Меню

Дуговой разряд постоянного тока

Дуга переменного и постоянного тока

Современные дуговые электропечные установки работают с источниками как постоянного, так и переменного токов. Род тока во многом определяет особенности дуги, и условия горения электрической дуги переменного тока несколько отличаются от условий горения дуги постоянного тока.

У электрической дуги постоянного тока один электрод постоянно является катодом , второй — анодом . Во время возбуждения дуги при разведении электродов и разогреве их концов термоэлектронная эмиссия происходит с поверхности обоих электродов. Но

Дуга переменного тока и постоянного тока
Рис.1 Дуга переменного и постоянного тока

испускаемые анодом электроны отбрасываются электрическим полем назад к поверхности анода, а электронам, эмиттированным катодом, сообщается движение к аноду. Пройдя путь, равный длине свободного пробега, эти электроны сталкиваются с электронейтральными частицами и вызывают их ионизацию. Ионизированные частицы также ускоряются электрическим полем и при столкновении ионизируют следующую группу частиц и т. д.

Рис.2 Электрическая дуга в воздухе
а — фотоснимок; б — схема; 1 — катодное пятно, 2 — столб
дуги, 3 — анодное пятно, 4 — ареол дуги

В результате на некотором расстоянии от поверхности катода, равном длине свободного пробега электрона, лавинообразно развивается процесс ионизации. Непосредственно у катода образуется тонкий (порядка 0,1 мкм) слой — катодная область, на одной границе которого находится источник электронов (поверхность катода), 1 на другой — источник положительных ионов. Так как подвижность ионов значительно меньше подвижности электронов, то последние быстро проходят этот слой, а в слое накапливается избыток положительных ионов, образуя пространственный заряд, обусловливающий скачок потенциала. В этой области создаются градиенты напряжения, достигающие 1 МВ/см.

В центре катодной части расположено ярко светящееся катодное пятно. Это участок поверхности катода, через который ток проникает в катод. В результате бомбардировки поверхности катода ускоренными в электрическом поле положительными ионами этот участок катода сильно разогревается. Приносимая ионами энергия расходуется на тепловые потери, испарение материала катода, эндотермические реакции и поддержание термоэлектронной эмиссии. Нейтрализуясь на поверхности катода и оседая на нем, положительные ионы наращивают его, в результате чего торец катода приобретает форму конуса.

Начинающуюся за катодным пространством область интенсивной ионизации называют столбом электрической дуги . В нем образуется такое число заряженных частиц, которое достаточно для переноса через газовый промежуток зарядов, измеряемых силой тока в тысячи и десятки тысяч ампер. Несмотря на огромное число заряженных частиц, дуги (масштаб катодной и анодной областей нов и нейтрального газа в период увеличен) возбуждения дуги так как при ионизации образуется парное число частиц, имеющих разноименные заряды, а количество первичных электронов с нескомплексированным зарядом в общей массе заряженных частиц невелико. Поэтому изменение потенциала в столбе дуги подчиняется линейному закону.

Число разноименно заряженных частиц вновь становится неодинаковым в непосредственной близости от анода, где мала концентрация положительных ионов. Соответственно в анодной области вновь наблюдается скачок потенциала.

Как и на катоде, на аноде выделяется анодное пятно, появляющееся в результате бомбардировки анода электронами. Энергия электронов расходуется на компенсацию тепловых потерь анодом и частично — на выбивание с поверхности анода положительных ионов. В результате потери анодом положительных ионов на его торце образуется кратер, и анод расходуется быстрее катода .

Падение потенциалов в анодной и катодной областях невелико, и в среднем сумма катодного и анодного падений напряжений равна потенциалу ионизации газа , в котором происходит разряд. Основное падение потенциала, равное разности приложенного напряжения и потенциала ионизации, приходится на столб электрической дуги. Это свидетельствует о том, что трансформация электрической энергии в тепловую происходит также в основном в столбе.

Температура является характеристикой внутренней энергии тела или частицы, и чем больше ее энергия, тем выше температура . В разрядном промежутке находятся свободные электроны, ионы и нейтральные частицы. В период возбуждения дуги эти частицы находятся в разном режиме движения и обладают разным запасом энергии, т. е. имеют различную температуру. Преобразование электрической энергии в тепловую происходит в результате увеличения в электрическом поле кинетической энергии заряженных частиц. Наиболее быстро увеличивается скорость и кинетическая энергия электронов, обладающих самой малой удельной (по отношению к величине заряда) массой. Поэтому в период возбуждения дуги температура электронов растет очень быстро.

