Меню

Электрический ток это электромагнитная волна

Урок №3. Электричество и магнетизм. Электромагнитные волны.

ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ

Как вы сами уже догадываетесь, цель данного урока: освоить теоретические сведения касающиеся, электричества, магнетизма и проследить связь между этими двумя понятиями. Потому что именно благодаря магнитным (электромагнитным) явлениям, мы можем получить электричество, без которого сейчас не мыслима жизнедеятельность человека. В конце урока вас ждет не сложная, но довольно интересная практическая работа.

Непосредственную связь между электричеством и магнетизмом открыл в 1819 г. датский профессор физики Ганс Эрстед. Проводя опыты, ученый обнаружил, что всякий раз, когда он включал ток, магнитная стрелка, находящаяся поблизости от проводника с током, стремилась повернуться перпендикулярно проводнику, а когда выключал, магнитная стрелка возвращалась в исходное положение. Ученый сделал вывод: вокруг проводника с током возникает магнитное поле, которое воздействует на магнитную стрелку.

Вы можете в этом убедиться, если сами проведете аналогичный опыт. Для этого потребуются: батарея гальванических элементов, например 3336Л, миниатюрная лампа накаливания, предназначаемая для карманного электрического фонаря, медный провод толщиной 0,2 — 0,3 мм в эмалевой, хлопчатобумажной или шелковой изоляции и компас. С помощью отрезков провода, удалив с их концов изоляцию, подключите к батарее лампу накаливания. Лампа горит, потому что образовалась электрическая цепь. Батарея в данном случае является источником питания этой цепи. Поднесите один из соединительных проводников поближе к компасу, смотрите рис. и вы увидите, как его магнитная стрелка сразу же станет поперек проводника. Она укажет направление круговых магнитных силовых линий, рожденных током.

При изменении направления тока в проводнике меняется и направление линий магнитного поля. При изменении направления тока в проводнике меняется и направление линий магнитного поля.

Наиболее сильное магнитное поле тока будет возле самого проводника. По мере удаления от проводника магнитное поле, рассеиваясь, ослабевает.
А если изменить направление тока в проводнике, поменяв местами подключение его к полюсам батареи? Изменится и направление магнитных силовых линий — магнитная стрелка повернется в другую сторону. Значит, направление силовых линий магнитного поля, возбуждаемого током, зависит от направления тока в проводнике.
Какова в этих опытах роль лампы накаливания? Она служит как бы индикатором наличия тока в цепи. Она, кроме того, ограничивает ток в цепи. Если к батарее подключить только проводник, магнитное поле тока станет сильнее, но батарея быстро разрядится.
Если в проводнике течет постоянный ток неизменного значения, его магнитное поле также не будет изменяться. Но если ток уменьшится, то слабее станет и его магнитное поле. Увеличится ток, усилится его магнитное поле, исчезнет ток — магнитное поле пропадет. Словом, ток и его магнитное поле неразрывно связаны и взаимно — зависимы.
Магнитное поле тока легко усилить, если проводник с током свернуть в катушку. Силовые линии магнитного поля такой катушки можно сгустить, если внутрь ее поместить гвоздь или железный стержень. Такая катушка с сердечником станет электромагнитом, способным притягивать сравнительно тяжелые железные предметы. Это свойство тока используется во множестве электрических приборов.

Проводник с током, свернутый в катушку, становится электромагнитом.

А если магнитную стрелку поднести к проводу с переменным током? Она станет неподвижной, даже если провод свернуть в катушку. Значит ли это, что вокруг проводника с переменным током нет магнитного поля? Магнитное поле есть, но оно тоже переменное. Магнитная же стрелка не будет отклоняться только вследствие своей «неповоротливости» — инерционности, она не будет успевать следовать за быстрыми изменениями магнитного поля.
Первый электромагнит, основные черты которого сохранились во многих современных электрических приборах, например в электромагнитных реле, излучателях головных телефонов, изобрел английский ученый Стерджен в 1821 г. А спустя два десятилетия после этого события французский физик Андре Ампер сделал новое, исключительно важное по тому времени открытие. Он опытным путем установил, что два параллельно расположенных проводника, по которым течет ток, способны совершать механическую работу: если ток в обоих проводниках течет в одном направлении, то они притягиваются, а если в противоположных, отталкиваются.
Догадываетесь, почему так происходит? В первом случае, когда направление тока в обоих проводниках одинаково, их магнитные поля, также имеющие одинаковое направление, как бы стягиваются в единое поле, увлекая за собой проводники. Во втором случае магнитные поля вокруг проводников, имеющие теперь противоположные направления, отталкиваются и тем самым раздвигают проводники.
В первой половине прошлого столетия ценнейший вклад в науку внес английский физик — самоучка Майкл Фарадей. Изучая связь между электрическим током и магнетизмом, он открыл явление электромагнитной индукции. Суть его заключается в следующем. Если внутрь катушки из изолированной проволоки быстро ввести магнит, стрелка электроизмерительного прибора, подключенного к концам катушки, на мгновение отклонится от нулевой отметки на шкале прибора.

