Меню

Двигатели постоянного тока с регуляторами

Регулятор оборотов двигателя постоянного тока 12 вольт

Регулятор вращения для мотора

На простых механизмах удобно устанавливать аналоговые регуляторы тока. К примеру, они могут изменить скорость вращения вала мотора. С технической стороны выполнить такой регулятор просто (потребуется установка одного транзистора). Применим для регулировки независимой скорости моторов в робототехнике и источниках питания. Наиболее распространены два варианта регуляторов: одноканальные и двухканальные.

Видео №1 . Одноканальный регулятор в работе. Меняет скорость кручения вала мотора посредством вращения ручки переменного резистора.

Видео №2. Увеличение скорости кручения вала мотора при работе одноканального регулятора. Рост числа оборотов от минимального до максимального значения при вращении ручки переменного резистора.

Видео №3 . Двухканальный регулятор в работе. Независимая установка скорости кручения валов моторов на базе подстроечных резисторов.

Видео №4. Напряжение на выходе регулятора измерено цифровым мультиметром. Полученное значение равно напряжению батарейки, от которого отняли 0,6 вольт (разница возникает из-за падения напряжения на переходе транзистора). При использовании батарейки в 9,55 вольт, фиксируется изменение от 0 до 8,9 вольт.

Функции и основные характеристики

Ток нагрузки одноканального (фото. 1) и двухканального (фото. 2) регуляторов не превышает 1,5 А. Поэтому для повышения нагрузочной способности производят замену транзистора КТ815А на КТ972А. Нумерация выводов для этих транзисторов совпадает (э-к-б). Но модель КТ972А работоспособна с токами до 4А.

Регулятор вращения для мотора

Регулятор вращения для мотора

Одноканальный регулятор для мотора

Устройство управляет одним мотором, питание осуществляется от напряжения в диапазоне от 2 до 12 вольт.

Конструкция устройства

Основные элементы конструкции регулятора представлены на фото. 3. Устройство состоит из пяти компонентов: два резистор переменного сопротивления с сопротивлением 10 кОм (№1) и 1 кОм (№2), транзистор модели КТ815А (№3), пара двухсекционных винтовых клеммника на выход для подключения мотора (№4) и вход для подключения батарейки (№5).

Регулятор вращения для мотора

Примечание 1. Установка винтовых клеммников не обязательна. С помощью тонкого монтажного многожильного провода можно подключить мотор и источник питания напрямую.

Принцип работы

Порядок работы регулятора мотора описывает электросхема (рис. 1). С учетом полярности на разъем ХТ1 подают постоянное напряжение. Лампочку или мотор подключают к разъему ХТ2. На входе включают переменный резистор R1, вращение его ручки изменяет потенциал на среднем выходе в противовес минусу батарейки. Через токоограничитель R2 произведено подключение среднего выхода к базовому выводу транзистора VT1. При этом транзистор включен по схеме регулярного тока. Положительный потенциал на базовом выходе увеличивается при перемещении вверх среднего вывода от плавного вращения ручки переменного резистора. Происходит увеличение тока, которое обусловлено снижением сопротивления перехода коллектор-эмитттер в транзисторе VT1. Потенциал будет уменьшаться, если ситуация будет обратной.

Регулятор вращения для мотора

Принципиальная электрическая схема

Материалы и детали

Необходима печатная плата размером 20х30 мм, изготовленная из фольгированного с одной стороны листа стеклотекстолита (допустимая толщина 1-1,5 мм). В таблице 1 приведен список радиокомпонентов.

Примечание 2. Необходимый для устройства переменный резистор может быть любого производства, важно соблюсти для него значения сопротивления тока указанные в таблице 1.

Примечание 3. Для регулировки токов выше 1,5А транзистор КТ815Г заменяют на более мощный КТ972А (с максимальным током 4А). При этом рисунок печатной платы менять не требуется, так как распределение выводов у обоих транзисторов идентично.

Процесс сборки

Для дальнейшей работы нужно скачать архивный файл, размещенный в конце статьи, разархивировать его и распечатать. На глянцевой бумаге печатают чертеж регулятора (файл termo1), а монтажный чертеж (файл montag1) – на белом листе офисной (формат А4).