Получив под действием поля ускорение, электроны сталкиваются с нейтральными частицами и часть энергии передают им. В результате температура электронов понижается, но при этом усиливается движение нейтральных частиц, учащаются их взаимные столкновения и повышается температура газа. Благодаря столкновениям происходит постоянный обмен энергий между частицами, и температура всех составляющих газа выравнивается.

Источник

Электрическая дуга (вольтова дуга, дуговой разряд)

Причины и места возникновения

Электрическая дуга является одной из самых смертоносных и наименее изученных опасностей электроэнергии и преобладает в большинстве отраслей промышленности. Широко признается, что чем выше напряжение электрической системы, тем больше риск для людей, работающих на территории или вблизи проводов и оборудования, находящихся под напряжением.

Тепловая энергия от вспышки дуги, однако, может на самом деле быть больше и возникать чаще при более низких напряжениях с теми же разрушительными последствиями.

Возникновение электрической дуги, как правило, происходит при случайном контакте между токоведущим проводником, таким как контактный провод троллейбусной или трамвайной линии с другим проводником, или заземленной поверхностью.

возникновение электрической дуги

Когда это происходит, возникающий ток короткого замыкания плавит провода, ионизирует воздух и создает огненный канал проводящей плазмы характерной дугообразной формы (отсюда и название), причем температура электрической дуги в ее сердцевине может достигать свыше 20000 °С.

Что же такое электрическая дуга?

По сути, так в обиходе именуют хорошо известный в физике и электротехнике дуговой разряд – вид самостоятельного электроразряда в газе. Каковы же физические свойства электрической дуги? Она горит в широком диапазоне давления газа, при постоянном или переменном (до 1000 Гц) напряжении между электродами в диапазоне от нескольких вольт (сварочная дуга) до десятков киловольт. Максимальная плотность тока дуги наблюдается на катоде (102-108 А/см2), где она стягивается в катодное пятно, очень яркое и малое по размерам. Оно беспорядочно и непрерывно перемещается по всей площади электрода. Температура его такова, что материал катода в нем кипит. Поэтому возникают идеальные условия для термоэлектронной эмиссии электронов в прикатодное пространство. Над ним образуется небольшой слой, заряженный положительно и обеспечивающий ускорение эмитируемых электронов до скоростей, при которых они ударно ионизируют атомы и молекулы среды в межэлектродном промежутке.

температура электрической дуги

Такое же пятно, но несколько большее и малоподвижное, формируется и на аноде. Температура в нем близкая к катодному пятну.

Если ток дуги порядка нескольких десятков ампер, то из обоих электродов вытекают с большой скоростью нормально к их поверхностям плазменные струи или факелы (см. на фото ниже).

При больших токах (100-300 А) возникают добавочные плазменные струи, и дуга становится похожей на пучок плазменных нитей (см. на фото ниже).

Свойства дуги постоянного тока

Дуга может возникать как при постоянном токе-напряжении, так и при переменном. Начнем рассмотрение с постоянки:

Анодная и катодная области

— размер=10-4см; суммарное падение напряжения=15-30В; напряженность=105-106В/см; в катодной области происходит процесс ударной ионизации из-за высокой напряженности, образовавшиеся в результате ионизации электроны и ионы образуют плазму дуги, которая обладает высокой проводимостью, данная область отвечает за разжигание дуги.

— падение напряжения пропорционально длине дуги; плотность тока порядка 10кА на см2, за счет чего и температура порядка 6000К и выше. В данной области дуги происходят процессы термоионизации, данная область отвечает за поддержание горения.

ВАХ дугового разряда постоянного тока

Эта кривая соответствует кривой 3 на самом верхнем рисунке. Тут есть:

  • Uз — напряжение зажигания
  • Uг — напряжение гашения

Если ток уменьшить от Io до 0 мгновенно, то получится прямая, которая лежит снизу. Эти кривые характеризуют дуговой промежуток как проводник, показывают какое напряжение нужно приложить, чтобы создать в промежутке дугу.

Чтобы погасить дугу постоянного тока, необходимо, чтобы процессы деионизации преобладали над процессами ионизации.

  • можно определить из ВАХ дуги
  • активное, независимо от рода тока
  • переменная величина
  • падает с ростом тока

Если разорвать цепь амперметра под нагрузкой, то тоже можно увидеть дугу.

