Меню

Электрический ток в кинескопе телевизора

Принцип работы телевизора

Устройство и принцип работы телевизора

Телевизор состоит из устройства отображения визуальной информации (кинескопа, жидкокристаллической или плазменной панели); шасси — платы, которая содержит основные электронные блоки телевизора (телетюнер, декодер с усилителем аудио- и видеосигналов и др.), корпуса с расположенными на нем разъемами, кнопками управления и громкоговорителями.

Телевизионные радиосигналы, принятые антенной, подаются на радиочастотный (антенный) вход телевизора. Далее они поступают в радиочастотный модуль, называемый также тюнером, где из них выделяется и усиливается сигнал именно того канала, на который в этот момент настроен телевизор. В тюнере также происходит преобразование радиочастотного сигнала в низкочастотные видео- и аудиосигналы.

Видеосигнал после усиления подается в модуль цветности (только в телевизорах цветного изображения), содержащий декодер цветности, а затем на устройство отображения визуальной информации. Декодер цветности предназначен для декодирования сигналов цветности той или иной системы (PAL, SEC AM, NTSC).

Аудиосоставляющая подается в канал звукового сопровождения, где происходит выделение звукового сигнала и его необходимое усиление. После усиления аудиосигнал подается на громкоговоритель (динамик), преобразующий электрический сигнал в слышимый звук. Если телевизор рассчитан на воспроизведение стерео или многоканального звука, в составе его канала звукового сопровождения имеется соответствующий декодер многоканального звука, который разделяет звуковую составляющую на каналы.

Кинескопы бывают черно-белого изображения и цветного изображения, отличаются они по конструкции.

Экран кинескопа черно-белого изображения изнутри покрыт сплошным слоем люминофора, обладающего свойством светиться белым цветом под воздействием потока электронов. Тонкий электронный луч формируется электронным прожектором, размещенным в горловине кинескопа. Управление электронным лучом осуществляется электромагнитным способом, в результате чего он последовательно в ходе развертки сканирует экран по строкам, вызывая свечение люминофора. Интенсивность (яркость) свечения люминофора в ходе сканирования изменяется в соответствии с электрическим сигналом (видеосигналом), несущим информацию об изображении.

Экран кинескопа цветного изображения изнутри покрыт дискретным слоем люминофоров (в форме кружков или штрихов), светящихся красным, зеленым и синим цветом под действием трех электронных пучков, формируемых тремя электронными прожекторами. Все кинескопы цветного изображения перед экраном имеют цветоделительную теневую маску. Она служит для того, чтобы каждый из трех электронных лучей, одновременно проходящих через многочисленные отверстия маски в ходе сканирования, точно попадал на «свой» люминофор (первый — на зерна люминофора, светящиеся красным цветом, второй — на зерна люминофора, светящиеся зеленым цветом, третий — на зерна люминофора, светящиеся синим цветом).

Каждый электронный луч модулируется «своим» видеосигналом, что соответствует трем составляющим цветного изображения. Поступая на кинескоп, видеосигналы управляют интенсивностью электронных пучков и, следовательно, яркостью свечения люминофоров (красного, зеленого и синего). В результате на экране цветного кинескопа воспроизводятся одновременно 3 одноцветных изображения, создающих в совокупности цветное изображение.

К современным средствам отображения визуальной информации относят жидкокристаллические экраны, проекционные системы, плазменные панели.

В жидкокристаллических телевизорах LCD (Liquid Crystal Display) изображение формируется системой из жидких кристаллов и поляризационых фильтров. С тыльной стороны жидкокристаллическая панель равномерно освещается источником света. Управление ячейками (пикселями) жидких кристаллов осуществляется матрицей электродов, на которую подается управляющее напряжение. Под действием напряжения жидкие кристаллы разворачиваются, образуя активный поляризатор. При изменении степени поляризации светового потока, изменяется его яркость. Если плоскости поляризации жидкокристаллического пикселя и пассивного поляризационного фильтра отличаются на 90°, то через такую систему свет не проходит.

Цветное изображение получается в результате использования матрицы цветных фильтров, которые выделяют из излучения источника белого цвета три основных цвета, комбинация которых дает возможность воспроизвести любой цвет. Жидкокристаллические телевизоры отличаются компактностью, отсутствием геометрических искажений, вредных электромагнитных излучений, малой массой и потребляемой мощностью, но в то же время имеют малый угол обзора изображения.

В проекционных телевизорах изображение получается в результате оптической проекции на просветный или отражающий экран телевизора яркого светового изображения, создаваемого проектором. Проекторы, используемые в проекционных телевизорах, могут быть построены на электроннолучевых кинескопах, жидкокристаллических матричных полупроводниковых элементах, а также лазерных проекционных трубках.

Основными недостатками проекционных телевизоров являются их громоздкость, высокая потребляемая мощность, низкая четкость увеличенного изображения и узкая зона размещения зрителей перед экраном телевизора.