Регулятор вращения для мотора

Далее чертеж монтажной платы (№1 на фото. 4) наклеивают к токоведущим дорожкам на противоположной стороне печатной платы (№2 на фото. 4). Необходимо сделать отверстия (№3 на фото. 14) на монтажом чертеже в посадочных местах. Монтажный чертеж крепится к печатной плате сухим клеем, при этом отверстия должны совпадать. На фото.5 показана цоколёвка транзистора КТ815.

Читайте также:  М004 r00 регулятор давления

Регулятор вращения для мотора

Вход и выход клеммников-разъемов маркируют белым цветом . Через клипсу к клеммнику подключается источник напряжения. Полностью собранный одноканальный регулятор отображен на фото. Источник питания (батарея 9 вольт) подключается на финальном этапе сборки. Теперь можно регулировать скорость вращения вала с помощью мотора, для этого нужно плавно вращать ручку регулировки переменного резистора.

Регулятор вращения для мотора

Регулятор вращения для мотора

Для тестирования устройства необходимо из архива распечатать чертеж диска. Далее нужно наклеить этот чертеж (№1) на плотную и тонкую картонную бумагу (№2 ). Затем с помощью ножниц вырезается диск (№3).

Регулятор вращения для мотора

Полученную заготовку переворачивают (№1 ) и к центру крепят квадрат черной изоленты (№2) для лучшего сцепления поверхности вала мотора с диском. Нужно сделать отверстие (№3) как указано на изображении. Затем диск устанавливают на вал мотора и можно приступать к испытаниям. Одноканальный регулятор мотора готов!

Двухканальный регулятор для мотора

Используется для независимого управления парой моторов одновременно. Питание осуществляется от напряжения в диапазоне от 2 до 12 вольт. Ток нагрузки рассчитан до 1,5А на каждый канал.

Конструкция устройства

Основные компоненты конструкции представлены на фото.10 и включают: два подстроечных резистора для регулировки 2-го канала (№1) и 1-го канала (№2), три двухсекционных винтовых клеммника для выхода на 2-ой мотор (№3), для выхода на 1-ый мотор (№4) и для входа (№5).

Регулятор вращения для мотора

Примечание.1 Установка винтовых клеммников не обязательна. С помощью тонкого монтажного многожильного провода можно подключить мотор и источник питания напрямую.

Принцип работы

Принципиальная электрическая схема.

Схема двухканального регулятора идентична электрической схеме одноканального регулятора. Состоит из двух частей (рис.2). Основное отличие: резистор переменного сопротивления замен на подстроечный резистор. Скорость вращения валов устанавливается заранее.

Примечание.2. Для оперативной регулировки скорости кручения моторов подстроечные резисторы заменяют с помощью монтажного провода с резисторами переменного сопротивления с показателями сопротивлений, указанными на схеме.

Материалы и детали

Понадобится печатная плата размером 30х30 мм, изготовленная из фольгированного с одной стороны листа стеклотекстолита толщиной 1-1,5 мм. В таблице 2 приведен список радиокомпонентов.

Процесс сборки

После скачивания архивного файла, размещенного в конце статьи, нужно разархивировать его и распечатать. На глянцевой бумаге печатают чертеж регулятора для термоперевода (файл termo2), а монтажный чертеж (файл montag2) – на белом листе офисной (формат А4).

Чертеж монтажной платы наклеивают к токоведущим дорожкам на противоположной стороне печатной платы . Формируют отверстия на монтажом чертеже в посадочных местах. Монтажный чертеж крепится к печатной плате сухим клеем, при этом отверстия должны совпасть. Производится цоколёвка транзистора КТ815. Для проверки нужно временно соединить монтажным проводом входы 1 и 2 .

Регулятор вращения для мотора

Регулятор вращения для мотора

Любой из входов подключают к полюсу источника питания (в примере показана батарейка 9 вольт). Минус источника питания при этом крепят к центру клеммника. Важно помнить: черный провод «-», а красный «+».

Регулятор вращения для мотора

Моторы должны быть подключены к двум клеммникам, также необходимо установить нужную скорость. После успешных испытаний нужно удалить временное соединение входов и установить устройство на модель робота. Двухканальный регулятор мотора готов!

В АРХИВЕ представленные необходимые схемы и чертежи для работы. Эмиттеры транзисторов помечены красными стрелками.

Источник

ШИМ регулятор оборотов: схема модуля управления мотором

ШИМ регулятор оборотов-1

ШИМ регулятор оборотов двигателя постоянного тока проще всего организовать с помощью ШИМ регулятора. ШИМ — это широтно-импульсная модуляция, в английском языке это называется PWM — Pulse Width Modulation. Теорию я подробно объяснять не буду, информации полно в интернете.