Как проявляет себя дуга в электрооборудовании

Как было сказано выше, катализатором ее возникновения является сильное тепловыделение в катодном пятне. Температура электрической дуги, как уже упоминалось, может достигать 20 000 °С, примерно в четыре раза выше, чем на поверхности солнца. Этот зной может быстро расплавить или даже испарить медь проводников, которая имеет температуру плавления около 1084 °С, намного ниже, чем в дуге. Поэтому в ней часто образуются пары меди и брызги расплавленного металла. Когда медь переходит из твердого состояния в пар, она расширяется в несколько десятков тысяч раз от своего первоначального объема. Это эквивалентно тому, что кусочек меди в один кубический сантиметр изменится до размера 0,1 кубометра в доли секунды. При этом возникнет давление высокой интенсивности и звуковые волны, распространяющиеся вокруг с большой скоростью (которая может быть свыше 1100 км в час).

Читайте также:  До скольки падает сила тока при зарядке аккумулятора

свойства электрической дуги

Строение и температура сварочной дуги

Разогреть металл до температуры плавления за очень короткое время можно, но для этого потребуется мощная электрическая дуга. Основные ее характеристики – вольтаж, ампераж и плотность потока заряженных частиц. Как электротехническое явление дуговой столб представляет собой проводник между полярными полюсами, состоящий из газовой среды. При этом он обладает большим сопротивлением и способен светиться.

Детальный анализ построения дуги помогает разобраться с течением температурного воздействия на металл. Сравнительно небольшая длина электрической дуг – 5 см, которые состоят из трех зон:

  • собственно, столб – это видимая светящаяся часть;
  • катодная – 1 микрон;
  • анодная – 10 микрон.

Поток свободных электронов определяет температуру сварочной дуги. Они формируются на катоде, который нагревается до 38% от температуры плазмы. В газовой среде отрицательные частички – электроны двигаются по направлению к аноду, в то время как положительные элементы направляются к катоду. Столб лишен какого-либо заряда и все время остается нейтральным.

Температура частиц внутри достигает 10 000 градусов Цельсия. Воздействуя на металл, они разогревают его до 2350 градусов. Точка входа электронов среди специалистов называется анодным пятном. По сравнению с катодным оно имеет температуру на 6% выше. Поскольку плазма генерирует ультрафиолетовые, световые и инфракрасные волны, то она находится в видимом для человека спектре. Но важно учесть, что данные волны вредны для человека: и для кожи, и для глаз. Поэтому для сварщиков были разработаны специальные средства защиты.

Воздействие электрической дуги

Тяжелые травмы, и даже со смертельным исходом, при ее возникновении могут получить не только лица, работающие на электрооборудования, но и люди, находящиеся поблизости. Дуговые травмы могут включать в себя внешние ожоги кожи, внутренние ожоги от вдыхания горячих газов и испаренного металла, повреждения слуха, зрения, такие как слепота от ультрафиолетового света вспышки, а также многие другие разрушительные повреждения.

При особо мощной дуге может также произойти такое явление, как ее взрыв, создающий давление более 100 килопаскалей (кПа) с выбросом частиц мусора, подобных шрапнели, со скоростью до 300 метров в секунду.

Лица, перенесшие воздействия электрического тока электрической дуги, могут нуждаться в серьезном лечения и реабилитации, а цена их травм может быть экстремальной — физически, эмоционально и финансово. Хотя законодательство требует от предприятий проведения оценки рисков для всех видов трудовой деятельности, однако риск поражения электрической дугой часто упускается из виду, потому что большинство людей не знают, как оценивать и эффективно управлять этой опасностью. Защита от воздействия электрической дуги предполагает использование целого комплекса средств, включая применение при работе с электрооборудованием, находящимся под напряжением, специальных электрозащитных средств, спецодежды, а также самого оборудования, прежде всего высоко- низковольтных коммутационных электроаппаратов, сконструированных с применением средств гашения дуги.

напряжение электрической дуги

Виды сварочной дуги

Классифицируется сварочная дуга по нескольким параметрам. В зависимости от пространственного положения электрода и типу тока она бывает:

  • прямого действия. Разряд располагается перпендикулярно по отношению к рабочей поверхности и параллельно относительно электрода;
  • косвенного действия. Разряд образуется между электродом, который располагается относительно рабочей поверхности под углом 40-60 градусов и самим металлом.

По составу плазменный столб делится на:

  • открытый. Образуется в атмосферных газах. Питающей средой являются компоненты, испаряемые из обмазки и заготовки;
  • закрытый. Генерируется под флюсом при условии присутствия газообразной фазы, которая получается из частиц, испаряемых от металла, электрода и компонентов флюса;
  • с подачей инертного газа или другой защитной смеси.