В основу работы плазменного телевизора положен принцип управления разрядом инертного газа, находящегося в ионизированном состоянии между двумя расположенными на небольшом расстоянии друг от друга плоскопараллельными стеклами ячеистой структуры. Рабочим элементом (пикселем), формирующим отдельную точку изображения, является группа из трех пикселей, ответственных, соответственно, за три основных цвета. Каждый пиксель представляет собой отдельную микрокамеру, на стенках которой находится флюоресцирующее вещество одного из основных цветов. Пиксели находятся в точках пересечения прозрачных управляющих электродов, образующих прямоугольную сетку. При разряде в толще инертного газа возбуждается ультрафиолетовое излучение, которое, воздействуя на люминофоры первичных цветов, вызывает их свечение. Изображение последовательно, точка за точкой, по строкам и кадрам развертывается на экране.

Яркость каждого элемента изображения на панели определяется временем его свечения. Если на экране обычного кинескопа свечение каждого люминофорного пятна непрерывно пульсирует с частотой 25 раз в секунду, то на плазменных панелях самые яркие элементы светятся постоянно ровным светом, не мерцая. Плазменные панели выпускается форматом изображения 16:9. Толщина панели размером экрана в 1 м не превышает 10-15 см, что позволяет использовать их в настенном варианте. Надежность плазменных панелей превышает надежность традиционных кинескопов.

Похожие статьи

  • Устройство и принципы работы приборов для измерения рн
  • Устройство и принцип работы компрессионной холодильной машины
  • Устройство и принцип действия фотометрических приборов
  • Устройство и принципы действия атомно-абсорбционных анализаторов
  • Электронные платформенные весы
  • Структурная схема телевизора черно-бепого изображения

Устройство телевизора: описание, принцип работы, виды

Сегодня телевизоры стали неотъемлемой частью каждой семьи. Придя домой после работы, каждый хочет привести себя в порядок, насытиться и ненадолго отключиться от реальности при помощи зрелищного преставления. Телевизор на протяжении десятилетий успешно справляется с этой человеческой потребностью, представляя вниманию домочадцев различные развлекательные программы и просмотр понравившихся кинолент. Телевизор стал обыденным предметом для всех без исключения людей.

Различия современных телевизоров по типу

Сегодня телевизор является обязательным устройством, которое можно встретить в каждом доме.

Во всем мире можно найти достаточно людей, которые до такой степени привязаны к телевизионным программам, что просто не представляют свою жизнь без телевидения.

Современные устройства телевизоров различают по следующим типам:

  • кинескопные;
  • плазменные;
  • проекционные;
  • жидкокристаллические.

Устройство работы телевизора

Кинескопный

Телевизионный кинескоп имеет вид стеклянной колбы, на одной ее стороне расположена электронная трубка, на другой — экран. Экран кинескопа обеспечивают специальным фосфорсодержащим покрытием. По нему электронная трубка выстреливает потоком электронов. При достижении электроном фосфорной панели, начинает светиться задействованный пиксель. В первых черно-белых кинескопах ставили одну трубку, после в цветных приемниках установили сразу три, разделенные по цвету. Одна из них была красная, другая – синяя, а третья – зеленая.

Электронный луч, перемещаясь слева направо, очерчивает линию, состоящую из пикселей, а затем движется вниз, создавая вертикальную линию. Происходит это непрерывно с большой скоростью, а тем временем глаз видит цельную картинку. Частоту колебаний измеряют в специальных единицах, называющихся герцы. Первые кинескопы всегда имели выпуклую поверхность, позже стали выпускать более удобные модели с совершенно плоским экраном. Таким образом, устройство экрана телевизора всегда считалось сложным и важным элементом. А модели, обладающие плоским экраном, ценились дороже.

Плазменный

Каков принцип работы и устройство телевизора данного типа? Принцип действия плазменной панели заключается в воздействии ультрафиолетового излучения на заряженные частицы под названием люминофоры. При движении электрического разряда сквозь поле разряженного газа, появляется ультрафиолет и открывается проводящий коридор, который состоит из плазмы.

При помощи проводников, одни из которых расположены вертикально, а другие — горизонтально, с внутренней части панели производится кадровая, а также строчная развертка. Телевизионный процессор способен корректировать раздачу кадров на небывалых скоростях. Благодаря этому свойству с внешней стороны экрана глаза видят цельное изображение.

Проекционный

В основу принципа действия проекционных телевизоров заложен алгоритм передачи качественного изображения с минимизированного передатчика на большой экран. Передаваемое изображение формируется внутри самого проекционного телевизора, при посредстве небольшого источника, составленного из электрических трубок или жидкокристаллического дисплея. Дальше при помощи зеркал и оптических приспособлений его проецируют на подготовленный экран.

Каково устройство телевизора? Вся конструкция состоит из звуковой системы, проектора, панели управления и экрана. В моделях, предназначенных для домашнего использования, все составляющие заключены в общем корпусе. По этой причине они получаются габаритными. Проекционный способ передачи изображения позволяет совмещать мягкость и сочность полученной картинки, а также широкие возможности цветового разрешения. В дополнении изображение, передаваемое проекционными телевизорами, совершенно избавлено от зернистости, которая является недостатком кинескопов.

Жидкокристаллический

Устройство ЖК-телевизоров создано по принципу поляризации заданного светового потока, проходящего через кристаллы. LCD-панель представлена в виде двух слоев, состоящих из специального поляризованного стекла, которые соединяют вместе. Первый слой покрывают нужным полимером, в котором содержатся особые жидкие кристаллы. Затем ток электричества проходит через них, заставляя все кристаллы вращаться по определенной траектории. Тем временем, подвижные кристаллы пропускают сквозь следующий слой стекла необходимое количество света.