Энергия магнитного поля создает движение электронов - электрический ток.

При таком же быстром движении магнита внутри катушки, но уже в обратном направлении, стрелка прибора также быстро отклонится в противоположную сторону и вернется в исходное положение. Вывод мог быть один: магнитное поле пересекает провод и возбуждает (индуцирует) в нем движение свободных электронов — электрический ток. Впрочем, можно поступить иначе: перемещать не магнит, а катушку вдоль неподвижного магнита. Результат будет такой же. Магнит можно заменить катушкой, в которой течет постоянный ток. Магнитное поле этой катушки, вызванное током, при пересечении витков второй катушки также будет возбуждать в ней электродвижущую силу, создавая в ее цепи электрический ток.
Явление электромагнитной индукции лежит в основе действия генератора переменного тока, представляющего собой катушку из провода, вращающуюся между полюсами сильного магнита или электромагнита (на рис. катушка показана в виде одного витка провода).

Схема генератора переменного тока.

Вращаясь, катушка пересекает силовые линии магнитного поля, и в ней индуцируется (вырабатывается) электрический ток. В 1837 г. русский академик Б. С. Якоби открыл явление, обратное по действию генератора тока. Через катушку, помещенную в магнитном поле, ученый пропускал ток, и катушка начинала вращаться. Это был первый в мире электромагнитный двигатель. Фарадей, открывший закон электромагнитной индукции, опытным путем обнаружил еще очень важное явление — возможность передавать переменный ток из катушки в катушку на расстояние без какой — либо прямой электрической связи между ними. Суть этого явления заключается в том, что переменный или прерывающийся (пульсирующий) ток, текущий в одной из катушек, преобразуется в переменное магнитное поле, которое пересекает витки второй катушки и тем самым возбуждает в ней переменную ЭДС. На этой основе создан замечательный прибор, который называется трансформатор, играющий очень важную роль в электротехнике и радиотехнике.

ВОЗНИКНОВЕНИЕ ЭЛЕКТРОМАГНИТНЫХ ВОЛН.

Опыты Майкла Фарадея и его соотечественника и последователя Кларка Максвелла привели ученых к выводу, что переменное магнитное поле, рождаемое непрерывно изменяющимся током, создает в окружающем пространстве электрическое поле, которое в свою очередь возбуждает магнитное поле, магнитное поле — электрическое и т.д. Взаимосвязанные, создаваемые друг другом магнитное и электрическое поля образуют единое переменное электромагнитное поле, которое непрерывно, как бы отделяясь и удаляясь от места возбуждения его, распространяется во всем окружающем пространстве со скоростью света, равной 300 000 км/с. Явление возбуждения переменным током электромагнитных полей принято называть излучением электромагнитных колебаний или излучением электромагнитных волн. Встречая на своем пути проводники, магнитные составляющие электромагнитных колебаний возбуждают в этих проводниках переменное электрическое поле, создающее в них такой же переменный ток, как ток, возбудивший электромагнитные волны, только несравненно слабее. На этом замечательном явлении и основана техника радиопередачи и радиоприема.

Длина волны есть расстояние, проходимое волной за один период, т. е. за время одного колебания. Зная скорость распространения радиоволн и частоту, можно определить длину волны.

Графическое изображение длины волны

Пусть, например, частота тока в антенне радиопередатчика составляет 1 000 000 гц. Тогда период колебания равен 0,000 001 сек. За одну секунду радиоволна проходит 300 000000 м, а за 0,000 001 сек она пройдет расстояние в миллион раз меньше, т. е. 300 м. Это и есть длина волны. Если частота тока станет вдвое меньше и будет составлять 500000 гц, то период колебания станет равным 0,000 002 сек. За это время радиоволна пройдет путь в 600 м. Чем меньше частота, тем больше длина волны, и наоборот.

Длина волны и частота обратно пропорциональны друг другу.

Длину радиоволны всегда можно вычислить, если разделить скорость распространения, равную 300 000 км/сек, на частоту. Чтобы длина волны получилась в метрах, скорость распространения следует принимать 300 000 000 м/сек

Зависимость длины волны от частоты

и наоборот если нам необходимо найти частоту:

Формула расчета частоты переменного тока через длину волны

Если говорить о длине волны, то нам следует упомянуть об условии возникновения радиоволны.Радиоволна — это ток высокой частоты. Токами высокой частоты называют токи,частота которых свыше 10 000 Гц. Когда такие токи циркулируют в проводнике они производят электромагнитные волны. Отделяясь от проводника полны распространяются в виде колец радиус которых увеличивается со скоростью 300 000 000 м/с.

Как происходит процесс излучения радиоволны

ДЛИНА ВОЛНЫ.

Так что же такое длина волны? — это расстояние между двумя электромагнитными кольцами, которые последовательно отделяются от антенны. За каждый период тока высокой частоты отделяется одно кольцо. Таким образом когда второе кольцо отделяется от антенны, первое уже прошло некоторое расстояние называемое длиной волны.