Сварочная дуга отличается и в зависимости от применяемого расходного материала. В работах используются электроды:

  • тугоплавкие из вольфрама;
  • графитовые или угольные;
  • стальные с обмазкой, содержащей ионизирующие включения.

В зависимости от времени воздействия принято различать дугу постоянную и импульсную.

Дуга в электрических аппаратах

В этом классе электротехнических устройств (автоматические выключатели, контакторы, магнитные пускатели) борьба с данным явлением имеет особое значение. Когда контакты выключателя, не оборудованного специальными устройствами для предотвращения дуги, размыкаются, то она обязательно зажигается между ними.

В момент, когда контакты начинают отделяться, площадь последних уменьшается быстро, что приводит к увеличению плотности тока и, следовательно, к повышению температуры. Выделяемого тепла в промежутке между контактами (обычная среда масло или воздух) достаточно для ионизации воздуха или испарения и ионизации масла. Ионизированный воздух или пар действует как проводник для тока дуги между контактами. Разность потенциалов между ними весьма мала, но ее достаточно для поддержания дуги. Следовательно, ток в цепи остается непрерывным тех пор, пока дуга не устранена. Она не только задерживает процесс прерывания тока, но также генерирует огромное количество теплоты, которое может привести к повреждению самого выключателя. Таким образом, главная проблема в выключателе (прежде всего высоковольтном) – это гашение электрической дуги в кратчайшие сроки для того, чтобы выделяемое в ней тепло не могло достичь опасного значения.

воздействие электрической дуги

Факторы поддержания дуги между контактами выключателей

К ним относятся:

1. Напряжение электрической дуги, равное разности потенциалов между контактами.

2. Ионизированные частицы между ними.

Принимая это, отметим дополнительно:

  • Когда между контактами имеется небольшой промежуток, даже небольшой разности потенциалов достаточно для поддержания дуги. Одним из способов ее гашения является разделение контактов на такое расстояние, что разность потенциалов становится недостаточной для поддержания дуги. Тем не менее этот метод является практически неосуществимым в высоковольтном оборудовании, где может потребоваться разделение на многие метры.
  • Ионизированные частицы между контактами, как правило, поддерживают дугу. Если ее путь деионизирован, то процесс гашения будет облегчен. Это может быть достигнуто путем охлаждения дуги или удаления ионизированного частиц из пространства между контактами.
  • Есть два способа, посредством которых осуществляется защита от электрической дуги в выключателях:

— метод высокого сопротивления;

— метод нулевого тока.

Гашение дуги увеличением ее сопротивления

В этом методе сопротивление на пути дуги растет с течением времени так, что ток уменьшается до значения, недостаточного для ее поддержания. Следовательно, он прерывается, и электрическая дуга гаснет. Основной недостаток этого метода состоит в том, что время гашения достаточно велико, и в дуге успевает рассеиваться огромная энергия.

защита от электрической дуги

Сопротивление дуги может быть увеличена путем:

  • Удлинения дуги – сопротивление дуги прямо пропорциональна ее длине. Длина дуги может быть увеличена за счет изменения зазора между контактами.
  • Охлаждением дуги, точнее среды между контактами. Эффективное охлаждение обдувом должно быть направлено вдоль дуги.
  • Помещением контактов в трудноионизируемую газовую среду (газовые выключатели) или в вакуумную камеру (вакуумные выключатели).
  • Снижением поперечного сечения дуги путем ее пропускания через узкое отверстие, или снижением площади контактов.
  • Разделением дуги — ее сопротивление может быть увеличено путем разделения на ряд небольших дуг, соединенных последовательно. Каждая из них испытывает действие удлинения и охлаждения. Дуга может быть разделена путем введения некоторых проводящих пластин между контактами.

Что такое сварочная дуга

Генерируемая сварочным аппаратом электрическая дуга представляет собой ни что иное, как состоящий из ионизированных частиц проводник. Он существует в определенном временном промежутке благодаря тому, что поддерживается электрическим полем. Такой разряд образуется в способной к ионизации газовой среде, характеризуется непрерывной формой и высокой температурой.

В учебных пособиях по сварочному делу данное явление определяется как электрический разряд в плазме длительного характера. Плазма является смесью защитных, ионизированных атмосферных газов в сочетании с испарениями от металлов, которые образуются под воздействием высокой температуры.

Гашение дуги методом нулевого тока

Этот метод используется только в цепях переменного тока. В нем сопротивление дуги сохраняется низким, пока ток не снижается до нуля, где она гаснет естественным путем. Ее повторное зажигание предотвращается несмотря на увеличение напряжения на контактах. Все современные выключатели больших переменных токов используют этот метод гашения дуги.

