Меню

Два источника тока последовательно с резистором

Последовательное соединение резисторов. Схема соединения и примеры расчета

Во многих электрических схемах мы можем обнаружить последовательное и параллельное соединение резисторов. Разработчик схем может, например, объединить несколько резисторов со стандартными значениями (E-серии), чтобы получить необходимое сопротивление.

Последовательное соединении резисторов — это такое соединение, при котором ток, протекающий через каждый резистор одинаков, поскольку имеется только одно направление для протекания тока. В тоже время падение напряжения будет пропорционально сопротивлению каждого резистора в последовательной цепи.

Последовательное соединение резисторов

На рисунке ниже, резисторы R1, R2 и R3 связаны друг с другом последовательно между точками А и В с общим током I, который протекает через них.

Эквивалентное сопротивление нескольких последовательно соединенных резисторов можно определить по следующей формуле:

То есть, в нашем случае общее сопротивление цепи будет равно:

R = R1 + R2 + R3 = 1 кОм + 2 кОм + 6 кОм = 9 кОм

Таким образом, мы можем заменить эти три резистора всего лишь одним «эквивалентным» резистором, который будет иметь значение 9 кОм.

Там, где четыре, пять или более резисторов связаны вместе в последовательную цепь, общее или эквивалентное сопротивление всей цепи так же будет равно сумме сопротивлений отдельных резисторов.

Следует отметить, что общее сопротивление любых двух или более резисторов, соединенных последовательно всегда будет больше, чем самое большое сопротивление резистора входящего в эту цепь. В приведенном выше примере R = 9 кОм, тогда как наибольшее значение резистора только 6 кОм (R3).

Напряжение на каждом из резисторов, соединенных последовательно, подчинено другому правилу, нежели протекающий ток. Как известно, из приведенной выше схемы, что общее напряжение питания на резисторах равно сумме разности потенциала на каждом из них:

Используя закон Ома , напряжение на отдельных резисторов может быть вычислена следующим образом:

В итоге сумма разностей потенциалов на резисторах равна общей разности потенциалов всей цепи, нашем примере это 9В.

В частности, ряд резисторов, соединенных последовательно, можно рассматривать как делитель напряжения:

Пример № 1

Используя закон Ома, необходимо вычислить эквивалентное сопротивление серии последовательно соединенных резисторов (R1. R2, R3), а так же падение напряжения и мощность для каждого резистора:

Все данные могут быть получены с помощью закона Ома и для лучшего понимания представлены в виде следующей таблицы:

Пример № 2

Необходимо рассчитать падение напряжения на выводах «А» и «В»:

а) без подключенного резистора R3

б) с подключенным резистором R3

Как вы можете видеть, выходное напряжение U без нагрузочного резистора R3, составляет 6 вольт, но то же выходное напряжение при подключении R3 становится всего лишь 4 В. Таким образом, нагрузка, подключенная к делителю напряжения, провоцирует дополнительное падение напряжение. Данный эффект снижения напряжения может быть компенсирован с помощью потенциометра установленного вместо постоянного резистора, с помощью которого можно скорректировать напряжение на нагрузке.

Онлайн калькулятор расчета сопротивления последовательно соединенных резисторов

Чтобы быстро вычислить общее сопротивление двух и более резисторов, соединенных последовательно, вы можете воспользоваться следующим онлайн калькулятором:

Подведем итог

Когда два или несколько резисторов соединены вместе (вывод одного соединяется с выводом другого резистора) — то это последовательное соединение резисторов. Ток, протекающий через резисторы имеет одно и тоже значение, но падение напряжения на них не одно и то же. Оно определяется сопротивлением каждого резистора, которое рассчитывается по закону Ома (U = I * R).

Источник

Последовательное соединение источников электрической

Задачи анализа электрических цепей

Все реальные электротехнические устройства работают в замкнутых электрических цепях, состоящих из источников электрической энергии, потребителей (приемников электрической энергии), соединительных проводов, приборов и аппаратуры, с помощью которых осуществляется контроль и управление режимами работы цепи или ее отдельных элементов. Работу электрических устройств оценивают по величинам тока, напряжения, мощности. Поэтому главной задачей анализа цепей является установление связи между напряжениями, токами и параметрами цепи. Под параметрами цепей постоянного тока в установившемся режиме понимают сопротивления или проводимости элементов цепи.