Для прохождения света сквозь жидкие кристаллы нужен внешний источник. Его располагают за пределами поляризованного стекла. Жидкие кристаллы пропускают сквозь себя свет ламп, а так как они находятся в определенном положении, то появляется изображение при помощи фильтра.

Читайте также:  Каково сопротивление обмотки паяльника если при напряжении 127в сила тока в ней равна 500ма

LED-телевизоры устроены иначе. Для подсветки жидкокристаллической матрицы здесь применяют светодиоды. Они потребляют намного меньше энергии, а также выдают большую яркость. Эти устройства обладают более качественной цветопередачей и более четкой контрастностью. А также у них увеличен срок службы и работа сопровождается меньшим тепловыделением. По ошибке некоторые люди считают эту систему устройством цифрового телевизора, однако, цифровое ТВ – это лишь способ передачи сигнала.

Некоторые особенности

  1. Контраст. Современные технологии, за счёт поляризации пикселя, позволяют плавно в широком диапазоне 0-90º менять яркость. Поэтому в ЖК-телевизорах тёмные оттенки хорошо отображены и их легко отличить.
  2. Яркость. Как было уже отмечено ранее – поляризация не может измениться мгновенно – для этого нужно некоторое время. Поэтому в телевизорах этой системы возникает проблема отображения быстро изменяющейся, динамической картинки.
  3. Ограничениеугла обзора. За счёт конструкции ЖК-дисплея, который имеет вид многослойного бутерброда, происходит ограничение угла обзора. Так, при некотором отклонении глаз от экрана, меняется угол поляризации и, соответственно, яркость кристалла. Падает цветопередача и контрастность изображения.
  4. Битыепиксели. Кристаллы не ломаются, поэтому выход из строя управляющего транзистора – влечёт за собой битый пиксель. Кристалл, в зависимости от технологии, может повести себя по-разному – если при отсутствии напряжения свет сквозь него не проходит, то точка будет чёрной, при прохождении максимума потока – будет гореть.

Принципы телевидения

Для телевидения, как и для радиосвязи, также нужны передатчик и приёмник. Принцип их действия таков же, как и радиопередатчиков и приёмников, однако вместо микрофона и громкоговорителя используются видеокамера и видеомонитор. В XX веке они были, главным образом, вакуумными (электронно-лучевыми), а в настоящее время они полупроводниковые.

В электронно-лучевой видеокамере мозаичный экран 1 образован несколькими миллионами изолированных друг от друга зёрен серебра, покрытых цезием. Они располагаются на слюдяной пластине 2, приклеенной к металлической пластине 3. Падающий на зёрна свет 5 способен «выбивать» из них электроны, которые «стекают» по коллектору 4.

В зависимости от яркости света каждое зерно приобретает больший или меньший положительный заряд. Заряды всех зёрен мозаики «описывают» изображение. Элементы слева-внизу видеокамеры создают сканирующий электронный луч. Последовательно попадая на зёрна, луч отдаёт свои электроны на место выбитых светом. Происходит «перезарядка» – зёрна меняют заряды с «+» на «–». Заметим, что зёрна вместе с металлической пластиной 3 образуют множество микроскопических конденсаторов. При их последовательной перезарядке во внешней цепи между металлической пластиной 3 и коллектором 4 возникает меняющийся ток – видеосигнал.

В электронно-лучевом видеомониторе для превращения видеосигнала в изображение также применяют электронный луч. Его интенсивность (поток летящих электронов) меняется в соответствии с видеосигналом. Попадая на мозаичный экран, состоящий из зёрен вещества люминофора, электроны вызывают их свечение. Оно длится некоторое время, пока луч «обегает» другие зёрна на экране, что мы и воспринимаем как видеоизображение.

В этих приборах электронные лучи сканируют экраны синхронно с частотой 25 Гц, то есть пробегают их одновременно 25 раз в секунду (строку за строкой, подобно чтению книги). Это позволяет передавать и принимать быстро меняющиеся изображения.

В полупроводниковой видеокамере мозаичный экран (матрица) образован несколькими миллионами «электронных карманов» в кремниевой пластине р-типа, над которой расположены управляющие электроды. Если на них подать положительный заряд, то в кремниевой пластине под электродом карман «открывается», и в нём скапливаются высвобождающиеся под действием света электроны. Соответственно, дырки, образующиеся на местах высвобождения электронов, оттесняются электрическим полем в толщу пластины. Количество электронов, скопившихся в кармане, зависит от яркости падающего на него фрагмента изображения. Заряды всех карманов в совокупности «описывают» изображение.

Под действием управляющих сигналов особого микропроцессора осуществляется последовательное «считывание» заряда карманов. Как показано на рисунке, в момент «захвата» изображения заряд имеется только на первом электроде. Затем этот заряд переключается на следующий электрод, и электроны перемещаются в соседний карман. И так далее, до края экрана, где располагаются дополнительные электроды, на которые и «перетекает» видеосигнал.