Читайте также:  Подключение понижающего трансформатора тока

В системе переменного тока последний падает до нуля после каждого полупериода. В каждое такое обнуление дуга гаснет на короткое время. При этом среда между контактами содержит ионы и электроны, так что ее диэлектрическая прочность небольшая и может быть легко разрушена растущим напряжением на контактах.

Если это происходит, электрическая дуга будет гореть в течение следующего полупериода тока. Если сразу же после его обнуления диэлектрическая прочность среды между контактами растет быстрее, чем напряжение на них, то дуга не зажжется и ток будет прерван. Быстрое увеличение диэлектрической прочности среды вблизи нуля тока может быть достигнуто путем:

  • рекомбинации ионизированных частиц в пространстве между контактами в нейтральные молекулы;
  • удалением ионизированных частиц прочь и заменой их нейтральными частицами.

Таким образом, реальной проблемой в прерывании переменного тока дуги является быстрая деионизация среды между контактами, как только ток становится равным нулю.

Область применения

Сварочная дуга применяется в обыкновенной ручной дуговой сварке, которая на данный момент является наиболее простым методом стандартного сваривания. Здесь она защищается обмазкой электродов, которая при сгорании образует газовые испарения, препятствующие проникновению посторонних элементов внутрь ванны расплавленного металла.

Также дуга используется в полуавтоматической газовой сварке. Здесь используется сварочная электрическая дуга, которая подается не на обыкновенный электрод, а на неплавкий вольфрамовый. Соответственно, расплавления металла идет не с одного из выходов, как это было в предыдущем методе. На дугу подается сварочная проволока, которая расплавляет материал.

Еще одним вариантом являются автоматы. Они проще в создании, чем газовые, так что получили широкое распространение в промышленности. Они могут быть как с плавкими, так и с неплавкими электродами. С одной установки может зажигаться несколько электродуг, если они имеют многопостовую конструкцию.

В ручной дуговой сварке идет работа с обыкновенными конструкционными сталями. Иногда пробуют сваривать цветные металлы, но это сложно и не всегда успешно. Лучше дуга проявляет себя при защите газа. Она оказывается более стабильной при горении, а также позволяет создавать качественные надежные швы.

Способы деионизация среды между контактами

1. Удлинение зазора: диэлектрическая прочность среды пропорциональна длине зазора между контактами. Таким образом, при быстром размыкании контактов может быть достигнута и более высокая диэлектрическая прочность среды.

2. Высокое давление. Если оно в непосредственной близости от дуги, увеличивается, плотность частиц, составляющих канал дугового разряда, также растет. Повышенная плотность частиц приводит к высокому уровню их деионизации и, следовательно, диэлектрическая прочность среды между контактами увеличивается.

3. Охлаждения. Естественная рекомбинация ионизированных частиц происходит быстрее, если они остывают. Таким образом, диэлектрическая прочность среды между контактами может быть увеличена путем охлаждения дуги.

4. Эффект взрыва. Если ионизированные частицы между контактами сметены прочь и заменены неионизированными, то диэлектрическая прочность среды может быть увеличена. Это может быть достигнуто с помощью газового взрыва, направленного в зону разряда, или впрыскиванием масла в межконтактное пространство.

В таких выключателях в качестве среды гашения дуги используется газ гексафторид серы (SF6). Он имеет сильную тенденцию поглощать свободные электроны. Контакты выключателя открываются в потоке высокого давления SF6) между ними (см. рисунок ниже).

гашение электрической дуги

Газ захватывает свободные электроны в дуге и формирует избыток малоподвижных отрицательных ионов. Число электронов в дуге быстро сокращается, и она гаснет.

Источник



Дуговой разряд постоянного тока

date image2020-06-08
views image68

facebook icon vkontakte icon twitter icon odnoklasniki icon

Участие в использовании метода нахождения анализируемого вещества в источнике света при проведении химического анализа.

Дуговой разряд постоянного тока

Дуговой разряд — самостоятельный электрический разряд в газе, горящий практически при любых давлениях, превышающих 10 -2 -10 -4 мм. рт. ст., при постоянной или меняющейся с низкой частотой (до 103Гц) разности потенциалов между электродами и отличающийся высокой плотностью тока на катоде и низким катодным падением потенциала. При дуговом разряде ток на катоде стянут в малое очень яркое катодное пятно, беспорядочно перемещающееся по всей поверхности катода.

Температура поверхности в пятне достигает величины температуры кипения(или возгонки) материала катода. Поэтому значительную (иногда главную) роль в катодном механизме переноса тока играет термоэлектронная эмиссия.