Читайте также:  Схема получения электрического тока

Равенство скорости распространения электромагнитных волн, создаваемых переменным током, и скорости света не случайно, потому что световые лучи, как, между прочим, и тепловые, по своей природе тоже электромагнитные колебания. Мысль о родстве световых и электрических явлений высказал русский ученый Михаил Васильевич Ломоносов еще в середине XVIII в. Теорию электромагнитных волн развил Кларк Максвелл в первой половине прошлого столетия. Однако только в 1888 г. немецкому ученому Генриху Герцу удалось опытным путем доказать сам факт существования электромагнитных волн и найти возможность обнаружить их. В его опытной установке излучателем электромагнитных волн был вибратор — два стержня с металлическими шарами на концах, источником напряжения питания вибратора — индукционная катушка Румкорфа (есть в каждом школьном физическом кабинете), а обнаруживателем электромагнитной энергии — резонатор, представляющий собой незамкнутый виток провода, тоже с шарами на концах.

Опытная установка Г. Герца для возбуждения и обнаружения электромагнитных волн и графическое изображение затухающих электромагнитных волн.

Половинки вибратора заряжались до столь высокого напряжения, что между внутренними шарами через воздух проскакивала электрическая искра — искусственная молния в миниатюре. Происходил — электрический разряд. В этот момент, длившийся малые доли секунды, вибратор излучал короткую серию быстропеременных затухающих, т.е. убывающих по амплитуде, электромагнитных волн. Пересекая провод резонатора, расположенного поблизости, электромагнитная энергия возбуждала в нем электрические колебания, о чем свидетельствовала очень слабая искра, появлявшаяся между шарами резонатора. Еще разряд и новая очередь затухающих электромагнитных колебаний возбуждала в резонаторе слабый переменный ток. Так Генрих Герц нашел способ возбуждения электромагнитных волн и обнаружения их. Но он не представлял себе путей практического использования своего открытия.

Важные понятия и моменты, которые необходимо запомнить из этого урока: что такое магнитное поле, как оно воздействует на окружающие предметы, основные условия необходимые для возникновения магнитного поля. Понятие электромагнетизма и электромагнитной индукции, а так же условия возникновения электромагнитных колебаний под действием переменного тока — электромагнитные волны.

Содержание курса и следующий урок можете найди здесь.

Источник

Электромагнитные волны

теория по физике 🧲 колебания и волны

Вспомним, что волна — это колебания, распространяющиеся в пространстве. Механическая волна представляет собой колебания, распространяющиеся в вещественной среде. Тогда электромагнитная волна — это электромагнитные колебания, которые распространяются в электромагнитном поле.

Как появляются и распространяются электромагнитные волны

Представьте себе неподвижный точечный заряд. Пусть его окружают еще много таких зарядов. Тогда он будет действовать на них с некоторой кулоновской силой (и они на него). А теперь представьте, что заряд сместился. Это приведет к изменению расстояния по отношению к другим зарядам, а, следовательно, и к изменению сил, действующих на них. В результате они тоже сместятся, но с некоторым запаздыванием. При этом начнут смещаться и другие заряды, которые взаимодействовали с ними. Так распространяется электромагнитные взаимодействия.

Теперь представьте, что заряд не просто сместился, а он начал быстро колебаться вдоль одной прямой. Тогда по характеру движения он будет напоминать шарик, подвешенный к пружине. Разница будет только в том, что колебания заряженных частиц происходят с очень высокой частотой.

Вокруг колеблющегося заряда начнет периодически изменяться электрическое поле. Очевидно, что период изменений этого поля, будет равен периоду колебаний заряда. Периодически меняющееся электрическое поле будет порождать периодически меняющееся магнитное поле. Это магнитное поле, в свою очередь, будет создавать переменное электрическое поле, но уже на большем расстояние от заряда, и т.д. В результате появления взаимно порождаемых полей в пространстве, окружающем заряд, возникает система взаимно перпендикулярных, периодически меняющихся электрических и магнитных полей. Так образуется электромагнитная волна, которая распространяется от колеблющегося заряда во все стороны.

Электромагнитная волна не похожа на те возмущения вещественной среды, которые вызывают механические волны. Посмотрите на рисунок. На нем изображены векторы напряженности → E и магнитной индукции → B в различных точках пространства, лежащих на оси Oz, в фиксированный момент времени. Никаких гребней и впадин среды при этом не появляется.

Урок 10. электромагнитные волны - Физика - 11 класс - Российская электронная школа

В каждой точке пространства электрические и магнитные пол меняются во времени периодически. Чем дальше расположена точка от заряда, тем позднее ее достигнут колебания полей. Следовательно, на разных расстояниях от заряда колебания происходят с различными фазами. Колебания векторов → E и → B в любой точке совпадают по фазе.

Длина электромагнитной волны — расстояние между двумя ближайшими точками, в которых колебания происходят в одинаковых фазах.

Длина электромагнитной волны обозначается как λ. Единица измерения — м (метр).

Обратите внимание на рисунок выше. Векторы магнитной индукции и напряженности поля, являющиеся периодически изменяющимися величинами, в любой момент времени перпендикулярны направлению распространения волны. Следовательно, электромагнитная волна — поперечная волна.