Электрические цепи современных электрорадиотехнических устройств весьма разнообразны. Для анализа режима их работы необходимо знать общие свойства цепей и уметь производить расчет цепей, в зависимости от их структуры, наиболее целесообразными методами. Под расчетом цепей будем подразумевать, как правило, определение токов в элементах электрической цепи (в ветвях сложной цепи) при известных значениях параметров цепи и заданных источниках электрической энергии.

Расчет простых цепей

К простым цепям относятся цепи, которые путем простых преобразований могут быть сведены к одноконтурной цепи.

Цепь с последовательно соединенными приемниками электрической энергии

1. Соединение элементов цепи называется последовательным, если к концу первого элемента подключено начало второго, к концу второго — начало третьего и т. д. При последовательном соединении через все элементы поочередно происходит один и тот же ток I. То второму закону Кирхгофа напряжение на зажимах цепи U равно сумме падений напряжений на последовательно соединенных участках цепи

Рис. 13

U=

отсюда U=I( )=I*Rэ 2.1

Rэ= —общее сопротивление всей цепи.

На основании выражения (2.1) ток в цепи равен

I= 2.2

Падения напряжения на отдельных участках цепи пропорциональны сопротивлениям этих участков

Общая мощность цепи равна сумме мощностей, потребляемых последовательно соединенными приемниками

P= или в общем виде:

P= 2.3

2. Ток всей цепи и напряжения на отдельных участках последовательной цепи зависят от сопротивления каждого элемента. При изменении сопротивления одного элемента будут изменяться напряжения на всех элементах, так как изменяется величина тока в цепи. Так при увеличении сопротивления одного элемента ток в цепи будет уменьшаться, падения напряжения на остальных элементах цепи также будут уменьшаться, а напряжения на элементе с возрастающим сопротивлением—увеличиваться. Эта взаимозависимость режимов работы последовательно соединенных элементов является характерным недостатком последовательной цепи. Последовательное соединение приемников используют лишь в тех случаях, когда их номинальные напряжения ниже напряжения сети. В этом случае последовательно соединять целесообразно приемники с одинаковыми номинальными напряжениями.

Читайте также:  Расчет тока короткого замыкания трансформатора пример расчета

В радиотехнической аппаратуре широко применяется последовательное соединение резисторов в так называемых делителях напряжения. Например, соединив три резистора последовательно (рис. 14), мы можем с различных точек цепи снимать различные напряжения. Последовательное соединение применяется также для включения различных вспомогательных приборов и устройств, не являющихся потребителями энергии (амперметр, выключатель, плавкий предохранитель и т, п.).

Рис. 14

Последовательное соединение источников электрической

Энергии

Последовательным соединением источников электрической энергии называется такое соединение, при котором положительный полюс (зажим) одного источника соединяется с отрицательным полюсом (зажимом) второго и т. д. При последовательном соединении источников их электродвижущие силы складываются, следовательно, общая э.д.с. батареи равна сумме э.д.с. отдельных источников. Внутреннее сопротивление последовательно соединенных источников равно сумме внутренних сопротивлений отдельных элементов.

Последовательное соединение источников применяется в том случае, когда необходимо иметь напряжение больше, чем то, которое может обеспечить один источник, а ток потребителя не превышает номинального тока элемента.

Такое соединение источников допускается для однородных элементов (гальванических элементов, аккумуляторов и т. п.), имеющих одинаковые э.д.с. и внутренние сопротивления. Поэтому для батареи

E = n* ; r = n 2.4.

Здесь и — соответственно э.д.с. и внутреннее сопротивление одного элемента n — количество последовательно соединенных элементов.

В некоторых случаях в электрических цепях может встретиться последовательное соединение источников, когда направление их э.д.с. различно (встречное включение). Пусть в схеме рис. 15 два

Рис. 15

источника и включены согласно, а источник — встречно.

Для упрощения схемы все последовательно соединенные источники можно заменить одним эквивалентным источником Е (рис. 16).

Рис. 16

Э.д.с. эквивалентного источника равна алгебраической сумме э.д.с. отдельных элементов: Е = +

Внутреннее сопротивление эквивалентного источника равно арифметической сумме внутренних сопротивлений заменяемых элементов

При ( + )> направление э.д.с. эквивалентного источника и направление тока в цепи совпадают с направлением э.д.с. и . Элементы и в этом случае работают в режиме источников, а элемент — в режиме потребителя электрической энергии.