Над катодным пятном образуется слой положительного объѐмного заряда, обеспечивающего ускорение эмитируемых электронов до энергий, достаточных для ударной ионизации атомов и молекул среды.

Нагретый до высокой температуры и ионизованный газ в столбе находится в состоянии плазмы. Выделяющаяся джоулева теплота восполняет все потери энергии из столба плазмы, поддерживая неизменным её состояние.

Для спектрально-аналитических целей преимущественно используют дугу низкого напряжения между угольными (графитовыми) электродами (ток– 5-15 А, питающее напряжение – 220 В, ток ограничивают балластным сопротивлением RБ).

В методах спектрального анализа электрический разряд постоянного тока является одним из первых источников света. Он не утратил своего значения в настоящее время и широко применяется для качественного и количественного анализа порошкообразных материалов – руд, минералов, особо чистых веществ и др.

В дуге постоянного тока возбуждаются практически все элементы, за исключением трудновозбудимых, например, инертных газов.

Рисунок 1 – Схема дуги постоянного тока

На рисунке 1 показана схема дуги постоянного тока. Зажженный разряд поддерживается за счет термоэлектронной эмиссии с поверхности раскаленного катода. Падение напряжения на электродах обычно составляет 30–70 В и зависит от многих факторов: материала электрода, силы тока через дугу, дугового промежутка, состава и давления атмосферы. Максимальное падение напряжения наблюдается при использовании угольных электродов; введение в дуговой разряд легко ионизующихся элементов снижает напряжение. В рабочем режиме сила тока, питающего дугу, изменяется от нескольких единиц до нескольких десятков ампер в зависимости от поставленной задачи.

При использовании дуги постоянного тока навеску пробы помещают в канал электрода из угля или графита, испарение вещества происходит за счет теплообмена между материалом электрода и веществом. Температура электрода зависит от многих факторов: теплопроводности материала, его конфигурации, электрических параметров дугового разряда и определяется общим балансом мощности для электрода.

Максимальная температура дуги между угольными электродами – около 7000 °К, между железными или медными – 5500 °К.

Как уже отмечалось, основным механизмом испарения пробы из канала электрода является термическое парообразование вещества в результате передачи тепла от стенок электрода к пробе. Кинетика парообразования элементов определяется температурой электрода, теплофизическими свойствами пробы. Испарение носит фракционный характер. Так как температура анода выше температуры катода, то испарение пробы чаще всего ведут из канала анода.

Детальное изучение фракционного испарения из канала электрода позволило составить так называемые ряды летучести для элементов, находящихся в различных химических формах. Эти сведения очень важны при анализе проб сложного состава и использовании дуги в качестве источника света.

Твердые пробы вводят в канал нижнего электрода, которым чаще всего является стержень из спектрально чистого графита. При подсоединении нижнего электрода к положительному полюсу источника тока на его конце получают особо высокую температуру, достаточную для испарения даже труднолетучих соединений. Ввиду хорошего испарения исследуемых веществ в дуге постоянного тока достигается чрезвычайно высокая чувствительность определения (что особенно ценно при анализе следов) при более или менее хорошей воспроизводимости результатов измерений. Жидкие пробы в плазму дуги вводят в виде аэрозоля. Стабилизированные дуговые разряды можно использовать для количественного определения трудновозбуждаемых элементов так же хорошо, как газовое пламя для определения легковозбуждаемых элементов.

Дуга постоянного тока является нестабильным источником света. Для ее стабилизации и достижения лучших метрологических характеристик используются разные приемы:

Внесение спектроскопических буферов и добавок, позволяющих изменять температуру и скорость испарения отдельных компонентов пробы.

Стабилизация путем обдува инертным газом, применения магнитного поля и др.

Наиболее эффективно применение дуги постоянного тока при определении малых количеств тугоплавких соединений.

Для ряда элементов абсолютные пределы обнаружения равны 10-7–10-9 г., однако погрешность определения при этом может достигать 20 – 30%.

Источник

Что такое электрическая дуга, как она возникает и где применяется?

Наблюдать искровые разряды приходилось каждому, в том числе и людям, далёким от познаний в электротехнике. Гигантскими искровыми разрядами сопровождаются грозы. Высвобождение огромной энергии, сконцентрированной в электрическом разряде молнии (см. рис. 1), сопровождается ослепительной вспышкой раскалённого ствола. Одним из видов искровых разрядов, созданных человечеством, является дуговой разряд, или попросту, электрическая дуга.