Условия возникновения электромагнитных волн

Электромагнитные волны излучаются только колеблющимися заряженными частицами. При этом важно, чтобы скорость их движения постоянно менялась, т.е. чтобы они двигались с ускорением.

Наличие ускорения — главное условие возникновения электромагнитных волн.

Электромагнитное поле может излучаться не только колеблющимся зарядом, но и заряженной частицей, перемещающейся с постоянно меняющейся скоростью. Интенсивность электромагнитного излучения тем больше, чем больше ускорение, с которым движется заряд.

Представим заряд, движущийся с постоянной скоростью. Тогда создаваемые им электрическое и магнитное поля будут сопровождать его как шлейф. Только при ускорении заряда поля «отрываются» от частицы и начинают самостоятельное существование в форме электромагнитных волн.

Впервые существование электромагнитных волн предположил Максвелл, который посчитал, что они должны распространяться со скоростью света. Но экспериментально они были обнаружены лишь спустя 10 лет после смерти ученого. Их открыл Герц. Он же подтвердил, что скорость распространения электромагнитных волн равна скорости света: c = 300 000 км/с.

Плотность потока электромагнитного излучения

Излученные электромагнитные волны несут с собой энергию. Рассмотрим поверхность площадью S, через которую электромагнитные волны переносят энергию.

На рисунке выше прямые линии указывают направления распространения электромагнитных волн. Это лучи — линии, перпендикулярные поверхностям, во всех точках которых колебания происходят в одинаковых фазах. Такие поверхности называются волновыми поверхностями.

Плотность потока электромагнитного излучения, или интенсивность волны — отношение электромагнитной энергии ΔW, проходящей за время Δt через перпендикулярную лучам поверхность площадью S, к произведению площади S на время Δt.

Плотность потока электромагнитного излучения обозначается как I. Единица измерения — Вт/м 2 (ватт на квадратный метр). Поэтому плотность потока электромагнитного излучения фактически представляет собой мощность электромагнитного излучения, проходящего через единицу площади поверхности.

Численно плотность потока электромагнитного излучения определяется формулой:

Выразим I через плотность электромагнитной энергии и скорость ее распространения с. Выберем поверхность площадью S, перпендикулярную лучам, и построим на ней как на основании цилиндр с образующей cΔt (см. рисунок ниже).

Объем цилиндра: ΔV = ScΔt. Энергия электромагнитного поля внутри цилиндра равна произведению плотности энергии на объем: ΔW = w cΔtS. Вся эта энергия за время Δt пройдет через правое основание цилиндра. Поэтому получаем:

I = w c Δ t S S Δ t . . = w c

Следовательно, плотность потока электромагнитного излучения равна произведению плотности электромагнитной энергии на скорость ее распространения.

Плотность электромагнитной энергии — энергия электромагнитного излучения в единице объема. Обозначается как w. Единица измерения — Дж/м 3 .

Пример №1. Плотность потока излучения равна 6 мВт/м 2 . Найти плотность энергии электромагнитной волны.

w = I c . . = 6 · 10 − 3 3 · 10 8 . . = 2 · 10 − 11 ( Д ж м 3 . . )

Точечный источник излучения

Источники излучения электромагнитных волн могут быть весьма разнообразными. Простейшим является точечный источник.

Точечный источник — источник излучения, размеры которого много меньше расстояния, на котором оценивается его действие.

Предполагается, что точечный источник посылает электромагнитные волны по всем направлениям с одинаковой интенсивностью. В действительности таких источников не существует. Но за такие источники излучения можно принять звезды, так как расстояние между ними существенно больше размеров самих звезд.

Энергия, которую переносят электромагнитные волны, с течением времени распределяется по все большей и большей поверхности. Поэтому энергия, передаваемая через поверхность единичной площадки за единицу времени, т. е. плотность потока излучения, уменьшается по мере удаления от источника.

Поместим точечный источник в центр сферы радиусом R. Площадь поверхности сферы S = 4πR 2 . Если считать, что источник по всем направлениям за время Δt излучает суммарную энергию ΔW, получим:

I = Δ W S Δ t . . = Δ W 4 π Δ t . . · 1 R 2 . .

Плотность потока излучения от точечного источника убывает обратно пропорционально квадрату расстояния до источника.

Пример №2. Плотность потока электромагнитного излучения на расстоянии 5 метров от точечного источника составляет 20 мВт/м 2 . Найти плотность потока электромагнитного излучения на расстоянии 10 метров от этого источника.

Расстояние по условию задачи увеличилось вдвое. Так как плотность потока излучения от точечного источника убывает обратно пропорционально квадрату расстояния до источника, при увеличении расстояния вдвое интенсивность излучения уменьшится в 4 раза. То есть, она станет равной 5 мВт/м 2 .