ШИМ регулятор оборотов электродвигателя постоянного тока рассчитанного на напряжение 12 В

Своими словами — если у нас есть двигатель постоянного тока на 12 вольт — то мы можем регулировать обороты двигателя изменяя напряжение питания. Изменяя напряжение питания от нуля до 12 вольт будут изменятся обороты двигателя от нуля до максимальных. В случае с ШИМ регулятором мы будем изменять скважность импульсов от 0 до 100% и это будет эквивалентно изменению напряжения питания двигателя и соответственно будут изменятся обороты двигателя.

Читайте также:  Регулятор температуры для бассейна

Рассмотрим первый ШИМ регулятор на 5 ампер. Есть такая самая любимая микросхема всех радиолюбителей — это таймер NE555 ( или советский аналог КР1006ВИ). Вот на этой микросхеме и собран ШИМ регулятор. Кроме таймера здесь я использую стабилизатор на 9 вольт LM7809, мощный полевой транзистор с N-каналом IRF540, сдвоенный диод Шоттки, а также другие мелкие детали. Схема по которой собран этот регулятор всем известна и очень популярна.

ШИМ регулятор оборотов-3

ШИМ регулятор оборотов-4

Печатку этой платы можно скачать — ШИМ 5A

В более мощном исполнении я применяю просто параллельное включение нескольких полевых транзисторов IRF540 и более мощный сдвоенный диод Шоттки. В остальном всё аналогично.

ШИМ регулятор оборотов-5

ШИМ регулятор оборотов-6

Блок управления мотором-7

Печатку этой платы можно скачать — ШИМ 10A

Подключение ШИМ регулятора очень простое. Вы видите 4 клеммы — две клеммы для подачи питания (+) и (-), и две клеммы для подключения мотора (M+) и (M-).

Сделал еще ШИМ регулятор с защитой по току. Для этих целей использовал распространенный операционный усилитель LM358 и два оптрона PC817. При превышении тока, который мы задаем подстроечником R12, срабатывает триггер-защелка на операционнике DA3.1, оптронах DA4 и DA5 и блокируется генерация импульсов по 5 ноге таймера NE555. Чтобы снова запустить генерацию нужно кратковременно снять питание со схемы с помощью кнопки S1.

Блок управления мотором-8

Блок управления мотором-9

Печатку этой платы можно скачать — ШИМ 10А с защитой

ШИМ регуляторы все работоспособны, проверил их работу с помощью двигателя от шуруповерта.

ШИМ регулятор оборотов

Источник



ШИМ регулятор двигателя постоянного тока

Всем здравствуйте. Импульсные регуляторы скорости обычно используются для управления двигателями постоянного тока. Преимущество импульсного управления перед линейным управлением заключается в снижении потерь мощности на собственное регулирование и, кроме того, в сохранении крутящего момента двигателя.

При линейном управлении ток или напряжение, при которых подается питание на двигатель, ограничены, в то время как «теряется» на силовом элементе контроллера. Это рассеивание мощности, которое может достигать нескольких ватт даже с небольшими двигателями. И это одна из самых больших проблем линейного управления, потому что даже 10Вт представляют собой значительное выделяющее тепло на управляющем элементе.

Импульсные контроллеры в основном можно разделить на простые и с обратной связью. Обратная связь используется для стабилизации скорости. Это выгодно, когда необходимо обеспечить постоянную скорость двигателя независимо от его нагрузки или необходимо установить определенную скорость. В рассматриваемой схеме будет достаточно простого регулятора для небольших двигателей.

Первым каскадом схемы управления скоростью является нестабильный мультивибратор, построенный наг половине таймера 556. Это не что иное, как два известных независимых, много раз описанных таймеров 555. Время зарядки задается R1 + R2 и емкостью C1, только R2 применяется вне конденсатора во время разряда. С компонентами в соответствии на схеме генератор генерирует частоту 30,1 Гц.

По приходу фронта управляющего импульса на вход T начинается заряд конденсатора C3 через резистор R3. Во время зарядки выход находится в состоянии высокого логического уровня и тем самым открывает транзистор T1. Таким образом, двигатель постоянного тока, запускается импульсами длительностью около 0,8 мс и частотой 30,1 Гц. Однако это применимо только в том случае, если не используются другие цепи. Хотя сейчас много готовой продукции продается регуляторов ознакомится можно ниже.