В полупроводниковом видеомониторе для превращения видеосигнала в световое изображение применяют слой «жидких кристаллов». Он заключён между особыми полупрозрачными плёнками с мозаичной сеткой из управляющих электродов. Микропроцессор поочерёдно распределяет видеосигнал на все элементы мозаики. Электрические поля, возникающие между электродами, заставляют кристаллы каждого фрагмента мозаики по-разному поворачиваться в слое жидкости. В зависимости от этого меняется количество света, пропускаемого каждым элементом мозаики. В результате мы видим изображение, складывающееся из отдельных точек – пикселов.

К концу XX века чёрно-белое телевидение было вытеснено цветным. Его основные принципы остались прежними: мозаичный экран в передатчике и приёмнике, последовательное сканирование электронным лучом или микропроцессором элементов мозаики для формирования видеосигнала или светового изображения, передача видеосигнала радиоволнами. Усложнилась лишь мозаика экранов: каждый её элемент был заменён на красно-зелёно-синюю триаду элементов, способную передавать все оттенки цветов.

Источник

Как работает телевизор

Любите ли вы телевидение так, как не люблю его я?

Телевизор — это вообще — отвратительная штука. Чем просиживать часами перед «голубым экраном», куда полезнее вести здоровый образ жизни: не спеша, с чашкой кофэ — за компьютером…

Тем не менее, вещи, которые я буду рассказывать в этом цикле статей, могут вполне пригодиться в нашей с вами практической деятельности.

Итак, сейчас мы разберемся, как же происходит передача видеосигнала. Рассматривать мы будем родную до боли систему SECAM, потому что в нашей стране ( а именно — Российской Федерации) официально принята именно эта система телевидения. Впрочем — обо всем по порядку.

Как работает телевизор?

Телевизор работает по 24 часа в сутки 7 дней в неделю. Это понятно.
У него есть экран — 1шт и динамик — от 1 до бесконечности, в зависимости от «навороченности» агрегата. Еще у него есть антенна и пульт управления. Но нас сейчас интересует только экран. А переводя с языка домохозяек на язык мудрых котов — кинескоп (электронно-лучевая трубка — ЭЛТ).

Я прекрасно понимаю, что в наш век плазмы и жидкого кристалла, электронно-лучевой кинескоп кажется кому-то пережитком старины. Однако, понять принцип работы телевизора, проще всего именно разбираясь с ЭЛТ.

Электронно-лучевая трубка

Шо це таке. Причем здесь электроны? Причем здесь лучи?

Дело в том, что картинка на экране рисуется при помощи электронного луча. Электронный луч очень похож на световой. Но световой луч состоит из фотонов, а электронный — из электронов, и мы его увидеть не можем. Куча электронов несется с бешеной скоростью по прямой от пункта А — к пункту Б. Так образуется «луч».

Пункт Б — это анод. Он находится прямо на обратной стороне экрана. Также, экран (с обратной стороны) вымазан специальным веществом — люминофором. При столкновении электрона на бешеной скорости с люминофором, последний испускает видимый свет. Чем быстрее летел электрон до столкновения — тем свет будет ярче. То есть, люминофор — это преобразователь «света» электронного луча в свет, видимый для человеческого глаза.

С пунктом Б разобрались. А что же такое пункт «А»? А — это «электронная пушка«. Название страшное. Но страшного в ней ничего нет. Она не предназначена для того, чтобы жестоко расстреливать пришельцев с Марса. Но «стрелять» она все же умеет — электронным лучем в экран.

Как это все устроено?

Вообще, ЭЛТ — это такая большая электронная лампа. Как? Вы не знаете что такое лампа? Ну ладно…

Электронные лампы — это такие же усилительные элементы как и любимые всеми нами транзисторы. Но лампы появились намного раньше их кремниевых «коллег», еще в первой половине прошлого века.

Электронная лампа

Лампа — это такой стеклянный баллон, из которого откачан воздух.
В самой простой лампе — 4 вывода: катод, анод и два вывода нити накала. Нить накала нужна для того, чтобы разогреть катод. А разогреть катод нужно для того, чтобы с него полетели электроны. А электроны должны полететь затем, чтоб возник электрический ток через лампу. Для этого обычно на нить накала подается напряжение — 6,3 или 12,6 В (в зависимости от типа лампы)

Кроме того, чтобы полетели электроны — нужно высокое напряжение между катодом и анодом. Оно зависит от расстояния между электродами и от мощности лампы. В обычных радиолампах это напряжение составляет несколько сотен вольт, расстояния от катода до анода в таких лампах не превышают нескольких миллиметров.
В кинескопе расстояние от катода, находящегося в электронной пушке до экрана может превышать несколько десятков сантиметров. Соответственно, и напряжение там нужно намного большее — 15…30 кВ.

Такие зверские напряжения создает специальный повышающий трансформатор. Его еще называют строчный трансформатор, поскольку он работает на строчной частоте. Но, об этом — чуть позже.

При ударении электрона об экран, кроме видимого света, «вышибаются» также и другие излучения. В частности — радиоактивное. Вот почему не рекомендуется смотреть телек ближе 1…2 метров от экрана.

