Меню

Электрические токи при замыкании цепи с индуктивностью

Электрические токи при замыкании цепи с индуктивностью

При любом изменении силы тока в проводящем контуре возникает э.д.с. самоиндукции, после чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции. Экстратоки самоиндукции, по правилу Ленца, всегда имеют такое направление, чтобы оказывать сопротивление изменениям тока в цепи, т. е. имеет направление, противоположное току, создаваемому источником. При выключении источника тока экстратоки так же направлены, как и ослабевающий ток. Значит, наличие индуктивности в цепи приводит к замедлению исчезновения или установления тока в цепи.

Исследуем процесс выключения тока в цепи, содержащей источник тока с э.д.с. ξ , катушку индуктивностью L и резистор сопротивлением R . Под действием внешней э. д. с. в цепи течет постоянный ток

сила тока при размыкании цепи

(пренебрегаем внутренним сопротивлением источника тока).

В момент времени t=0 отключим источник тока. Ток в катушке индуктивностью L начнет убывать, что приведет к возникновению э.д.с. самоиндукции ξs = -L(dI/dt) оказывающей препятствие, согласно правилу Ленца, уменьшению тока. В каждый момент времени ток в цепи задается законом Ома I= ξs/R, или

закон Ома при размыкании цепи(1)

Разделив в формуле (1) переменные, получим (dI/I) = -(R/L)dt . Интегрируя эту формулу по I (от I до I) и t (от 0 до t), найдем ln (I/I) = –Rt/L, или

сила тока при размыкании цепи(2)

где τ = L/R — постоянная, которая называется временем релаксации. Из (2) видно, что τ есть время, в течение которого сила тока уменьшается в е раз.

Значит, в процессе отключения источника тока сила тока уменьшается по экспоненциальному закону (2) и задается кривой 1 на рис. 1. Чем больше индуктивность цепи и меньше ее сопротивление, тем больше τ и, значит, тем медленнее убывает ток в цепи при ее размыкании.

сила тока при размыкании и замыкании цепи
Рис.1

При замыкании цепи помимо внешней э. д. с. ξ возникает э. д. с. самоиндукции ξs = -L(dI/dt) оказывающая препятствие, согласно правилу Ленца, возрастанию тока. По закону Ома, IR = ξ+ξs или

закон Ома при замыкании цепи

Зададим переменную u = (IR — ξ) преобразуем эту формулу как

закон Ома при замыкании цепи

где τ — время релаксации.

В момент замыкания (t=0) сила тока I = 0 и u = –ξ . Значит, интегрируя по u и (от –ξ до IR–ξ) и t (от 0 до t), найдем ln[(IR–ξ)]/(–ξ) = -t/τ, или

сила тока при замыкании цепи(3)

где I=ξ/R — установившийся ток (при t→∞).

Значит, в процессе включения источника тока увеличение силы тока в цепи определяется функцией (3) и кривой 2 на рис. 1. Сила тока увеличивается от начального значения I=0 и асимптотически стремится к установившемуся значению I=ξ/R . При этом, скорость нарастания тока задается тем же временем релаксации τ = L/R, что и убывание тока. Установление тока осуществляется тем быстрее, чем меньше индуктивность цепи и чем больше ее сопротивление.

Оценим значение э.д.с. самоиндукции ξs , которая возникает при мгновенном нарастании сопротивления цепи постоянного тока от Rдо R. Допустим, что мы размыкаем контур, когда в нем течет установившийся ток I=ξ/R . При размыкании цепи ток будет менеться по формуле (2). Подставив в нее формулу для I и τ, найдем

сила тока при замыкании цепи

ЭДС самоиндукции

т. е. при значительном возрастании сопротивления цепи (R/R>>1), которая обладает большой индуктивностью, э.д.с. самоиндукции может во много раз быть больше э.д.с. источника тока, включенного в цепь. Значит, необходимо учитывать, что контур, который содержит индуктивность, нельзя резко размыкать, так как при этом (возникновение значительных э.д.с. самоиндукции) может привести к пробою изоляции и поломке измерительных приборов. Если в контур сопротивление вводить постепенно, то э.д.с. самоиндукции больших значений не достигнет.

Источник

Что такое самоиндукция?

Явление электромагнитной индукции очень часто наблюдается в электротехнике. Взаимное влияние электрических и магнитных полей иногда приводит к интересным результатам. Самоиндукция – частный случай электромагнитной индукции.

Общеизвестно, что причиной порождения электрического тока является переменное магнитное поле. Именно этот принцип реализован в конструкциях современных генераторов. Природа самоиндукции также связана с электромагнетизмом, но это явление проявляется она по-другому.

Определение

Рассмотрим схему катушки, по обмоткам которой протекает электрический ток (рис. 1). Так как вокруг проводника, который находится под током, всегда существует связанное с ним магнитное поле, то силовые линии этого поля пронизывают плоскости витков. В результате такого взаимодействия соленоиды образуют собственное магнитное поле, магнитные линии которого замыкаются за его пределами.