Управление скоростью происходит таким образом, что импульсы меняют скважность. Следовательно, это широтно-импульсная модуляция управления двигателем с ограничением минимальной длины импульса, так что двигатель не получает импульсов меньше, чем достаточно для его работы.

Читайте также:  Регулятор газового давления рдгб 6

Как известно, заряд и разряд синхронизирующего конденсатора происходит при штатном включении нестабильного мультивибратора (одновибратор) в диапазоне от 1/3 до 2/3 напряжения питания, в нашем случае от состояния полного разряда до 2/3 напряжения питания. Эти уровни контролируются двумя компараторами, которые получают свои опорные напряжения от трех резисторов, последовательно включенных между источником питания и землей. Схема стабилизатора питания регулятора на рисунке.

Принципиальная схема стабилизатора

Резисторы имеют номинал 3 × 5 кОм в нормальном биполярном исполнении. Для версии C-MOS это значение установлено на 3 × 100 кОм, чтобы снизить потребление. Верхнее опорное напряжение, то есть 2/3 от напряжения питания, выводятся как IN и обычно используются для фильтрации. В нашем случае это напряжение подается на делитель, образованный подстроечным резистором P1, потенциометром P2 и резистором R5. Это создает два делителя, соединенных параллельно, и в результате верхний уровень смещается в зависимости от положения потенциометра.

Чем ниже это значение, тем раньше заканчивается заряд синхронизирующего конденсатора и, следовательно, тем короче выходные положительные импульсы, и наоборот. При использовании таймеров C-MOS схема также будет работать, только характер регулирования немного изменится, потому что сопротивления потенциометра и подстроечного резистора больше не будут применяться параллельно, а будут «принудительно» передавать свое напряжение непосредственно на вход IN.

Неинвертирующий вход компаратора IO2 подключен к потенциометру, инвертирующий вход имеет включен в делитель R6 / R7. Открытый коллектор выходного транзистора компаратора подключен к входу сброса одновибратор IO1B. Если бегунок потенциометра находится в таком положении, что его напряжение выше, чем напряжение, поступающее с делителя R6 / R7, выходной транзистор компаратора закрыт, и на нулевом входе IO1B имеется положительное напряжение с резистора R9.

Если напряжение с коллектора падает ниже уровня инвертирующего входа, компаратор переворачивается, его выходной транзистор открывается, и напряжение на нулевом входе IO1B близко к нулю. Это приводит к блокировке мультивибратора. Напряжение на инвертирующем входе компаратора также зависит от резистора обратной связи (R8), который вводит определенный гистерезис, поэтому на бегунке потенциометра требуется немного более высокое напряжение, чем было достаточно для блокировки.

Частью схемы также является уже упомянутый подстроечный резистор P1, который определяет диапазон регулирования потенциометра P2. Источник постоянного тока контроллера может находиться в диапазоне от 12В до примерно 24В. Компаратор и таймеры не зависят от напряжения, они будут хорошо работать при любом напряжении, но в этом случае, когда речь идет об импульсах для двигателя, вводится стабилизация, которая работает на более высоких напряжений. Монтаж контроллера выполнен на односторонней печатной плате.

Расположение компонентов на печатной палате

Разводка дорожек на печатной плате регулятора

Транзистор Т1 оставляем установленным немного выше на плате, чтобы можно было при необходимости прикрепить к нему небольшой радиатор. Хотя это полевой МОП-транзистор импульсного режима и теоретическое падение напряжения на нем почти равно нулю (определяемое произведением протекающего тока и внутреннего сопротивления в замкнутом состоянии, составляет порядка 0,1 Ом), большие потери мощности вызваны «медленным» переключением и открытие перехода транзистора, при котором кажущееся сопротивление перехода изменяется линейно.

Настройка очень простая и с ними справится даже начинающий радиолюбитель. Сначала подключите напряжение питания к клеммам X2 и проверьте общее потребление, ток которого не должен превышать 10 мА. Далее подключаем управляемый двигатель к клеммам X1 и проверяем работу регулятора плавным вращением потенциометра сопротивления P2. Затем мы можем установить минимально допустимую скорость с помощью подстроечного сопротивления P1. Если у нас есть осциллограф, мы можем увидеть форму управляющего сигнала на выходе OUT IO1B. Вот на этом и все всем спасибо за уделенное время.

Источник