ЭЛТ в разрезе. Вид сбоку

Итак, луч получили. И он так красивенько светит аккурат в центр экрана. Но нам-то надо, чтоб он «чертил» по экрану линии. То есть, нужно заставить его отклоняться от центра. И в этом вам помогут… электромагниты. Дело в том, что электронный луч, в отличие от светового, очень чувствителен к магнитному полю. Поэтому то он и используется в ЭЛТ.

Читайте также:  Графическое изображение магнитных линий магнитного поля тока

Отклоняющие катушки

Нужно поставить две пары отклоняющих катушек. Одна пара будет отклонять по горизонтали, другая — по вертикали. Умело управляя ими, можно гонять луч по экрану куда угодно.

Вот отсюда мы и начинаем нашу повесть о строчках точках и крючочках…

Повесть о Строчках, Точках и Крючочках

Картинка на экране телевизора образуется в результате того, что луч с бешенной скоростью чертит слева-направо сверху-вниз по экрану. Такой метод последовательной прорисовки изображения называется «развертка«.

развертка изображения

Поскольку развертка происходит очень быстро — для глаза все точки сливаются в строчки а строчки — в единый кадр.

В системах PAL и SECAM за одну секунду луч успевает пробежать весь экран 50 раз.
В американской системе NTSC — еще больше — аж 60 раз! Вообще говоря, системы PAL и SECAM отличаются лишь в передаче цвета. Все остальное у них — одинаково.

Картинка образуется за счет того, что во время «бега», луч изменяет свою яркость в соответствии с принимаемым видеосигналом. Как происходит управление яркостью?

А очень просто! Дело в том, что кроме рассмотренных электродов — анода и катода, в лампах бывает еще третий электрод — сетка. Сетка — это управляющий электрод. подавая на сетку сравнительно низкое напряжение, можно управлять током, протекающим через лампу. Иными словами, можно управлять интенсивностью потока электронов, «летящих» от катода к аноду.

В ЭЛТ сетка используется для изменения яркости луча.

ЭЛТ с сеткой

Подавая на сетку отрицательное напряжение (относительно катода), можно ослабить интенсивность потока электронов в луче, или вообще закрыть «дорогу» для электронов. Это бывает нужно, например, при перемещении луча от конца одной строки к началу другой.

Теперь поговорим поподробнее именно про принципы развертки.
Для начала, стоит запомнить несколько несложных чисел и терминов:

Растр — это одна «строчка», которую рисует луч на экране.
Поле — это все строчки, которые нарисовал луч за один вертикальный проход.
Кадр — это элементарная единица видеоряда. Каждый кадр состоит из двух полей — четного и нечетного.

Это стоит пояснить: изображение на экране телевизора разворачивается с частотой 50 полей в секунду. Однако, телевизионный стандарт равен 25 кадрам в секунду. Поэтому один кадр при передаче разбивается на два поля — четное и нечетное. В четном поле содержатся только четные строчки кадра (2,4,6,8…), в нечетном — только нечетные. Изображение на экране также «рисуется» через строку. Такая развертка называется » чересстрочная развертка «.

Чересстрочная развертка

Бывает еще «прогрессивная развертка» — когда весь кадр развертывается за один вертикальный ход луча. Она используется в компьютерных мониторах.

Итак, теперь сухие числа. Все приведенные числа справедливы для систем PAL и SECAM.

Кол-во полей в секунде — 50
Кол-во строк в кадре — 625
Количество эффективных строк в кадре — 576
Количество эффективных точек в строке — 720

А эти числа выводятся из вышеприведенных:

Кол-во строк в поле — 312,5
Строчная частота — 15625 Гц
Длительность одной строки — 64 мкС (вместе с обратным ходом луча)

Размеры изображения

Далее мы поговорим о параметрах видеосигнала и составим схему, синтезирующую импульсы синхронизации.

none Опубликована: 2006 г. 0 1
Вознаградить Я собрал 0 1

Источник



Кинескопные телевизоры: особенности и устройство

Кинескопные телевизоры: особенности и устройство

  1. Что это такое?
  2. Устройство и принцип работы
  3. Основные технические характеристики
  4. Возможные неисправности

Кинескопные телевизоры хорошо знакомы старшим поколениям наших сограждан и жителей других стран. Но особенности работы и внутреннее устройство такой техники большое количество современных людей уже не знает. Пришла пора восполнить этот пробел и дать электронно-лучевой технике глубокую характеристику.

Что это такое?

Кинескопный телевизор (другое название — ЭЛТ-телевизор) много десятилетий был единственным вариантом домашней телевизионной техники. И не только домашней – даже в профессиональном сегменте серьезных альтернатив ему не было. Многие такие устройства работают несколько десятилетий подряд, и сейчас еще можно найти немало работоспособных телеприемников с кинескопом, выпущенных в 1990-е или даже 1980-е годы. Да, развитие технологий не стоит на месте, и сегодня подобные модели выпускаются только в экономичном сегменте. Но это не значит, что они плохи или не заслуживают потребительского внимания.

При этом, однако, даже самая лучшая кинескопная аппаратура имеет существенные размеры и достаточно тяжела. Против этой техники свидетельствует еще и значительное потребление энергии. Электронная трубка восприимчива к действию магнитных полей. У нее иногда мерцает экран, что утомляет глаз, и избавиться от мерцания нельзя по чисто техническим причинам.

