Меню

Двигателей постоянного тока в судах

Двигателей постоянного тока в судах

Генераторы постоянного тока на судне

Наибольшее распространение на судах получили генераторы постоянного тока серии П (рис.10.2.).

У генератора постоянного тока начальное самовозбуждение при пуске осущест­вляется за счет остаточной ЭДС. Согласно правилам Морского Регистра отклонения постоянного напряжения от номинального значения напряжения, во всем диапазоне изменения нагрузки генера­тора и при изменении частоты вращения ПД в диапазоне 5% не должны превышать .

Рис.10.2. Схемы возбуждения генератора и их внешние характеристики

10.3. Электромеханические преобразователи электрической энергии

На судне есть потребители, требующие для своего питания электрическую энергию с параметрами (род тока, величина напряжения и частота), которые не обеспечиваются судовой электростанцией. Отсюда возни­кает необходимость в соответствующих преобразованиях электрической энер­гии, что осуществляется с помощью электромеханических или статиче­ских преобразователей. Электромашинный преобразователь включает в себя две электрические машины: генератор и двигатель. Тип генератора диктуется требуемым видом электрической энергии. Тип двигателя определяется видом основной судовой сети: в СЭЭС перемен­ного тока — трехфазные АД, в СЭЭС постоянного тока — ДПТ. Таким образом, в электромеханических преобра­ зователях осуществляется двойное преобразование электрической энергии: электрическая энер­ гия преобразуется двигателем в механическую энергию, которая далее пре­образуется генератором в электрическую энергию требуемой частоты и напряжения.

Двигатель Д и генератор Г, составляющие преобразовательный агре­гат, располагаются на общем фундаменте и соединяются между собою с по­мощью муфты. Для улучшения массогабаритных показателей обе машины объединяются в общем корпусе на одном валу. Кроме того, в состав пре­ обра­зователя входят магнитный пускатель электрического двигателя, уст­ройства защиты, устройства сигнализации, блоки регулирования напряже­ния и частоты.

10.4. Статические преобразователи электрической энергии на судне

Все необходимые на судах преобразователи электрической энергии могут быть обеспечены трансформаторами и электронными устройствами, в которых преобразование энергии осуществляется без использования вращающихся машин и других подвижных элементов. Отсюда название — статические преобразователи.

На судах преимущественное применение получили полупроводниковое п реобразователи. Основными элементами полупроводниковых преобразователей являются полупроводниковые вентили – диоды, тиристоры. Силовые кремневые вентили обеспечивают высокие параметры по току и напряже­нию (ударный ток до 10-20кА, напряжение до единиц кВ). Рабочие пара­метры вентилей остаются стабильными при температуре до 125-140 о С, что позволяет строить статические преобразователи от долей ватта, до тысяч киловатт, что п ерекрывает существующие потребности потребителей в пре­образованиях электрической энергии на судах.

Отсутствие подвижных элементов и свойства полупроводниковых вентилей обус­ лавливает преимущества полупроводниковых статических преобразователей по сравнению с электро машинными: более высокий КПД на (5-10)%, больший срок службы, бесшумность в работе, лучшие массогаба­ритные характеристики, большее быстродействие, практически мгновен­ная готовность к работе.

К основным недостаткам статических преобразователей относятся худшее, чем в электрома­шинных преобразователях качество выходного напряжения и их отрицательное влияние на каче­ство питающего входного напряжения.

Источник

Область применения двигателей постоянного тока на судах

Дата добавления: 2014-10-07 ; просмотров: 3124 ; Нарушение авторских прав

Двигатели независимого возбуждения применяют на транспортных судах для при-

вода мощных лебёдок и брашпилей, а на судах — электроходах — для привода гребного вин-

та. Системы управления этими двигателями Г – Д ( генератор — двигатель ) обеспечивают плавное и в широких пределах регулирование их скорости.

Двигатели параллельного возбуждения применяют для привода насосов и вентиля-

торов, не требующих регулирования их скорости. Схемы управления таки­ми приводами крайне просты, т.к. сводятся к выполнению двух функций — пуска и остановки.

Двигатели последовательного возбуждения на судах не применяются, но их исполь-

зуют на берегу в электротранспорте из-за хороших тяговых свойств ( при малых скоростях они развивают большой момент, что важно при трогании электротранс­порта с места).

Двигатели смешанного возбуждения широко применяют в регулируемом электро-

приводе постоянного тока — в грузоподъёмных, якорно-швартовных и других механизмах, требующих изменения скорости.