Читайте также:  Преобразование звезды в треугольник сила тока

На сегодняшний день причины возникновение и свойства электрической дуги детально изучено наукой. Физики установили, что в области её горения возникает огромная концентрация зарядов, которые образуют плазму ствола. Температуры столба достигает нескольких тысяч градусов.

Что такое электрическая дуга?

Это загадочное явление впервые описал русский учёный В. Петров. Он создавал электрическую дугу, используя батарею, состоящую из тысяч медных и цинковых пластин. Изучая процесс зажигания дуги постоянным током, учёный пришёл к выводу, что воздушный промежуток между электродами при определённых условиях приобретает электропроводимость.

Одним из условий возникновения электрического пробоя является достаточно высокая разность потенциалов на концах электродов. Чем выше напряжение, тем больший газовый промежуток может преодолеть разряд. При этом образуется электропроводный газовый столб, который сильно разогревается во время горения дуги.

Возникает резонный вопрос: «Почему воздух, являющийся отличным изолятором в обычном состоянии, вдруг становится проводником?».

Объяснение может быть только одно – в стволе дуги образуются носители зарядов, способные перемещаться под действием электрического поля. Поскольку в воздухе, в отличие от металлов, нет свободных электронов, то вывод напрашивается только один – ионизация газов (см. рис. 3). То есть, запуск процесса насыщения газа ионами, являющимися носителями электрического заряда.

Физика электрической дуги

Рис. 3. Физика электрической дуги

Ионизация воздуха происходит под действием различного вида излучений, включая рентгеновское и космическое облучение. Поэтому в воздухе всегда находятся небольшое количество ионов. Но поскольку ионы почти сразу рекомбинируются (превращаются в нейтральные атомы и молекулы), то концентрация заряженных частиц всегда мизерная. Получить вспышку дуги при такой концентрации невозможно.

Для возникновения дугового разряда нужен лавинообразный процесс ионизации. Его можно вызвать путём сильного нагревания газа, которое происходит при зажигании.

При размыкании контактов происходит эмиссия электронов, скапливающихся на очень маленьком пространстве. Под действием напряжённости электрического поля отрицательные заряды устремляются к электроду с положительным знаком.

При достижении напряжения пробоя, между электродами возникает искровой разряд, разогревающий область между электродами. Если ток достаточно большой, то количество тепла будет достаточно для запуска лавинообразного процесса ионизации воздуха.

На участке, который называют дуговым промежутком, образуется ствол, называемый столбом дуги и состоящий из горячей проводимой плазмы. По этому стволу протекает ток, поддерживающий разогревание плазмы. Так происходит процесс зажигания дугового разряда.

Насыщение плазменного ствола ионами разных знаков приводит к значительному увеличению плотности тока, а также к рекомбинации части ионов. Разогревание плазмы приводит также к увеличению давления в стволе. Поэтому часть ионов улетучивает в окружающее пространство.

Если не поддерживать образование новых зарядов, то произойдёт гашение дуги. Как мы уже выяснили, устойчивому горению сопутствуют 2 фактора: наличие напряжения между электродами и поддержание высокой температуры плазмы. Исключение одного из них, приведёт к гашению дуги.

Таким образом, можем сформулировать определение электрической дуги. А именно электрическая дуга — это вид искрового разряда, сопровождающегося большой плотностью тока, длительностью горения, малым падением напряжения на промежутке ствола, характеризующегося повышенным давлением газа, в котором поддерживается высокая температура.

Электрическая дуга отличается от обычного разряда большей длительностью горения.

Строение

Электрическая дуга состоит из трёх основных зон:

  • катодной;
  • анодной;
  • плазменного столба.

В сварочных дугах размеры катодной и анодной зоны незначительные, по сравнению с длиной столба. Толщина этих зон составляет тысячные доли миллиметра. В зоне катодного падения напряжения (на конце отрицательного электрода) наблюдается наличие катодных пятен, которые образуются в результате сильного нагревания.

На рисунке 4 изображена схема строения дуги, создаваемой сварочным аппаратом.

Строение сварочной дуги

Рис. 4. Строение сварочной дуги

Обратите внимание: с целью достижения наглядности, на картинке сильно преувеличены электродные зоны. В действительности их толщина измеряется в микронах.

Свойства

Высокая плотность тока в стволе электрической дуги определяет её главные свойства:

  1. Чрезвычайно высокую температуру плазменного ствола и околоэлектродных зон.
  2. Длительное горение, при поддержании условий образования ионов.

Эти свойства необходимо учитывать при борьбе с возникновением электрической дуги, так и при её применении в некоторых сферах.