Вывод такой: почти всегда покупка кинескопного телевизора мотивируется стремлением максимально сэкономить деньги.

Устройство и принцип работы

Схемы импортных и отечественных телевизионных приемников на базе кинескопного устройства могут различаться. Но принципиальное устройство таких электроприборов, если отстраниться от фирменных нововведений и различных усовершенствований, всегда одно и то же. Как и в любом другом телевизоре, обязательно предусматривается блок питания. Обычно он сделан по импульсному типу. Если не вдаваться в технические тонкости, суть такова:

  • внутри блока есть трансформатор;
  • этот трансформатор имеет так называемую первичную обмотку;
  • на такую первичную обмотку поступают электрические импульсы, меняющиеся с течением времени по определенному правилу.

У блока питания есть два основных режима — ожидание и работа. Даже когда устройство только ждет поступления команд от пульта или от кнопок на передней панели, оно все равно потребляет определенный ток.

Именно по этой причине все фирмы, с момента появления телевизоров, советуют отключать их на ночь и перед длительным уходом.

Помимо основных режимов, блок питания логично дополняется еще управляющим блоком. Это может быть одно или несколько устройств (компонентов), которые отвечают за:

  • переключение каналов;
  • автопоиск и запоминание каналов;
  • ручной поиск эфирных трансляций;
  • регулировку громкости, других параметров звука;
  • регулировку основных параметров изображения;
  • обработку инфракрасных импульсов, посылаемых пультом ДУ;
  • запоминание всех настроек;
  • выполнение строчной развертки.

Важную роль играет селектор синхронизированных импульсов. Он четко разделяет из всего потока видеоинформации строчные и покадровые сигналы. Потому без селектора невозможна ни строчная, ни кадровая развертка, даже если нормально работают и управляющая система, и система электропитания, и экран.

Еще стоит упомянуть про селектор (разделитель) каналов. Этот приемник повышенной чувствительности постоянно находится под напряжением. И выдаваемый далее в систему цветовой телевизионный сигнал находится на строго заданной частоте — независящей от частоты передачи в эфире.

Далее следует рассмотреть на усилительный блок промежуточной частоты. Составные части этого устройства:

  • видеодетектор;
  • усилитель промежуточных акустических частот;
  • детектор частоты передаваемого звука.

Что касается усилителя нижней частоты, то ничем, кроме собственно повышения громкости звука, он не занят. Разумеется, инженеры могли бы указать на тонкости в работе этого устройства, но для понимания общей сути они не важны. А вот модуль цветности декодирует 3 ключевых цвета по системе RGB и усиливает их до необходимой величины. Модуль кадровой развертки выдает на специальные катушки, отвечающие за вертикальную сторону картинки, пилообразный сигнал.

Дальше подключается блок управления катушками строчной развертки. Он создает пилообразный электрический импульс, на основе которого формируется горизонтальная часть изображения.

Важная составная часть — диодный строчный трансформатор каскадного типа. Именно здесь формируется то высокое напряжение, которое позже будет подаваться на цветной кинескоп. Через вторичные обмотки того же трансформатора получают питание вторичные электрические цепи. От них получают электропитание второстепенные компоненты.

В кинескопе цветного телевизора содержится 3 электронные пушки. Для получения черно-белой картинки достаточно и одного излучателя. Точно ориентированные потоки электронов улавливаются специальными катушками. Из них луч перенаправляется на анодный вывод, а затем маска-фильтр обеспечивает получение 3-х главных тонов.

Внутренняя граница экрана покрыта специальным веществом — люминофором.

Свечение под действием электронного луча происходит не просто так. Каждый участок люминофора отвечает за свой основной цвет. Лучи помогают сформировать быстро движущееся пятно видимого света. Оно движется от левого края к правому, от верхнего к нижнему, но скорость настолько велика, что заметить процесс невозможно. Чем выше скорость смены кадров, тем более качественную картинку наблюдает перед собой зритель.

Может возникнуть вопрос – если кинескоп всегда должен быть выпуклым, то как делаются модели с плоским экраном. И тут надо указать на важный момент: полностью плоские кинескопы существуют только в рекламе. Ведь это вакуумные приборы, и чтобы противостоять атмосферному давлению, их переднюю стенку и приходится утолщать. Только отдельные фирмы выпускали и выпускают телевизоры, экраны которых представляют собой часть цилиндра. Тогда плоскость по вертикали идеальна, но по горизонтали все равно остается неустранимая кривизна.

Основные технические характеристики

Очень актуальный параметр — диапазон принимаемых частот. Почти все телевизоры, производимые сегодня в промышленном масштабе, могут принимать метровые и дециметровые радиоволны. Некоторые модели смогут обработать и сигналы кабельного телевидения. Современные телевизионные приемники запоминают не менее 99 каналов.

У некоторых версий этот показатель еще больше.

Но общее количество каналов и даже частоты — еще не все. Иной раз сигнал в отдельных местах очень слаб или нестабилен. Тогда критичным показателем становится чувствительность приемника. Важно: чувствительность может ограничиваться шумами либо синхронизацией. Долгое время ЭЛТ-телевизоры имели формат 4: 3. Но сейчас таких осталось очень немного, и почти все производители перешли на более рациональное соотношение 16: 9.