Зависимость плотности потока излучения от частоты

Напряженность электрического поля и магнитная индукция электромагнитной волны пропорциональны ускорению заряда. Ускорение при гармонических колебаниях пропорционально квадрату частоты. Поэтому напряженность электрического поля и магнитная индукция также пропорциональны квадрату частоты:

Читайте также:  Ток 100 ваттной лампочки

Плотность энергии электрического поля пропорциональна квадрату напряженности поля. Энергия магнитного поля, как это можно показать, пропорциональна квадрату магнитной индукции. Полная плотность энергии электромагнитного поля равна сумме плотностей энергий электрического и магнитного полей. Поэтому плотность потока излучения I пропорциональна:

Плотность потока излучения пропорциональна четвертой степени частоты. Так, при увеличении частоты колебаний зарядов в 2 раза энергия, излучаемая ими, возрастает в 16 раз. При увеличении частоты в 3 раза, энергия излучения увеличивается в 81 раз, и т.д.

Пример №3. Частота электромагнитной волны уменьшилась в 4 раза. Найти, во сколько раз изменилась плотность потока излучения.

Так как плотность потока излучения пропорциональна четвертой степени частоты, мы можем найти плотность потока излучения путем извлечения корня из числа 4 дважды:

4 √ 4 = √ √ 4 = √ 2 ≈ 1 , 4

Плотность потока излучения уменьшилась в 1,4 раза.

Свойства электромагнитных волн

Современные радиотехнические устройства позволяют провести очень наглядные опыты по наблюдению свойств электромагнитных волн. При этом лучше всего пользоваться волнами сантиметрового диапазона. Эти волны излучаются специальным генератором сверхвысокой частоты (СВЧ). Электрические колебания генератора модулируют звуковой частотой. Принятый сигнал после детектирования подается на громкоговоритель.

Свойство 1 — Поглощение электромагнитных волн
Если расположить рупоры друг против друга и добиться хорошей слышимости звука в громкоговорители, а затем поместить между ними диэлектрик, звук будет менее громким.
Свойство 2 — Отражение электромагнитных волн
Если диэлектрик заменить металлической пластиной, то звук перестанет быть слышимым. Волны не достигают приемника вследствие отражения. Отражение происходит под углом, равным углу падения, как и в случае световых и механических волн. Чтобы убедиться в этом, рупоры располагают под одинаковыми углами к большому металлическому листу. Звук исчезнет, если убрать лист или повернуть его.
Свойство 3 — Преломление электромагнитных волн
Электромагнитные волны изменяют свое направление (преломляются) на границе диэлектрика. Это можно обнаружить с помощью большой треугольной призмы из парафина. Рупоры располагают под углом друг к другу, как и при демонстрации отражения. Металлический лист заменяют затем призмой. Убирая призму или поворачивая ее, наблюдают исчезновение звука.
Свойство 4 — Поперечность электромагнитных волн
Поместим между генератором и приемником решетку из параллельных металлических стержней. Решетку расположим так, чтобы стержни были горизонтальными или вертикальными. При одном из этих положений, когда электрический вектор параллелен стержням, в них возбуждаются токи, в результате чего решетка начинает отражать волны, подобно сплошной металлической пластине. Когда же вектор перпендикулярен стержням, токи в них не возбуждаются и электромагнитная волна проходит через решетку.

Шкала электромагнитных волн

Электромагнитные волны имеют большое разнообразие. Они классифицируются по длине волны λ или связанной с ней частоте ν. Шкала электромагнитных волн включает в себя:

  • радиоволны;
  • оптическое излучение;
  • ионизирующее излучение.

Укажем частоты и длины указанных волн, а также их подробную классификацию в таблице.

Частоты и длины волн электромагнитного излучения видимого спектра смотрите на рисунке ниже.

В электромагнитной волне, распространяющейся со скоростью → v , происходят колебания векторов напряжённости электрического поля → E и индукции магнитного поля → B . При этих колебаниях векторы → v , → E , → B . имеют взаимную ориентацию:

Источник



Электромагнитные волны

Существование электромагнитных волн было теоретически предсказано великим английским физиком Дж. Максвеллом в 1864 году. Максвелл проанализировал все известные к тому времени законы электродинамики и сделал попытку применить их к изменяющимся во времени электрическому и магнитному полям. Он обратил внимание на ассиметрию взаимосвязи между электрическими и магнитными явлениями. Максвелл ввел в физику понятие вихревого элеетрического поля и предложил новую трактовку закона электромагнитной индукции, открытой Фарадеем в 1831 г.:

Всякое изменение магнитного поля порождает в окружающем пространстве вихревое электрическое поле, силовые линии которого замкнуты.

Максвелл высказал гипотезу о существовании и обратного процесса:

Изменяющееся во времени электрическое поле порождает в окружающем пространстве магнитное поле.

Рис. 2.6.1 и 2.6.2 иллюстрируют взаимное превращение электрического и магнитного полей.

Закон электромагнитной индукции в трактовке Максвелла

Гипотеза Максвелла. Изменяющееся электрическое поле порождает магнитное поле

Эта гипотеза была лишь теоретическим предположением, не имеющим экспериментального подтверждения, однако на ее основе Максвеллу удалось записать непротиворечивую систему уравнений, описывающих взаимные превращения электрического и магнитного полей, т. е. систему уравнений электромагнитного поля (уравнений Максвелла). Из теории Максвелла вытекает ряд важных выводов:

1. Существуют электромагнитные волны, то есть распространяющееся в пространстве и во времени электромагнитное поле. Электромагнитные волны поперечны – векторы и перпендикулярны друг другу и лежат в плоскости, перпендикулярной направлению распространения волны (рис. 2.6.3).