Дата добавления: 2016-04-06 ; просмотров: 3543 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник



Последовательное и параллельное соединения источников тока

Дополнительно по теме

2 Электрическое поле

3 Постоянный электрический ток

Последовательное и параллельное соединения источников тока. Правило Кирхгофа

1 Найти разность потенциалов между точками а и b в схеме, изображенной на рис. 118. Э. д. с. источников тока e1= 1 В и e2 =1,3 В, сопротивления резисторов R1 = 10 Ом и R2 = 5 Ом.

Поскольку e2>e1 то ток I будет идти в направлении, указанном на рис. 118, при этом разность потенциалов между точками а и b

2 Два элемента с э. д. с. e1 = 1,5 B и e2 = 2 В и внутренними сопротивлениями r1=0,6 Ом и r2 = 0,4 Ом соединены по схеме, изображенной на рис. 119. Какую разность потенциалов между точками а и b покажет вольтметр, если сопротивление вольтметра велико по сравнению с внутренними сопротивлениями элементов?

Поскольку e2>e1, то ток I будет идти в направлении, указанном на рис. 119. Током через вольтметр пренебрегаем ввиду

того, что его сопротивление велико по сравнению с внутренними сопротивлениями элементов. Падение напряжения на внутренних сопротивлениях элементов должно равняться разности э. д. с. элементов, так как они включены навстречу друг другу:

Разность потенциалов между точками а и b (показание вольтметра)

Последовательное и параллельное соединения источников тока. Правило Кирхгофа

3 Два элемента с э. д. с. e1=1.4B и e2 = 1,1 В и внутренними сопротивлениями r =0,3 Ом и r2 = 0,2 Ом замкнуты разноименными полюсами (рис. 120). Найти напряжение на зажимах элементов. При каких условиях разность потенциалов между точками а и b равна нулю?

4 Два источника тока с одинаковыми э. д. с. e= 2 В и внутренними сопротивлениями r1 =0,4 Ом и r2 = 0,2 Ом соединены последовательно. При каком внешнем сопротивлении цепи R напряжение на зажимах одного из источников будет равным нулю?

Ток в цепи

(рис.361). Напряжения на зажимах источников тока

Решая первые два уравнения при условии V1=0, получим

Условие V2=0 неосуществимо, так как совместное решение первого и третьего уравнений приводит к значению R I1, если R/2+r r. Поэтому ток больше при последовательном соединении.

20 Два элемента с э.д.с. e1=4В и e2 = 2В и внутренними сопротивлениями r1 = 0,25 Ом и r2 = 0,75 Ом включены в схему, изображенную на рис. 130. Сопротивления резисторов R1 = 1 Ом и R2 = 3 Ом, емкость конденсатора С=2 мкФ. Найти заряд на конденсаторе.

21 К батарее из двух параллельно включенных элементов с э.д.с. e1 и e2 и внутренними сопротивлениями r1 и r2 подключен резистор с сопротивлением R. Найти ток I, текущий через резистор R, и токи I1 и I2 в первом и втором элементах. При каких условиях токи в отдельных цепях могут быть равными нулю или изменять свое направление на обратное?

Выберем направления токов, указанные на рис. 366. Для узла b имеем I-I1-I2=0. При обходе контуров abef и bcde по часовой стрелке получим

Из этих уравнений находим

Ток I=0 тогда, когда изменена полярность включения одного из элементов и, кроме того, выполнено условие

а ток I2 = 0 при

Токи I1 и I2 имеют направления, указанные на рис.366, если

Они меняют свое направление при

22 Батарея из n одинаковых аккумуляторов, соединенных в одном случае последовательно, в другом— параллельно, замыкается на резистор с сопротивлением R. При каких условиях ток, текущий через резистор, в обоих случаях будет один и тот же?

Читайте также:  Пример расчета разветвленной цепи постоянного тока

При n(R-r) = R-r. Если R=r, то число элементов произвольно; если R№r, задача не имеет решения (n=1).

23 Батарея из n = 4 одинаковых элементов с внутренним сопротивлением r=2 Ом, соединенных в одном случае последовательно, в другом — параллельно, замыкается на резистор с сопротивлением R=10Ом. Во сколько раз показание вольтметра н одном случае отличается от показания вольтметра в другом случае? Сопротивление вольтметра велико по сравнению с R и r.