Контрольные вопросы

1. В чем состоит принцип обратимости электрических машин? Каким образом

двигатель постоянного тока перевести в генераторный режим? Каким образом генератор постоянного тока перевести в двигательный режим?

2. Запишите формулу электромагнитного момента двигателя постоянного тока и с

ее помощью объясните способы реверса двигателя постоянного тока

3. Почему переброска проводов питающей сети не приводит к реверсу двигателя

4. Запишите уравнение механической характеристики двигателя постоянного тока и объясните, как влияет увеличение электромагнитного момента двигателя на скорость двигателя

5. В чем разница между естественной и искусственными механическими характери

стиками? Какое число естественных и искусственных характеристик имеет двигатель, если число ступеней пускового реостата n = 3?

6. Запишите формулу тока якоря двигателя постоянного тока и с ее помощью объяс

ните причину больших пусковых токов

7. Объясните особенности регулирования скорости двигателя постоянного тока вве

дением резисторов в цепь обмотки якоря

8. Объясните особенности регулирования скорости двигателя постоянного тока вве

дением резисторов в цепь обмотки возбуждения. Чем опасен этот способ регулирования?

9. Объясните особенности регулирования скорости двигателя постоянного тока

изменением напряжения на обмотке якоря. В чем недостаток системы Г – Д ?

10. Назовите области применения на судах двигателей постоянного тока разных типов

Источник

Двигатели постоянного тока

Двигателями постоянного тока называются электрические машины постоянного тока, преобразующие электрическую энергию в механическую.

В двигателе магнитные поля создаются полюсами обмотки возбуждения и обмоткой якоря, по которым пропускается ток. При пропускании через них постоянного тока, якорь машины придет во вращение. Направление вращения якоря определяется правилом левой руки. При этом, если изменить направление тока в якоре или в обмотке возбуждения, то направление вращения двигателя также изменится.

При работе электродвигателя его якорь с обмоткой, вращаясь в магнитном поле, создаваемом магнитами полюсов, пересекает силовые магнитные линии магнитного потока полюсов и, следовательно, согласно закону электромагнитной индукции, в обмотке якоря индуктируется э. д. с. Направление этой э. д. с. обратно направлению тока, текущего в обмотке якоря (определяется по правилу правой руки), ввиду чего она называется обратной э. д. с. или противоэлектродвижущей силой (п. э. д. с.).

Читайте также:  Номинальный ток фазы контактора

Необходимо заметить, что во время пуска двигателя противоэлектродвижущая сила будет равна нулю и ток якоря может достигнуть недопустимо большого значения, так как сопротивление обмотки якоря незначительно. Поэтому в момент пуска в цепь якоря последовательно вводят дополнительное сопротивление—пусковой реостат, выполняющий роль дополнительного сопротивления при пуске во избежание разрушения обмотки якоря. С началом вращения якоря нарастает п. э. д. с., снижающая величину тока в якоре, поэтому по мере раскручивания двигателя (с увеличением числа оборотов двигателя), сопротивление пускового реостата постепенно уменьшают и совсем выключают, как только двигатель разовьет номинальное число оборотов, так как в этом случае обмотка якоря перегрузки испытывать не будет.

Электродвигатели постоянного тока, так же как и генераторы, в зависимости от способа включения обмоток возбуждения и якоря подразделяются на двигатели:

  • с независимым возбуждением;
  • с последовательным возбуждением или сериесные;
  • с параллельным возбуждением или шунтовые;
  • смешанного возбуждения или компаундные;

На судах морского флота электродвигатели постоянного тока последовательного возбуждения с легкой параллельной обмоткой применяются для привода в действие палубных механизмов (брашпилей, шпилей, лебедок, кранов), где требуется большой вращающий момент при пуске. Электродвигатели постоянного тока параллельного возбуждения применяются для привода механизмов, у которых необходимо иметь постоянное число оборотов независимо от их нагрузки и у которых не требуется наличие большого пускового момента (вспомогательные механизмы и насосы, обслуживающие главные двигатели и судовые системы, станки и т. д.).

Электродвигатели постоянного тока смешанного возбуждения применяются для привода в движение механизмов, требующих большого пускового момента и сохранения постоянного числа оборотов, а также имеющих значительный маховой момент (палубные механизмы, рулевые приводы, валоповоротные устройства и др.).

Наиболее широкое распространение эти двигатели получили за свои положительные качества, к которым можно отнести:

  • большой пусковой момент;
  • способность выносить значительную перегрузку;
  • допустимость регулировки числа оборотов в широких пределах;
  • сохранение постоянного числа оборотов при изменяющейся нагрузке.