Синусоидальная (гармоническая) электромагнитная волна. Векторы , и взаимно перпендикулярны

2. Электромагнитные волны распространяются в веществе с конечной скоростью

Здесь ε и μ – диэлектрическая и магнитная проницаемости вещества, ε и μ – электрическая и магнитная постоянные:

Длина волны λ в синусоидальной волне свявзана со скоростью υ распространения волны соотношением λ = υT = υ / f, где f – частота колебаний электромагнитного поля, T = 1 / f.

Скорость электромагнитных волн в вакууме (ε = μ = 1):

Скорость c распространения электромагнитных волн в вакууме является одной из фундаментальных физических постоянных.

Вывод Максвелла о конечной скорости распространения электромагнитных волн находился в противоречии с принятой в то время теорией дальнодействия, в которой скорость распространения электрического и магнитного полей принималась бесконечно большой. Поэтому теорию Максвелла называют теорией близкодействия.

3. В электромагнитной волне происходят взаимные превращения электрического и магнитного полей. Эти процессы идут одновременно, и электрическое и магнитное поля выступают как равноправные «партнеры». Поэтому объемные плотности электрической и магнитной энергии равны друг другу: wэ = wм.

Отсюда следует, что в электромагнитной волне модули индукции магнитного поля и напряженности электрического поля в каждой точке пространства связаны соотношением

4. Электромагнитные волны переносят энергию. При распространении волн возникает поток электромагнитной энергии. Если выделить площадку S (рис. 2.6.3), ориентированную перпендикулярно направлению распространения волны, то за малое время Δt через площадку протечет энергия ΔWэм, равная

Плотностью потока или интенсивностью I называют электромагнитную энергию, переносимую волной за единицу времени через поверхность единичной площади:

Подставляя сюда выражения для wэ, wм и υ, можно получить:

Поток энергии в электромагнитной волне можно задавать с помощью вектора, направление которого совпадает с направлением распространения волны, а модуль равен EB / μμ. Этот вектор называют вектором Пойнтинга.

В синусоидальной (гармонической) волне в вакууме среднее значение Iср плотности потока электромагнитной энергии равно

где E – амплитуда колебаний напряженности электрического поля.

Плотность потока энергии в СИ измеряется в ваттах на квадратный метр (Вт/м 2 ).

5. Из теории Максвелла следует, что электромагнитные волны должны оказывать давление на поглощающее или отражающее тело. Давление электромагнитного излучения объясняется тем, что под действием электрического поля волны в веществе возникают слабые токи, то есть упорядоченное движение заряженных частиц. На эти токи действует сила Ампера со стороны магнитного поля волны, направленная в толщу вещества. Эта сила и создает результирующее давление. Обычно давление электромагнитного излучения ничтожно мало. Так, например, давление солнечного излучения, приходящего на Землю, на абсолютно поглощающую поверхность составляет примерно 5 мкПа. Первые эксперименты по определению давления излучения на отражающие и поглощающие тела, подтвердившие вывод теории Максвелла, были выполнены Петром Николаевичем Лебедевым в 1900 г. Опыты Лебедева имели огромное значение для утверждения электромагнитной теории Максвелла.

Существование давления электромагнитных волн позволяет сделать вывод о том, что электромагнитному полю присущ механический импульс. Импульс электромагнитного поля в единичном объеме выражается соотношением

где wэм – объемная плотность электромагнитной энергии, c – скорость распространения волн в вакууме. Наличие электромагнитного импульса позволяет ввести понятие электромагнитной массы.

Для поля в единичном объеме

Это соотношение между массой и энергией электромагнитного поля в единичном объеме является универсальным законом природы. Согласно специальной теории относительности (СТО), оно справедливо для любых тел независимо от их природы и внутреннего строения.

Таким образом, электромагнитное поле обладает всеми признаками материальных тел – энергией, конечной скоростью распространения, импульсом, массой. Это говорит о том, что электромагнитное поле является одной из форм существования материи.

6. Первое экспериментальное подтверждение электромагнитной теории Максвелла было дано примерно через 15 лет после создания теории в опытах Генриха Герца (1888 г.). Герц не только экспериментально доказал существование электромагнитных волн, но впервые начал изучать их свойства – поглощение и преломление в разных средах, отражение от металлических поверхностей и т. п. Ему удалось измерить на опыте длину волны и скорость распространения электромагнитных волн, которая оказалась равной скорости света.

Опыты Герца сыграли решающую роль для доказательства и признания электромагнитной теории Максвелла. Через семь лет после этих опытов электромагнитные волны нашли применение в беспроводной связи (А.С. Попов, 1895 г.).