где V1 — показание вольтметра при последовательном соединении элементов, V2-при параллельном.

24 Как изменится ток, текущий через резистор с сопротивлением R = 2 Ом, если n =10 одинаковых элементов, соединенных последовательно с этим резистором, включить параллельно ему? Э.д.с. элемента e = 2 В, его внутреннее сопротивление r = 0,2 Ом.

25 Батарея составлена из N=600 одинаковых элементов так, что п групп соединены последовательно и в каждой из них содержится т элементов, соединенных параллельно. Э.д.с. каждого элемента e = 2 В, его внутреннее сопротивление r = 0,4 Ом. При каких значениях n и m батарея, будучи замкнута на внешнее сопротивление R = 0,6 Ом, отдаст во внешнюю цепь максимальную мощность? Найти при этом ток, текущий через сопротивление R.

Общее число элементов N=nm (рис. 367). Ток во внешней цепи

где r/m- внутреннее сопротивление группы из т параллельно соединенных элементов, а nr/m — внутреннее сопротивление n групп, соединенных последовательно. Максимальная мощность (см. задачу 848) отдается во внешнюю цепь при равенстве сопротивления R внутреннему сопротивлению батареи элементов nr/m, т. е.

При этом через сопротивление R течет точек I=46 А.

26 Емкость аккумулятора Qo=80АЧч. Найти емкость батареи из n = 3 таких аккумуляторов, включенных последовательно и параллельно.

При последовательном соединении через все аккумуляторы батареи течет один и тот же ток, поэтому все они разрядятся в течение одного и того же времени. Следовательно, емкость батареи будет равна емкости каждого аккумулятора:

При параллельном соединении n аккумуляторов через каждый из них течет 1/n часть общего тока; поэтому при том же разрядном токе в общей цепи батареи будет разряжаться в n раз дольше, чем один аккумулятор, т. е. емкость батареи в п раз больше емкости отдельного аккумулятора:

Заметим, однако, что энергия

отдаваемая батареей в цепь, и при последовательном и при параллельном соединении n аккумуляторов в n раз больше энергии, отдаваемой одним аккумулятором. Это происходит потому, что при последовательном соединении э. д. с. батареи в n раз больше э. д. с. одного аккумулятора, а при параллельном соединении э.д.с. батареи остается той же, что и для каждого аккумулятора, но Q увеличивается в n раз.

27 Найти емкость батареи аккумуляторов, включенных по схеме, изображенной на рис.131. Емкость каждого аккумулятора Qo=64 АЧч.

Каждая группа из пяти аккумуляторов, включенных последовательно, имеет емкость

Три параллельно включенные группы дают общую емкость батареи

28 Мост для измерения сопротивлений сбалансирован так, что ток через гальванометр не идет (рис. 132). Ток в правой ветви I=0,2 А. Найти напряжение V на зажимах источника тока. Сопротивления резисторов R1 = 2 Ом, R2 = 4 Ом, R3 = 1 Ом.

29 Найти токи, протекающие в каждой ветви цепи, изображенной на рис. 133. Э.д.с. источников тока e1 = 6,5 В и e2 = 3,9 В. Сопротивления резисторов R1=R2=R3=R4=R5=R6=R=10 Ом.

Составляем уравнения Кирхгофа в соответствии с направлениями токов, указанными на рис. 133: I1 + I2 — I3 = 0 для узла b;

I3 — I4 — I5 =0 для узла h; I5 — I1 — I6 = 0 для узла f: при этом

Для контура abfg (обход по часовой стрелке),

Для контура bcdh (обход против часовой стрелки) и

для контура hdef (обход по часовой

стрелке). Решая эту систему уравнений с учетом, что все сопротивления одинаковы и равны R=10 Ом, получим

Отрицательные значения токов I2, I4 и I6 показывают, что при данных э.д.с. источников и сопротивлениях резисторов эти токи текут в стороны, противоположные указанным на рис. 133.

Источник

Параллельное соединение резисторов, а также последовательное

Ни одна электрическая схема не обходится без резисторов. Что это такое, для чего он нужен и какими способами их подключают в электрическую цепь рассмотрим подробно.