По конструктивному выполнению электродвигатели делятся на электродвигатели с горизонтальным валом и электродвигатели с вертикальным валом.

По типу защиты от воздействия внешней среды электродвигатели бывают такие же, как и генераторы:

  • открытые;
  • защищенные;
  • брызгозащищенные;
  • водозащищенные;
  • герметические;
  • взрывобезопасные;

Процессы управления электродвигателями постоянного тока сводятся в основном к выполнению следующих операций:

  • пуску в ход электродвигателя;
  • остановке;
  • торможению;
  • реверсированию и регулированию скорости вращения электродвигателя

Эти операции могут быть выполнены вручную, автоматически или полуавтоматически при помощи соответствующей аппаратуры управления (пусковые и регулировочные реостаты, электрические и механические тормозные устройства и др.).

Пусковые реостаты устанавливают для ограничения силы пускового тока. Число оборотов электродвигателя регулируют изменением напряжения на зажимах якоря или изменением магнитного потока, создаваемого обмоткой возбуждения (т. е. изменением силы тока возбуждения электродвигателя при помощи регулировочного реостата). Для быстрой остановки электродвигателей необходимо применять торможение. Торможение электродвигателей постоянного тока может быть механическим и электрическим.

Механическое торможение осуществляется при помощи колодочных, ленточных и дисковых тормозов.

Электрическое торможение может быть произведено или в виде полезного торможения, при котором двигатель обращается в генератор и возвращает электрическую энергию в сеть, или же в виде реостатного торможения, при котором электрическая энергия превращается в тепловую, выделяющуюся в реостате.

Изменить направление вращения электродвигателя постоянного тока можно двумя способами: изменением направления тока в полюсных обмотках возбуждения, оставив направление тока в обмотке якоря без изменения; изменением направления тока в обмотке якоря, оставив без изменения направление тока в полюсных обмотках возбуждения. Если одновременно изменить направление тока и в обмотке якоря, и в обмотке возбуждения, то направление вращения двигателя не изменится.

Источник



Электрический двигатель постоянного тока

Эра электродвигателей берёт своё начало с 30-х годов XIX века, когда Фарадей на опытах доказал способность вращения проводника, по которому проходит ток, вокруг постоянного магнита. На этом принципе Томасом Девенпортом был сконструирован и испытан первый электродвигатель постоянного тока. Изобретатель установил своё устройство на действующую модель поезда, доказав тем самым работоспособность электромотора.

Практическое применение ДПТ нашёл Б. С. Якоби, установив его на лодке для вращения лопастей. Источником тока учёному послужили 320 гальванических элементов. Несмотря на громоздкость оборудования, лодка могла плыть против течения, транспортируя 12 пассажиров на борту.

Лишь в конце XIX столетия синхронными электродвигателями начали оснащать промышленные машины. Этому способствовало осознание принципа преобразования электродвигателем постоянного тока механической энергии в электричество. То есть, используя электродвигатель в режиме генератора, удалось получать электроэнергию, производство которой оказалось существенно дешевле от затрат на выпуск гальванических элементов. С тех пор электродвигатели совершенствовались и стали завоёвывать прочные позиции во всех сферах нашей жизнедеятельности.

Устройство и описание ДПТ

Конструктивно электродвигатель постоянного тока устроен по принципу взаимодействия магнитных полей.

Самый простой ДПТ состоит из следующих основных узлов:

Схематическое изображение простейшего ДПТ

  1. Двух обмоток с сердечниками, соединенных последовательно. Данная конструкция расположена на валу и образует узел, называемый ротором или якорем.
  2. Двух постоянных магнитов, повёрнутых разными полюсами к обмоткам. Они выполняют задачу неподвижного статора.
  3. Коллектора – двух полукруглых, изолированных пластин, расположенных на валу ДПТ.
  4. Двух неподвижных контактных элементов (щёток), предназначенных для передачи электротока через коллектор до обмоток возбуждения.

Рисунок 1. Схематическое изображение простейшего электродвигателя постоянного тока.

Рассмотренный выше пример – это скорее рабочая модель коллекторного электродвигателя. На практике такие устройства не применяются. Дело в том, что у такого моторчика слишком маленькая мощность. Он работает рывками, особенно при подключении механической нагрузки.