Полезное применение

Как это ни странно, но физики нашли применение этому электрическому явлению ещё на этапе развития науки об электричестве. Пример тому – лампочка Яблочкова. Она состояла из двух угольных электродов, между которыми зажигалась электрическая дуга.

У этой лампы были два недостатка. Электроды быстро изнашивались (выгорали), а спектр света смещался в ультрафиолетовую зону, что негативно влияло на зрение. По этим причинам дуговые лампы не нашли широкого применения и их быстро вытеснили лампы накаливания, существующие до сегодняшнего дня.

Исключение составляют дугоразрядные лампы, а также мощные прожектора, используемые преимущественно в военных целях.
Дуговой разряд стал массово применяться на практике с момента изобретения сварочного аппарата. Дуговую сварку применяют для сварки металлов. (см. рис. 5)

Дуговая сварка

Рис. 5. Дуговая сварка

Используя проводимость плазмы, включая в сварочную цепь специальные сварочные электроды, достигают высокой температуры в сосредоточенном пятне. Регулируя сварочный ток, сварщик имеет возможность настроить аппарат на нужную температуру дугового разряда. Для защиты ствола от тепловых потерь, металлические электроды покрыты специальной смесью, обеспечивающей стабильность горения.

Электрическую дугу применяют в доменных печах для плавки металлов. Дуговая плавка удобна тем, что можно регулировать её температуру путём изменения параметров тока.

Наряду с полезным применением, в электротехнике часто приходится бороться с дуговыми разрядами. Не контролированный дуговой разряд может нанести существенный вред на линиях электропередач, в промышленных и бытовых сетях.

Дуговой разряд на ЛЭП

Рис. 6. Дуговой разряд на ЛЭП

Причины возникновения

Исходя из определения, можем назвать условия возникновения электрической дуги:

  • наличие разнополярных электродов с большими токами;
  • создание искрового разряда;
  • поддержание напряжения на электродах;
  • обеспечение условий для сохранения температуры ствола.

Искровой разряд возникает в двух случаях: при кратковременном соприкосновении электродов или при приближении к параметрам пробоя. Мощный электрический пробой всегда зажигает ствол.

При сохранении оптимальной длины дуги температура плазмы поддерживается самостоятельно. Однако, с увеличением промежутка между электродами, происходит интенсивный теплообмен ствола с окружающим воздухом. В конце концов, в стволе, вследствие падения температуры, образование ионов лавинообразно прекратится, в результате чего произойдёт гашение пламени.

Пробои часто случаются на высоковольтных ЛЭП. Они могут привести к разрушению изоляторов и к другим негативным последствиям. Длинная электрическая дуга довольно быстро гаснет, но даже за короткое время горения её разрушительная сила огромна.

Дуга имеет склонность к образованию при размыкании контактов. При этом контакты выключателя быстро выгорают, электрическая цепь остаётся замкнутой до момента исчезновения ствола. Это опасно не только для сетей, но и для человека.

Способы гашения

Следует отметить, что гашение дуги происходит и по разным причинам. Например, в результате остывания столба, падения напряжения или когда воздух между электродами вытесняется сторонними испарениями, препятствующими ионизации.

С целью недопущения образования дуг на высоковольтных проводах ЛЭП, их разносят на большое расстояние, что исключает вероятность пробоя. Если же пробой между проводами всё-таки случится, то длинный ствол быстро охладится и произойдёт гашение.

Для охлаждения ствола его иногда разбивают на несколько составляющих. Данный принцип часто используют в конструкциях воздушных выключателей, рассчитанных на напряжения до 1кВ.

Некоторые модели выключателей состоят из множества дугогасительных камер, способствующих быстрому охлаждению.

Быстрой ионизации можно достигнуть путём испарения некоторых материалов, окружающих пространство подвижных ножей. Испарение под высоким давлением сдувает плазму ствола, что приводит к гашению.

Существуют и другие способы: помещение контактов в масло, автодутьё, применение электромагнитного гашения и др.

Воздействие на человека и электрооборудование

Электрическая дуга представляет опасность для человека своим термическим воздействием, а также ультрафиолетовым действием излучающего света. Огромную опасность таит в себе высокое напряжение переменных токов. Если незащищённый человек окажется на критически близком расстоянии от токоведущих частей приборов, может произойти пробой электричества с образованием дуги. Тогда на тело, кроме воздействия тока, окажет действие термической составляющей.

Распространение дугового разряда по конструктивным частям оборудования грозит выжиганием электронных элементов, плат и соединений.

Источник