцев, ни одна труба или батарея не бьет, молнии держатся подальше от громоотвода. Да, кстати: никогда не используй в качестве заземления трубопроводы центрального отопления или, упаси господь, газовые и канализационные трубы, проложенные в земле. Правилами допускается применять проложенные в земле трубы сети централизованного водоснабжения, но лично я и этого делать не стал бы.

Все это имеет соединения, все это изолируется в земле, утепляется, и никто не производит никаких замеров по электрическому сопротивлению. Если Петя, твой сосед, утверждает, что у него и через эти трубы все работает нормально — это его проблемы, поскольку это еще не значит, что он защищен.

В этой статье читайте про системы заземления для загородного дома: разновидности, отличия и особенности конструкции.

Источник