Читайте также:  Электротехника задачи с решениями методом контурных токов

Смена кадров в моделях бюджетного класса и в старых образцах составляет не более 50-60 Гц. Более современные экземпляры меняют кадр на экране 100 раз в секунду. Это усовершенствование позволило сделать просмотр телевизора безопаснее для зрения. Яркость картинки измеряют в канделах (кд сокращенно) на 1 м2. У типичного кинескопа этот показатель варьируется от 150 до 300, чего вполне достаточно для четкого восприятия картинки даже при слабой видимости.

Что касается разрешения, то на практике оно составляет приблизительно 1200 телевизионных линий. В более привычных единицах — это около 1200х800 точек. Технически сами кинескопы могут выдавать и более четкую картинку. Но «узким местом» являются возможности системы развертки и отклоняющего блока. Кроме того, с учетом реального качества телевизионного сигнала вряд ли приходится рассчитывать более чем на разрешение 600х400 точек. Разумеется, если говорить про эфирную трансляцию, а не про воспроизведение носителей информации.

На рынке можно встретить кинескопные телевизоры с диагональю экрана 32 дюйма. Но это еще не предел. Судя по некоторым данным, самые большие приемники такого типа — это Sony kv-es38m61. Их размер составлял 38 дюймов.

Стоили такие телевизоры едва ли не дороже, чем плазменные аналоги с диагональю 42 дюйма.

Возможные неисправности

Картинка на кинескопном телевизоре мутнеет из-за дефектов самой вакуумной пушки. Профессионалы могут добавить резервную обмотку к трансформатору, но все равно через несколько месяцев приходится менять кинескоп. А вот появление ярко светящихся участков, разбавленных узкими горизонтальными жилками, означает неустранимый дефект.

Иногда экран гаснет — эта неполадка связана обычно с обрывом электрических цепей или замыканием на катодах. Когда цепь полностью неработоспособна, восстановить ее нельзя. В более благоприятной ситуации проблему решает запаивание контактов.

Удары резиновым молоточком по краям экрана иногда устраняют смещение картинки. Однако гораздо чаще без смены кинескопа не обойтись. При перегорании блока питания придется менять предохранители, а при нарушениях изображения иногда заменяют терморезисторы.

Появление дыма означает, что нужно срочно отключить телевизор и немедленно вызывать техническую поддержку. Чаще всего мастера ставят исправные конденсаторы. Если сработала защита от прожига кинескопа, то перейти из дежурного режима в нормальный не получится. Единственный выход — заменять дефектный транзистор. Внимание: чаще всего эта неполадка характерна для марки Erisson, но может случиться и в других телевизорах.

ЭЛТ-телевизор LG после длительной эксплуатации иногда не включается. Мастера в таких случаях обычно проверяют конденсаторы, системные платы и цепи электропитания. Также им придется выяснить, не отошел ли где-то контакт. Прежде вызова мастера имеет смысл проверить мультиметром работоспособность розетки, вилки, сетевого провода.

Тогда можно будет избежать нелепых ситуаций.

О том, как научиться ремонтировать кинескопные телевизоры, вы можете узнать ниже.

Источник

Кинескопы черно-белого изображения

Кинескоп — приемная электронно-лучевая трубка с лю-минофорным экраном, преобразующая мгновенные значения сигнала изображения (видеосигнала) в последовательность световых импульсов, совокупность которых образует телевизионное (ТВ) изображение.

Принцип действия черно-белого кинескопа основан на возбуждении свечения люминофорного экрана сфокусированным электронным лучом, который под действием отклоняющей системы описывает на экране точку за точкой телевизионный растр 1 (см. рис., а).

Электронный луч (2) кинескопа формируется электронно-оптической системой (электронным прожектором) (1) и модулируется по интенсивности телевизионным электрическим сигналом. Яркость свечения люминофорного экрана (5) в каждой точке пропорциональна интенсивности электронного луча. Таким образом, на экране получается черно-белое телевизионное изображение.

Основными частями кинескопа являются стеклянная колба (стеклооболочка) (6), электронно-оптическая система (электронный прожектор) (1), формирующая электронный луч; лю-минофорный экран (5). На горловине кинескопа помещается отклоняющая система (9), с помощью которой формируется магнитное поле, обеспечивающее перемещение электронного луча в процессе развертки изображения. В связи с тем, что внутри кинескопа имеется высокий вакуум для исключения разрушения стеклооболочки под действием атмосферного давления или случайного удара, кинескоп снабжается взрывоза-щитным устройством в виде металлического бандажа (4), охватывающего стекло по периметру экрана и создающего усилие сжатия.

Стеклянная колба кинескопа состоит из горловины, конической части и фронтального стекла. Фронтальное стекло изготавливают из так называемого контрастного стекла, представляющего собой нейтральный светофильтр. На внутреннюю поверхность фронтального стекла экрана нанесен люми-нофорный слой (5), обладающий свойством светиться белым цветом под воздействием потока электронов, причем яркость свечения прямо пропорциональна кинетической энергии элек-

тронного потока. Поверх люминофора нанесена зеркальная алюминиевая пленка толщиной 0,05—0,2 мкм, исключающая возможность проникновения к люминофору разрушающих его массивных отрицательных ионов, излучаемых катодом кинескопа. Электроны же свободно проникают через эту пленку. Пленка также значительно увеличивает яркость и контрастность изображения, так как она отражает в сторону зрителя свет, испускаемый люминофором, и устраняет засветку от внутренних стенок колбы.