Читайте также:  Закопать человека если его ударило током

7. Электромагнитные волны могут возбуждаться только ускоренно движущимися зарядами. Цепи постоянного тока, в которых носители заряда движутся с неизменной скоростью, не являются источником электромагнитных волн. В современной радиотехнике излучение электромагнитных волн производится с помощью антенн различных конструкций, в которых возбуждаются быстропеременные токи.

Простейшей системой, излучающей электромагнитные волны, является небольшой по размерам электрический диполь, дипольный момент p (t) которого быстро изменяется во времени.

Такой элементарный диполь называют диполем Герца. В радиотехнике диполь Герца эквивалентен небольшой антенне, размер которой много меньше длины волны λ (рис. 2.6.4).

Элементарный диполь, совершающий гармонические колебания

Рис. 2.6.5 дает представление о структуре электромагнитной волны, излучаемой таким диполем.

Излучение элементарного диполя

Следует обратить внимание на то, что максимальный поток электромагнитной энергии излучается в плоскости, перпендикулярной оси диполя. Вдоль своей оси диполь не излучает энергии. Герц использовал элементарный диполь в качестве излучающей и приемной антенн при экспериментальном доказательстве существования электромагнитных волн.

Источник

Электромагнитная волна

Я иду на урокОрганизуется деятельность учащихся по распознаванию физического объекта «электромагнитная волна» в конкретных ситуациях * . Чтобы обучить данной деятельности, необходимо актуализировать ранее полученные знания: что такое электромагнитная волна; каковы её источники и способы обнаружения. Понятие «электромагнитная волна» может быть усвоено при условии, что у учащихся сформированы следующие знания: переменное электрическое поле, переменное магнитное поле, связь между этими полями, электрические заряды, ускоренно движущиеся электрические заряды, колебания электрического заряда, проводники, конденсатор, условные обозначения электрических цепей, колебательный контур. Теперь предстоит осмыслить порядок действий по распознаванию электромагнитной волны. Для этого учащиеся должны составить порядок действий в конкретной ситуации самостоятельно, а после уточнения с учителем (или после обсуждения в классе) усвоить эти действия через самостоятельную работу.

Ход урока

I. Мотивационный этап

Учитель. С каким понятием физического объекта мы познакомились на прошлом уроке?

Ученик. Электромагнитная волна.

Учитель. Какой физический объект называется электромагнитной волной?

Ученик. Электромагнитная волна – это чувственно не воспринимаемый объект, состоящий из взаимно связанных переменных электрического и магнитного полей.

Учитель. Зачем нам нужно это знание? Какую деятельность мы можем выполнить на его основе?

Ученик. Наверное, чтобы распознавать этот объект в окружающей нас жизни и, используя электромагнитную волну, разработать устройство, позволяющее передавать звук и изображение на расстояние в сотни километров без проводов и принимать их.

Учитель. Скажите, пожалуйста, присутствует ли этот объект в нашем кабинете физики? (Ученики по-разному отвечают на этот вопрос.) Вот видите, не все могут установить, присутствует электромагнитная волна в конкретной ситуации или нет.

II. Этап составления схемы ориентировочной основы деятельности

Учитель. Возникает потребность научиться этому распознаванию. Запишите задание: научиться выделять ситуации, в которых есть электромагнитная волна. Теперь попрошу перечислить действия, которые надо выполнить, чтобы выполнить это задание. Работайте в группах по 4 человека. На работу 4 минуты. (Дети выполняют задание.)

Какие действия составила 1-я группа? 3-я? 5-я? (Называет любые три. Действия записываются на доске без комментария: 1) выделить понятие, указанное в цели деятельности; 2) определить это понятие; 3) выделить признаки этого понятия; 4) установить, какая связь между признаками – конъюнктивная или дизъюнктивная; 5) установить, обладает ли заданная ситуация этими признаками; 6) сформулировать вывод.)

Откуда вы знаете, что надо выполнить именно такие действия?

Ученик. Мы опирались на определение электромагнитной волны и условия, при которых она обнаруживается.

Учитель. Хорошо, это уже ориентир. Давайте вместе попробуем выделить действия, которые нужно выполнить, чтобы выделить ситуации, в которых есть электромагнитная волна. Вы совершенно верно отметили, что нужно исходить из определения электромагнитной волны. Так какое же действие нужно выполнить первым?

Ученик. Выделить понятие, указанное в цели – электромагнитная волна, – и указать условия, при которых она обнаруживается.

Учитель. Составим табл. 1 (чертит на доске).

Мои действия при выполнении задания

Результат выполнения каждого действия

Записываем в таблицу под № 1: «1. Выделить понятие, указанное в цели деятельности». (Ученик заносит в первую строку таблицы свои действия при выполнении задания и результат выполнения этих действий.Окончательный вид этой таблицы представлен на с. 4 – см. табл. 2.)

Теперь определим понятие электромагнитная волна и укажем условия, при которых она возникает и обнаруживается. Это действие запишем под № 2 в таблицу. (Ученик заполняет вторую строку табл. 1.)

В определении понятия электромагнитная волна указаны признаки этого объекта и условия, при которых она возникает и обнаруживается. Какие признаки этого объекта мы можем выделить?