Что такое резистор и для чего он нужен

Резистор – пассивный элемент электрической цепи, который поглощает энергию тока и преобразовывает её в тепло за счет сопротивления потоку электронов в цепи.

Зависимость тока от сопротивления описывается законом Ома и рассчитывается по формуле I = U/R.

Свойство резисторов ограничивать ток и снижать напряжение используется во многих электронных устройствах и бытовых приборах.

Справка: Резисторы бывают двух видов – постоянные и переменные, во втором случае сопротивление проводника изменяется механическим путем (вручную).

Последовательное и параллельное соединение резисторов – основные способы соединения резистивных элементов.

Внимание! Резистор не имеет полярности, длина выводов с обоих концов одинакова, поэтому для лучшего понимания сути соединения предлагается называть выводы:

  1. С правого края – правый.
  2. С левого края – левый.

Понятие параллельного подключения резисторов

При параллельном подключении правые выводы всех резисторов соединяются в один узел, левые – во второй узел.

паралельное-соединение-резисторов

При параллельном включении резисторов ток в цепь разветвляется по отдельным ветвям, протекая через каждый элемент – по закону Ома величина тока обратно пропорциональна сопротивлению, напряжение на всех элементах одинаковое.

соединение-резисторов

Справка: Ветвь – фрагмент электрической цепи, содержащий один или несколько последовательно соединенных компонентов от узла до узла.

Последовательное подключение

При последовательном соединении резисторы нужно подключить в цепь друг за другом – правый вывод одного резистора к левому второго, правый второго – к левому третьего и так далее в зависимости от количества соединяемых элементов.

Читайте также:  Электрическая энергия постоянного тока формула

Последовательное подключение резисторов

При последовательном соединении ток, не изменяя своей величины, течет через все резистивные элементы.

Последовательное-подключение-резисторов

Смешанное подключение

При смешанном подключении в одной схеме сочетаются несколько видов соединений – последовательное, параллельное соединение резисторов и их комбинации. Самую сложную электрическую схему, состоящую из источников питания, диодов, транзисторов, конденсаторов и других радиоэлектронных элементов можно заменить резисторами и источниками напряжения, параметры которых изменяются в каждый момент времени. О параллельном соединении резистора и конденсатора читайте тут.

Смешанное подключение-резисторов

Смешанная схема делится на фрагменты, ток и напряжение рассчитывается для каждого отдельно в зависимости от того, как они соединены на выбранном сегменте электрической схемы.

Важно! Для расчета сопротивления резистора в схеме применяют отдельные формулы для каждого конкретного элемента в зависимости от вида соединения.

Что ещё нужно учитывать при подключении резисторов

Важный показатель в работе резистивного элемента мощность рассеивания – переход электрической энергии в тепловую, вызывающую нагрев элемента.

При превышении допустимой мощности рассеивания резисторы будут сильно греться и могут сгореть, поэтому при расчете схем соединения надо учитывать этот параметр – важно знать насколько изменится мощность резистивных элементов при включении в электрическую цепь.

Какая мощность тока при последовательном и параллельном соединении

Определение мощности отдельного резистивного элемента производится по формуле

P = U²/R или P = I²R , которую можно вывести из формулы расчета мощности электрической цепи P = UI по закону Ома.

Мощность при параллельном соединении

Рассчитав сопротивление каждого элемента в отдельности, считаем мощность каждого по формуле P = I²R, где

  • R – не номинальное сопротивление резистивного элемента, а рассчитанное для данной цепи;
  • I – сила тока в цепи.

При параллельном соединении через меньший резистор протекает больший ток – мощность рассеивания на этом резистивном элементе будет больше, чем на остальных.

Важно! При расчете параллельной цепи следует учитывать мощность сопротивления с самым маленьким номиналом.

Мощность при последовательном соединении

Вычислив сопротивление каждого резистивного элемента по отдельности, рассчитываем мощность каждого по формуле P = U²/R, где

  • R – рассчитанное нами сопротивление для определенной схемы;
  • U – падение напряжения на данном резистивном элементе.

Справка: Полную мощность цепи при последовательном и параллельном соединении можно найти, сложив вычисленные мощности отдельных элементов, входящих в цепь Pобщ = P1+P2+P3+…+Pn.