Алюминиевый слой на экране переходит в алюминиевое покрытие (3) на стенках конической части колбы, которая заканчивается в зоне перехода от конуса к горловине и соединяется с графитовым покрытием (8) верхней части горловины кинескопа. От алюминиевого покрытия имеется вывод (7) на конической части колбы.

В цилиндрической горловине колбы помещен электронный прожектор (1). Электронным прожектором называется конструктивный узел кинескопа, который предназначен для формирования тонкого пучка быстролетящих электронов электронного луча.

Конструктивно электронный прожектор представляет собой систему цилиндрических электродов (см. рис., б) и состоит из катода подогреваемого типа (2), управляющего электрода-модулятора (3), ускоряющего электрода (4), фокусирующего электрода (5), анода (6). Детали прожектора соединены с выводами в цоколе, которым заканчивается горловина.

Оксидный катод (2) косвенного накала является источником электронов. Вблизи катода размещен модулятор (3) с отрицательным потенциалом относительно катода. На него подается телевизионный (ТВ) сигнал. Затем расположен ускоряющий электрод (4) с положительным потенциалом. Система этих трех электродов образует линзу предварительной фокусировки.

Катод (2) выполнен в виде цилиндра из никеля. На его торец, обращенный внутрь кинескопа, нанесен оксидный слой. Внутри катода расположен подогреватель (1) (нить накала из

вольфрамовой проволоки). Модулятор (3) цилиндр и служит для управления потоком электронов. На него подают небольшой отрицательный потенциал, изменяя который (регулятор яркости в телевизоре), уменшают или увеличивают поток электронов, проходящий через модулятор. Достигая экрана кинескопа, поток электронов вызывает свечение люминофора.

Ускоряющий электрод (4) также выполнен в виде полого цилиндра. Он предназначен для первоначального ускорения электронов, испускаемых катодом. Для этой цели на него подают положительный потенциал.

Фокусирующий электрод (5) предназначен для того, чтобы собрать электроны в очень тонкий луч. Чем меньше диаметр электронного луча, тем выше четкость изображения.

Анод (6) служит для придания электронам наибольшей скорости. Чем с большей скоростью электроны воздействуют на люминофор, тем ярче светится экран. Конструктивно анод состоит из цилиндра, который электрически соединен с проводящим слоем (аквадагом), нанесенным на внутреннюю часть конуса. От аквадага наружу сделан вывод для подсоединения высоковольтного провода. Анод также соединен с алюминиевой пленкой, покрывающей люминофор, определяя тем самым потенциал экрана (он всегда равен потенциалу анода).

На горловину кинескопа надета отклоняющая система (ОС) (9) (рис., а). На пути к экрану на электронный луч действует магнитное отклоняющее поле, создаваемое отклоняющей системой и направленное перпендикулярно направлению луча. С помощью ОС луч приводится в движение; последовательно пробегая по всему экрану, он вызывает свечение люминофора и образует, так же как и в передающей трубке, растр. Экран светится ровным белым цветом. Когда на модулятор (3) (рис., б) поступает видеосигнал, несущий информацию об оптическом изображении, то на экране возникает это изображение. Так происходит потому, что видеосигнал то увеличивает, то уменьшает отрицательный потенциал на модуляторе, тем самым уменьшая или увеличивая поток электронов. Поскольку луч движется по экрану, то в соответствии с изменением тока, поданного на модулятор видеосигнала, происходит чередование менее и более светлых участков изображения. Совокупность этих участков на экране и составляет черно-белое изображение.

Основными параметрами черно-белых кинескопов, характеризующими качество телевизионного изображения, являются: яркость, контрастность, разрешающая способность.

Яркость кинескопа (L) определяется светоотдачей (С) (эффективностью) люминофора, прозрачностью фронтального стекла экрана (т), режимом работы кинескопа и площадью растра (S):

где 1а — рабочий ток анода;

Uа — рабочее напряжение на аноде;

U — напряжение пробивания алюминиевой пленки.

Яркость современных черно-белых кинескопов составляет 150—200 Кд/м 2 . Принятая в телевидении частота полей 50 Гц позволяет получить немигающее изображение. Однако при больших яркостях (более 200 Кд/м 2 ) мерцания становятся заметными.

Под контрастностью понимают отношение яркости светящихся участков экрана (Lcb), возбуждаемых электронным лучом, к яркости темных участков экрана Lm, не возбуждаемых электронным лучом:

Величина контрастности зависит от размера этих участков, так как темные участки экрана подсвечиваются от светлых за счет внутренних отражений света в стекле, создающих ореол вокруг каждой светящейся точки. Значение контраста современных кинескопов при номинальном размере растра составляет 150—200.

Разрешающая способность характеризуется наименьшим размером детали, которую можно наблюдать на н: юОраж ниц; выражается числом раздельно наблюдаемых черных плюс белых линий, отнесенных к высоте растра. Разрешающая способность черно-белых кинескопов не менее 500-5-550 линий в центре и на углах.

Источник