Читайте также:  Постоянный ток его частота

Статор (индуктор)

В моделях мощных современных двигателях постоянного тока используются статоры, они же индукторы, в виде катушек, намотанных на сердечники. При замыкании электрической цепи происходит образование линий магнитного поля, под действием возникающей электромагнитной индукции.

Для запитывания обмоток индуктора ДПТ могут использоваться различные схемы подключения:

  • с независимым возбуждением обмоток;
  • соединение параллельно обмоткам якоря;
  • варианты с последовательным возбуждением катушек ротора и статора;
  • смешанное подсоединение.

Схемы подключения наглядно видно на рисунке 2.

Схемы подключения обмоток статора

Рисунок 2. Схемы подключения обмоток статора ДПТ

У каждого способа есть свои преимущества и недостатки. Часто способ подключения диктуется условиями, в которых предстоит эксплуатация электродвигателя постоянного тока. В частности, если требуется уменьшить искрения коллектора, то применяют параллельное соединение. Для увеличения крутящего момента лучше использовать схемы с последовательным подключением обмоток. Наличие высоких пусковых токов создаёт повышенную электрическую мощность в момент запуска мотора. Данный способ подходит для двигателя постоянного тока, интенсивно работающего в кратковременном режиме, например для стартера. В таком режиме работы детали электродвигателя не успевают перегреться, поэтому износ их незначителен.

Ротор (якорь)

В рассмотренном выше примере примитивного электромотора ротор состоит из двухзубцового якоря на одной обмотке, с чётко выраженными полюсами. Конструкция обеспечивает вращение вала электромотора.

В описанном устройстве есть существенный недостаток: при остановке вращения якоря, его обмотки занимают устойчивое. Для повторного запуска электродвигателя требуется сообщить валу некий крутящий момент.

Этого серьёзного недостатка лишён якорь с тремя и большим количеством обмоток. На рисунке 3 показано изображение трёхобмоточного ротора, а на рис. 4 – якорь с большим количеством обмоток.

Ротор с тремя обмоткамиРисунок 3. Ротор с тремя обмотками Якорь со многими обмоткамиРисунок 4. Якорь со многими обмотками

Подобные роторы довольно часто встречаются в небольших маломощных электродвигателях.

Для построения мощных тяговых электродвигателей и с целью повышения стабильности частоты вращения используют якоря с большим количеством обмоток. Схема такого двигателя показана на рисунке 5.

Схема электромотора с многообмоточным якорем

Рисунок 5. Схема электромотора с многообмоточным якорем

Коллектор

Если на выводы обмоток ротора подключить источник постоянного тока, якорь сделает пол-оборота и остановится. Для продолжения процесса вращения необходимо поменять полярность подводимого тока. Устройство, выполняющее функции переключения тока с целью изменения полярности на выводах обмоток, называется коллектором.

Самый простой коллектор состоит из двух, изолированных полукруглых пластин. Каждая из них в определённый момент контактирует со щёткой, с которой снимается напряжение. Одна ламель всегда подсоединена к плюсу, а вторая – к минусу. При повороте вала на 180º пластины коллектора меняются местами, вследствие чего происходит новая коммутация со сменой полярности.

Такой же принцип коммутации питания обмоток используются во всех коллекторах, в т. ч. и в устройствах с большим количеством ламелей (по паре на каждую обмотку). Таким образом, коллектор обеспечивает коммутацию, необходимую для непрерывного вращения ротора.

В современных конструкциях коллектора ламели расположены по кругу таким образом, что каждая пластина соответствующей пары находится на диаметрально противоположной стороне. Цепь якоря коммутируется в результате изменения положения вала.

Принцип работы

Ещё со школьной скамьи мы помним, что на провод под напряжением, расположенный между полюсами магнита, действует выталкивающая сила. Происходит это потому, что вокруг проволоки образуется магнитное поле по всей его длине. В результате взаимодействия магнитных полей возникает результирующая «Амперова» сила:

F=B×I×L, где B означает величину магнитной индукции поля, I – сила тока, L – длина провода.

Вектор «Амперовой» всегда перпендикулярен до линий магнитных потоков между полюсами. Схематически принцип работы изображён на рис. 6.

Принцип работы ДПТ

Рис. 6. Принцип работы ДПТ

Если вместо прямого проводника возьмём контурную рамку и подсоединим её к источнику тока, то она повернётся на 180º и остановится в в таком положении, в котором результирующая сила окажется равной 0. Попробуем подтолкнуть рамку. Она возвращается в исходное положение.