Ученик. Взаимосвязанные переменные электрическое и магнитное поля.

Учитель. Хорошо. При каких условиях возникает элетромагнитная волна?

Ученик. Изменяющийся электрический ток, например, заряды, движущиеся с ускорением.

Учитель. Очень хорошо. Но ведь элетромагнитная волна – это чувственно не воспринимаемый объект. Как же можно её обнаружить?

Ученик. По возникновению электрического тока в металлическом проводнике.

Учитель. Отлично! Запишем под № 3: «Выделить признаки элетромагнитной волны и условия, при которых она возникает и обнаруживается». Запишите в графу «Результаты…» названные признаки и условия. (Ученик заполняет третью строку табл. 1, без союза «ИЛИ» между пунктами в столбце «Результаты».)

Скажите, обязательно ли для распознавания ситуации, в которой есть электромагнитная волна, установить, все ли признаки электромагнитной волны имеют место, или достаточно одного из признаков?

Ученик. Для распознавания этой ситуации достаточно одного из признаков.

Учитель. Хорошо. Тогда поставим в таблице между признаками союз «ИЛИ». Такая связь между признаками называется дизъюнктивной связью. Мы с вами выполнили следующее действие: установили характер связи между признаками. Отметим это под № 4 в таблице. (Ученик заполняет четвёртую строку табл. 1.)

Итак, мы выделили признаки и условия, установили связь между ними. А зачем нам это надо было делать?

Ученик. Чтобы установить, обладает ли заданная ситуация этими признаками.

Учитель. Хорошо. Запишем в таблицу это пунктом № 5: «Установить, обладает ли заданная ситуация этими признаками». А теперь давайте по­смотрим, обладает ли конкретная ситуация первым признаком. Что для этого нужно установить?

Таблица 2. Окончательный вид табл. 1, составляемой на уроке

Мои действия при выполнении задания

Результат выполнения каждого действия

1. Выделить понятие, указанное в цели деятельности

2. Определить понятие электромагнитная волна и указать условия, при которых она возникает и обнаруживается

Электромагнитная волна – это чувственно не воспринимаемый объект, состоящий из взаимосвязанных переменных электрического и магнитного полей.
Источниками электромагнитной волны является изменяющийся электрический ток (заряды, движущиеся с ускорением).
Обнаруживаются электромагнитные волны по их действию на металлические проводники: они вызывают в них электрический ток

3. Выделить признаки электромагнитной волны и условия, при которых она возникает и обнаруживается

I. Взаимосвязанные переменные электрическое и магнитное поля.
ИЛИ
II. Изменяющийся электрический ток (заряды, движущиеся с ускорением)
ИЛИ
III. Возникающий или исчезающий в металлическом проводнике электрический ток

4. Установить, какая связь между признаками

5. Установить, обладает ли заданная ситуация этими признаками

I признак
1) Установить, есть ли электрическое или магнитное поле;
2) установить, является ли это поле переменным.
ИЛИ
II признак
1) Установить, есть ли электрический ток;
2) установить, изменяется ли этот ток (создаётся ли он ускоренно движущимися зарядами).
ИЛИ
III признак
1) Установить, есть ли металлический проводник;
2) установить, имеется ли в нём электрический ток;
3) установить, не создаётся ли этот ток источником тока

6. Сформулировать вывод

См. логическое правило вывода для дизъюнктивной связи

Ученики. Установить, есть ли электрическое или магнитное поле.

. Установить, является ли это поле переменным.

Учитель. Хорошо. Запишите это в графу «Результаты…». А теперь давайте попробуем установить, обладает ли эта ситуация вторым признаком. Что для этого нужно?

Ученики. Установить, есть ли электрический ток.

. Установить, изменяется ли этот ток или он создаётся ускоренно движущимися зарядами.

Учитель. Очень хорошо! Занесите это в «Результаты». Ну а теперь самостоятельно заполните таблицу по третьему признаку. (Ученик заканчивает заполнение пятой строки табл. 1.)

Учитель. Прочитайте, что у вас записано.

Ученики. Установить, есть ли металлический проводник.

. Установить, имеется ли в нём электрический ток.

. Установить, не создаётся ли этот ток источником тока.

Учитель. Какие действия после этого мы должны выполнить?

Ученик. Сформулировать вывод.

Учитель. Верно. Запишем это действие под № 6 в таблицу. (Ученик заполняет левую колонку шестой строки табл. 1.) Как же сформулировать вывод?

Ученик. Нужно проверить, обладает ли конкретная ситуация хотя бы одним из признаков.

Учитель. Отлично! Вы правильно воспользовались логическим правилом вывода. Если признаки связаны союзом «ИЛИ» (дизъюнктивная связь), то для положительного ответа достаточно выполнения хотя бы одного из признаков. Запишем логическое правило вывода в виде табл. 3.

(Ученик заполняет всю шестую строку табл. 1.)

Таблица 3. Логическое правило вывода

Логическое правило вывода

Если признаки связаны союзом «и» – конъюнктивная связь:

Источник