Как правильно рассчитать сопротивление

Применяется закон Ома для участка цепи – расчет сопротивления делается по формуле R = U/I, где

  • U – падение напряжение на конкретном резистивном элементе;
  • I – ток, протекающий через него.

При последовательном соединении

Для двух элементов считаем Rобщ = R1+R2.

Для нескольких сопротивлений разного номинала Rобщ = R1+R2+R3+…+Rn.

При параллельном соединении

Расчет для двух резисторов делаем по формуле Rобщ = (R1×R2)/(R1+R2).

Сопротивление параллельных резисторов с разным номиналом рассчитываем по формуле

Для элементов, соединенных в параллель, суммарное сопротивление всегда ниже наименьшего номинального.

Как рассчитать сложные схемы соединения резисторов

Сложные схемы рассчитываются путем группировки по параллельному и последовательному способу соединения.

Смешанное подключение-резисторов

Перед нами сложная схема – задача рассчитать общее сопротивление:

  1. R2, R3, R4 объединим в последовательную группу – применим формулу R2,3,4 = R2+R3+R4.
  2. R5 и R2,3,4 – параллельно соединенные резисторы, рассчитаем R5,2,3,4 = 1/ (1/R5+1/R2,3,4).
  3. R5,2,3,4, R1, R6 опять объединяем в последовательную группу – суммируя величины, получаем Rобщ = R5,2,3,4+R1+R6.

Для больших схем существуют специальные методы, облегчающие расчет. Один из таких методов – эквивалентное преобразование «треугольника» в «звезду». Такая система расчета применяется в том случае, когда невозможно по схеме определить последовательное или параллельное подключение резисторов.

Преобразование «звезда-треугольник»

Для соединения резистивных элементов, кроме вышеописанных способов, существует несколько других видов соединения:

  • «звезда» – соединение трех ветвей с одним общим узлом;
  • «треугольник» – соединение ветвей схемы в виде треугольника, сторонами которого служат ветви, вершины представляют узлы.

Справка: Узел – точка, в которой соединяются три и более проводника электрической цепи.

Эквивалентность замены предполагает стабильность токов, входящих в каждый узел, при одинаковых напряжения между одноименными узлами «треугольника» и «звезды».

Сопротивление резистора луча «звезды»

Сопротивление резистора луча «звезды» равно произведению сопротивлений резисторов прилегающих сторон «треугольника», деленному на сумму сопротивлений резисторов трех сторон «треугольника».

Сопротивление резисторов сторон «треугольника» равно сумме произведения сопротивлений резисторов двух прилегающих лучей «звезды», деленного на сопротивление третьего луча.

формулы рассчета звезды резисторов

О разнице подключения звезда и треугольник читайте здесь.

Чему равна сила тока в цепи при параллельном соединении резисторов

Согласно правилу Кирхгофа ток, поступающий в узел, равен току, выходящему из узла, – величина тока до группы параллельных резисторов и после нее должна быть неизменной.

Ток в группе параллельных резисторов распределяется по цепи в зависимости от их номинала, после прохождения через сопротивления суммируется в узле и выходит из него неизменным I = I1+I2+I3+…+In.

Как определить величину эквивалентного сопротивления при последовательном соединении резисторов

Справка: Эквивалентом сопротивления называется замена части схемы, состоящей из нескольких резистивных элементов, одним элементом.

Для последовательного соединения эквивалентное сопротивление равно сумме сопротивлений резисторов, включенных в группу, для расчета применяется формула Rэкв = R1+R2+…+Rn.

Например: Нужно посчитать эквивалентное сопротивление данной схемы.

Смешанное подключение-резисторов

Решение задачи производится путем разделения резистивных элементов на системные группы.

Выделяем первую группу из последовательно соединенных элементов – R2, R3, R4.

сложная-схема-подключения-резисторов

Выделяем вторую группу из последовательных элементов R1, R5, R6.

сложная_схема_подключения_резисторов

Получаем величину двух эквивалентных сопротивлений Rобщ1 и Rобщ2, соединенных параллельно.

Делаем расчет всей схемы Rэкв= Rобщ1× Rобш2/ (Rобщ1+ Rобщ2).

Зная способы соединения и формулы расчета можно рассчитать любую сложную схему соединения резистивных элементов, однако существует множество онлайн калькуляторов, которые сделают это быстрей человека, достаточно только ввести нужные параметры компонентов схемы.

Источник