Поменяем полярность тока и повторим попытку: рамка сделала ещё пол-оборота. Логично припустить, что необходимо менять направление тока каждый раз, когда соответствующие витки обмоток проходят точки смены полюсов магнитов. Именно для этой цели и создан коллектор.

Схематически можно представить себе каждую якорную обмотку в виде отдельной контурной рамки. Если обмоток несколько, то в каждый момент времени одна из них подходит к магниту статора и оказывается под действием выталкивающей силы. Таким образом, поддерживается непрерывное вращение якоря.

Типы ДПТ

Существующие электродвигатели постоянного тока можно классифицировать по двум основным признакам: по наличию или отсутствию в конструкции мотора щеточно-коллекторного узла и по типу магнитной системы статора.

Рассмотрим основные отличия.

По наличию щеточно-коллекторного узла

Двигатели постоянного тока для коммутации обмоток, которых используются щёточно-коллекторные узлы, называются коллекторными. Они охватывают большой спектр линейки моделей электромоторов. Существуют двигатели, в конструкции которых применяется до 8 щёточно-коллекторных узлов.

Функции ротора может выполнять постоянный магнит, а ток от электрической сети подаётся непосредственно на обмотки статора. В таком варианте отпадает надобность в коллекторе, а проблемы, связанные с коммутацией, решаются с помощью электроники.

В таких бесколлекторных двигателях устранён один из недостатков –искрение, приводящее к интенсивному износу пластин коллектора и щёток. Кроме того, они проще в обслуживании и сохраняют все полезные характеристики ДПТ: простота в управлении связанном с регулировкой оборотов, высокие показатели КПД и другие. Бесколлекторные моторы носят название вентильных электродвигателей.

По виду конструкции магнитной системы статора

В конструкциях синхронных двигателей существуют модели с постоянными магнитами и ДПТ с обмотками возбуждения. Электродвигатели серий, в которых применяются статоры с потоком возбуждения от обмоток, довольно распространены. Они обеспечивают стабильную скорость вращения валов, высокую номинальную механическую мощность.

Читайте также:  Определение индукционный генератор переменного тока

О способах подключения статорных обмоток шла речь выше. Ещё раз подчеркнём, что от выбора схемы подключения зависят электрические и тяговые характеристики двигателей постоянного тока. Они разные в последовательных обмотках и в катушках с параллельным возбуждением.

Управление

Не трудно понять, что если изменить полярность напряжения, то направление вращения якоря также изменится. Это позволяет легко управлять электромотором, манипулируя полярностью щеток.

Механическая характеристика

Рассмотрим график зависимости частоты от момента силы на валу. Мы видим прямую с отрицательным наклоном. Эта прямая выражает механическую характеристику электродвигателя постоянного тока. Для её построения выбирают определённое фиксированное напряжение, подведённое для питания обмоток ротора.

Примеры механических характеристик ДПТ

Примеры механических характеристик ДПТ независимого возбуждения

Регулировочная характеристика

Такая же прямая, но идущая с положительным наклоном, является графиком зависимости частоты вращения якоря от напряжения питания. Это и есть регулировочная характеристика синхронного двигателя.

Построение указанного графика осуществляется при определённом моменте развиваемом ДПТ.

Регулировочная характеристика ДПТ

Пример регулировочных характеристик двигателя с якорным управлением

Благодаря линейности характеристик упрощается управление электродвигателями постоянного тока. Поскольку сила F пропорциональна току, то изменяя его величину, например переменным сопротивлением, можно регулировать параметры работы электродвигателя.

Регулирование частоты вращения ротора легко осуществляется путём изменения напряжения. В коллекторных двигателях с помощью пусковых реостатов добиваются плавности увеличения оборотов, что особенно важно для тяговых двигателей. Это также один из эффективных способов торможения. Мало того, в режиме торможения синхронный электродвигатель вырабатывает электрическую энергию, которую можно возвращать в энергосеть.

Области применения

Перечислять все области применения электродвигателей можно бесконечно долго. Для примера назовём лишь несколько из них:

  • бытовые и промышленные электроинструменты;
  • автомобилестроение – стеклоподъёмники, вентиляторы и другая автоматика;
  • трамваи, троллейбусы, электрокары, подъёмные краны и другие механизмы, для которых важны высокие параметры тяговых характеристик.

Преимущества и недостатки

К достоинствам относится:

  • Линейная зависимость характеристик электродвигателей постоянного тока (прямые линии) упрощающие управление;
  • Легко регулируемая частота вращения;
  • хорошие пусковые характеристики;
  • компактные размеры.

