Меню

Двутавр эпюры нормальных напряжений

Полная проверка прочности двутавровой балки

1) Проверка по нормальным напряжениям:

Эквивалентные напряжения в точках а по IV теории прочности

13 Какую величину называют осевым моментом инерции сечения? Какова его единица измерения?

14 Какую величину называют осевым моментом сопротивления сечения изгибу? Какова его единица измерения?

15 По какому условию прочности определяют сечения балок при поперечном изгибе и почему?

16Что понимают под эквивалентными напряжениями?

17 Почему для двутавровых сечений необходима проверка по эквивалентным напряжениям?

СОВМЕСТНОЕ ДЕЙСТВИЕ КРУЧЕНИЯ С ИЗГИБОМ

Теоретические сведения

В разделе 3 рассматривается чистое кручение валов, но на практике кручение валов всегда сопровождается поперечным изгибом, в основном усилиями в насаженных на них элементах передач. В результате внутренние усилия в поперечных сечениях вала в общем случае приводятся к пяти силовым факторам: крутящему моменту Mкp.z, изгибающим моментам Mux и Muy и перерезывающим силам Qy и Qx (рис. 5.1).

Рисунок 5.1 – Схема внутренних силовых факторов в поперечном сечении вала, работающего на кручение с изгибом

Как правило, у валов касательные напряжения, возникающие от действия перерезывающих сил Qy и Qx, невелики и при расчетеих не учитывают. Поэтому расчет валов, работающих на кручение с изгибом, производят по трем внутренним силовым факторам: Mкp.z, Mux, Muy, которые вызывают в их поперечных сечениях нормальные напряжения s и касательные t (рис. 5.2).

Рисунок 5.2 – Распределение нормальных и касательных напряжений в поперечном сечении вала, работающего на кручение с изгибом

Максимальные нормальные напряжения от изгиба в поперечном сечении вала возникают у его поверхности в осевой плоскости действия результирующего изгибающего момента – точки a’ и a» (см. рис. 5.2).

Максимальные касательные напряжения в поперечном сечении вала также возникают у его поверхности. Таким образом, опасными будут точки a’ и a».

Элементарные параллелепипеды, выделенные в окрестности точек a’ и a», находятся в условиях такого же плоского напряженного состояния, что и при поперечном изгибе (см. рис. 4.8), для которого эквивалентные напряжения по III и IV теориям прочности определяются формулами (4.7), (4.8). Разница состоит только в том, что при поперечном изгибе касательные напряжения вызваны не крутящим моментом, а перерезывающей силой.

Читайте также:  Напряжение 460 вольт где применяется

Для конкретного поперечного сечения вала нормальное и касательное напряжения в опасных точках:

Для сплошного поперечного сечения вала осевой и полярный моменты сопротивления сечения:

При этом для вала формулы (4.7), (4.8) принимают вид:

— по III теории прочности

— по IV теории прочности

Здесь Мпр – приведенный момент. Можно считать что Мпр – это условный внутренний изгибающий момент в сечении, эквивалентный одновременно действующим в нем реальным внутренним изгибающему и крутящему моментам Мu.p и Мкр.z.

При этом условие прочности вала, испытывающего одновременное действие кручения с изгибом,

где по III теории прочности (максимальных касательных напряжений)

по IV теории прочности (энергетической)

Для нахождения сечения c Mnp=Mnр.max необходимо предварительно построить эпюры Мu.p=f(Z) и Mкp.z=f(Z). При этом для построения эпюры Мu.p вначале должны быть построены эпюры Мux и Мuу. Понятно, что для каждого поперечного сечения вала результирующий момент будет иметь свою осевую плоскость действия. Но так как вал имеет круглое поперечное сечение, для которого моменты сопротивления относительно всех осей одинаковы, то без влияния на результаты расчета можно построить условную эпюру Мu, совместив осевые плоскости действия результирующих изгибающих моментов во всех поперечных сечениях с плоскостью чертежа.

Прежде чем строить указанные эпюры, необходимо составить расчетную схему вала, для чего все внешние силы, приложенные к насаженным на него элементам передач, должны быть перенесены на ось вала.

Описанная методика расчета валов соответствует их статическому нагружению и может быть использована для проектировочных расчетов. Валы реальных передач круговращательного движения находятся в условиях переменного циклического нагружения. Поэтому для валов, конструктивно оформленных по найденному из проектировочного расчета диаметру, должен быть выполнен проверочный расчет на усталостную прочность (выносливость). При проектировочном статическом расчете неучтенную цикличность нагружения косвенно учитывают понижением допускаемого напряжения [s].

В некоторых конструкциях валы, помимо скручивания и изгиба, растягиваются или сжимаются осевыми нормальными силами N. Влияние этих добавочных сил на прочность вала может быть учтено добавкой к наибольшим нормальным напряжениям от изгиба нормальных напряжений от растяжения-сжатия , где А — площадь поперечного сечения вала.

Читайте также:  Устройство стабилизатора напряжения для телевизора

Ввести sp в условие прочности проектировочного расчета (5.1) не представляется возможным, sp учитывают только при проверочных расчетах.

Пример расчета

Для заданной схемы нагружения промежуточного вала коническо-цилиндрического редуктора (рис. 5.3) определить необходимый диаметр вала, пользуясь теорией максимальных касательных напряжений.

d1=200 мм; d2=100 мм; внешний крутящий момент, передаваемый валом Т=150 Hм; a=20º; δ=71,6º — углы между усилиями в зацеплениях; [s]=80 МПа.

Источник



Эпюры касательных напряжений для прямоугольного, двутаврового, круглого сечений

Эпюры касательных напряжений прямоугольного сечения

При выводе формулы Журавского предполагалось: балка имеет прямоугольное поперечное сечение (рис. 7.11), поэтому

изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромат;изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромат;изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромат; изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромат

где y – расстояние от точки, в которой определяется касательное напряжение, до нейтральной оси x.

изображение Эпюры касательных напряжений прямоугольника двутавра круга сопроматПодставляя эти формулы в формулу Журавского, для касательных напряжений получим:

изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромат

Касательные напряжения изменяются по высоте поперечного сечения по закону квадратичной параболы (см. рис. 7.11).

При изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромат(для наиболее удаленных от нейтральной оси точек) изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромат.

Для точек, расположенных на нейтральной оси (при изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромат), изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромат.

изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромат

Эпюры касательных напряжений двутаврового сечения

Характерная особенность двутаврового сечения: резкое изменение ширины поперечного сечения (изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромат), где полка соединяется со стенкой.

Определим касательное напряжение в некоторой точке K (рис. 7.12), проведя через нее сечение, ширина которого равна толщине стенки: изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромат.

Рассмотрим верхнюю отсеченную часть поперечного сечения (заштрихована на рис. 7.12), статический момент инерции которой относительно нейтральной оси x равен сумме статических моментов инерции полки и заштрихованной части стенки:

изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромат

Эпюра касательных напряжений для двутаврового сечения представлена на рис. 7.12, б.

Касательные напряжения изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромат, возникающие в точках полки двутавра, по формуле Журавского вычислять нельзя, поскольку при ее выводе использовалось допущение о равномерности распределения касательных напряжений по ширине поперечного сечения, что справедливо только если ширина сечения изображение Эпюры касательных напряжений прямоугольника двутавра круга сопроматневелика. Однако очевидно, что касательные напряжения малы и не оказывают практического влияния на прочность балки. Эпюра касательных напряжений для двутаврового сечения показана штриховой линией (см. рис. 7.12, б).

Читайте также:  Чем выше напряжение узо

Формула касательного напряжения в точке L ( где полка соединяется со стенкой):

изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромат

Наибольшие касательные напряжения возникают в точках, лежащих на нейтральной оси x.

Эпюры касательных напряжений круглого сечения

Для построения эпюры касательных напряжений круглого сечения выясним направление касательных напряжений при изгибе , возникающих в некоторой точке контура поперечного сечения стержня.

изображение Эпюры касательных напряжений прямоугольника двутавра круга сопроматРассмотрим произвольное поперечное сечение стержня (рис. 7.13, а).

Предположим: в некоторой точке контура К касательное напряжение при изгибе изображение Эпюры касательных напряжений прямоугольника двутавра круга сопроматнаправлено произвольно по отношению к контуру. Разложим касательное напряжение на две составляющие изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромати изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромат, направленные соответственно по нормали и касательной к контуру. Если касательное напряжение изображение Эпюры касательных напряжений прямоугольника двутавра круга сопроматсуществует, то по закону парности касательных напряжений на поверхности стержня должно существовать равное ему по значению касательное напряжение при изгибе изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромат. Поскольку поверхность стержня свободна от внешних сил, параллельных оси балки z, касательное напряжение на поверхности стержня изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромати, следовательно, изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромат.

Таким образом, в точке контура поперечного сечения, поверхность которого не нагружена продольными внешними нагрузками, касательное напряжение при изгибе направлено по касательной к контуру.

Покажем, что в вершине угла поперечного сечения стержня касательное напряжение равно нулю (рис. 7.13, б).

Предположим, что в вершине угла (в точке M) возникает касательное напряжение изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромат. Разложим его на составляющие касательные напряжения изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромати изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромат. По закону парности касательных напряжений эти составляющие равны нулю, поскольку равны нулю напряжения на поверхности стержня изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромати изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромат.

изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромат

Задача вычисления касательных напряжений в произвольной точке балки круглого поперечного сечения усложняется. Однако если сделать предположение: в точках, расположенных на некоторой линии ab (рис. 7.14), касательные напряжения изображение Эпюры касательных напряжений прямоугольника двутавра круга сопроматпри изгибе направлены так, что все они пересекаются в точке О, и вертикальные проекции этих напряжений равномерно распределены вдоль линии ab, то формулу Журавского можно использовать для вычисления вертикальных проекций изображение Эпюры касательных напряжений прямоугольника двутавра круга сопроматпри построении эпюр касательных напряжений стержня круглого сечения . Вычисление остальных величин, входящих в формулу Журавского, производится, как и для прямоугольного поперечного сечения .

Наибольшие касательные напряжения, возникающие в точках, расположенных на нейтральной оси x, вычисляются по формуле:

Источник