У асинхронных электродвигателей, являющихся двигателями переменного тока очень трудно достичь таких характеристик.

Недостатки:

  • ограниченный ресурс коллектора и щёток;
  • дополнительная трата времени на профилактическое обслуживание, связанное с поддержанием коллекторно-щёточных узлов;
  • ввиду того, что мы пользуемся сетями с переменным напряжением, возникает необходимость выпрямления тока;
  • дороговизна в изготовлении якорей.

По перечисленным параметрам из недостатков в выигрыше оказываются модели асинхронных двигателей. Однако во многих случаях применение электродвигателя постоянного тока является единственно возможным вариантом, не требующим усложнения электрической схемы.

Видео в дополнение к написанному



Источник

Электродвигательные судовые энергетические установки

Суда, на которых в качестве двигателей в СЭУ используются электродвигатели, называются электроходами.

На электроходах применяют три вида СЭУ:

1. постоянного тока с гребными электродвигателями независимого возбуждения;

2. переменного тока с синхронными и асинхронными электродвигателями;

3. двойного рода тока, в которых переменный ток судовой сети преобразуется в постоянный, а последний передается к электродвигателям постоянного тока независимого возбуждения.

Гребной электродвигатель располагают ближе в корму, насколько позволяют обводы кормового подзора и условия выемки гребного вала.

Дизель–генераторы и гребные двигатели устанавливают либо в одном, либо в разныхотсеках, а её элементы могут располагаться на различных палубах (см. рис. 11.26).

Рис. 11.26.Расположение компонентов двухвальной дизель–электрической ГЭУ»:

DECK – палуба; EngineControlRoom – центральный пост управления (ЦПУ); 6.6 kv (HV) switchboard– щит электродвижения напряжением 6,6 кВ; diesel–gensets – дизель–генератор; propulsionelectricmotors–гребной электродвигатель

Преимущества применения электродвижения с главной электрической перадачей следующие:

1. отсутствие длинных валопроводов, так как гребные электродвигатели размещают ся в корме судна;

2. возможность применения более простых нереверсивных быстроходных двигателей, число которых можно выбирать, независимо от числа гребных винтов;

3. высокие манёвренные качества и возможность работы на низких скоростях хода судна при неполном числе работающих первичных двигателей;

4. возможность использовать вырабатываемую главными генераторами энергию для работы судовых вспомогательных механизмов.

Однако СЭУ с электродвижением имеет и недостатки:

1. увеличенный вес;

2. более низкий КПД (на 8÷13% ниже, чем у зубчатой передачи);

3. более высокую стоимость.

Поэтому электродвижение применяют либо на специальных судах с повышенными маневренными качествами и частыми реверсами (буксиры, ледоколы, паромы) или в тех случаях, когда выгодно использовать мощность электрической СЭУ для обеспечения работы судовых механизмов (плавучие краны, земснаряды, рыбопромысловые суда, плавмастерские).

В последние годы на судах с электродвижением устанавливают гребные азиподные установки или, иначе, полноповоротные движители (слово AZIPOD– сокращение от двух слов: «AZIMTYTH» – азимут, направление, и «POD» – гондола, в свободном переводе – полноповоротный движитель с электроприводом).

Эта установка сочетает в себе перо руля, роль котороговыполняет корпус гондолы, и гребную электрическую установку (см. п. 7.1).Принципиальная схема установки типа AZIPOD показана на рис. 11.27.

Установку также называют «винторулевая поворотная колонка» (ВРПК).

В обтекаемой капсуле (гондоле) находится нереверсивный синхронный двигатель, поэтому вращающий винт –фиксированного шага. Скорость двигателя регулируется (см. рис. 11.28).

Рис.11.27.Азиподная установка с синхронным электродвигателем и винтом фиксированного шага

Рис. 11.28. Азиподная установка с синхронным двигателем мощностью 25000 кВт: а– внешний вид установки; б – установка в натуральную величину (морская выставка в Гамбурге, 2007 г.)
Рис. 11.29. Размеры МО на судне: а – с дизелем;б– с азиподной установкой в сравнении

Кроме синхронных двигателей, возможно применение асинхронных.

Мощность зависит от водоизмещения судна и достигает десятков тысяч киловатт.

Использование таких установок умень­шаетразмеры МО, а освободившийся объём можно использовать дляперевозки грузов (см. рис. 11.29).

Азиподные установки применяются на судах, где требуется повышенная манёвренность – буксирах, ледоколах и крупных пассажирских судах.

Источник