Магнитное поле катушки

Рис. 1. Магнитное поле катушки

Частным случаем катушки является замкнутый контур (один виток). В нём, как и в катушке, образуется собственное магнитное поле (см. рис. 2). Если ток постоянный, то в контуре никаких изменений не происходит.

Но при изменении параметров, например, в результате размыкания цепи, изменяется магнитный поток, создаваемый электрическим полем, что является причиной возникновения ЭДС индукции. Аналогичное изменение произойдёт и в случае замыкания цепи.

Изменение параметров магнитного поля вызывает появление вихревого электрического поля, что в свою очередь приводит к возбуждению индуктивной электродвижущей силы. Возникновение ЭДС индукции, в результате изменения ток в замкнутом контуре, называется самоиндукцией.

Магнитный поток, ограниченный поверхностью контура, меняется прямо пропорционально изменению тока, циркулирующего в нём.

Явление самоиндукции

Рис. 2. Явление самоиндукции

Направление вектора ЭДС самоиндукции не совпадает с направлением тока в период его возрастания (при замыкании цепи), но он сонаправлен с ним в период убывания (разъединения цепи). Такое действие проявляется в замедлении появления тока в соленоиде при замыкания цепи, или в его задержке на какое-то время после разрыва цепи.

Описанное явление можно наблюдать на опыте с лампочками, одна из которых подключена последовательно с индуктивностью (см. рис. 3).

Схема опыта с лампочками

Рис. 3. Схема опыта с лампочками

Как видно на рисунке слева, ток от источника питания, проходящий через лампочку 2, при замыкании контактов встретит сопротивление вихревых токов, поскольку они противоположно направлены. Поэтому зажигание этой лампочки произойдёт с задержкой.

На время включения лампочки 1 вихревые токи повлияют, но сила тока в её цепи уменьшится после зажигания лампы 2. При отключении цепи от источника питания произойдёт обратный процесс: лампочка в цепи индуктивности некоторое время будет медленно угасать, а вторая лампа потухнет сразу после разъединения контактов.

Читайте также:  Резкая боль в пояснице как током

График на рисунке 4 красноречиво объясняет эффект задержки.

Иллюстрация задержки изменения тока в цепи индуктивности

Рис. 4. Иллюстрация задержки изменения тока в цепи индуктивности

Обратите внимание на нелинейность изменения силы тока по времени.

Аналогичные процессы происходят в цепи, состоящей из одной катушки. На рисунке 5 изображена такая схема и график изменения силы тока.

Возникновение самоиндукции

Рис. 5. Возникновение самоиндукции

Остаётся добавить, что скорость изменение величины ЭДС зависит от количества витков соленоида. Чем больше витков, тем больше влияние вихревых токов, на параметры цепи.

В случае с переменным током амплитуда ЭДС самоиндукции пропорциональна амплитуде синусоиды питания, её частоте и индуктивности катушки.

Синусоидальный ток, проходя через катушку индуктивности, сдвигается по фазе на величину π/2. Именно этот сдвиг является причиной отставания собственного тока катушки от тока, вырабатываемого источником питания.

Формулы

Собственный магнитный поток контура (Ф) связан прямо пропорциональной зависимостью с индуктивностью (L) этого контура и величиной тока в нём (i). Данная зависимость выражается формулой: Ф = L×i. Коэффициент пропорциональности L принято называть коэффициентом самоиндукции или же просто индуктивностью контура.

При этом индуктивность контура пребывает в зависимости от его геометрии, площади плоскости ограниченной витком и магнитной проницаемости окружающей среды. Но этот коэффициент не зависит от силы тока в контуре. Если же форма, линейные размеры и магнитная проницаемость не изменяются, то для определения величины индуктивной ЭДС применяется формула:

ЭДС самоиндукции

где Eсамоинд. – ЭДС самоиндукции, Δi – изменение силы тока за время Δt.

Индуктивность

Выше мы отметили, что индуктивность контура зависит от его геометрии и размеров, а также от магнитной проницаемости среды. Если речь идёт о катушке, то эти утверждения справедливы и для неё. На индуктивность катушки влияет её диаметр и количество витков. Индуктивность существенно повышается, если в катушку добавить ферромагнитный сердечник.

Магнитные поля отдельных витков катушки складываются. Если витков достаточно много, то ток, протекающий через катушку, образует вокруг неё сильное магнитное поле, реагирующее на изменения электрического поля. Индуктивность является той величиной, которая характеризует то, насколько сильно проводник, из которого состоят витки, противодействует электрическому току.

Чем больше индуктивность катушки и чем выше скорость прерывания её цепи, тем больший всплеск ЭДС произойдёт в цепи. При этом полярность вихревых токов на выводах катушки противоположна направлению тока источника питания.

Индуктивность (то есть коэффициент пропорциональности) является важной характеристикой катушек, дросселей и других контурных элементов. Этот параметр можно сравнить с ёмкостью конденсаторов. Тем более что действие катушки индуктивности и конденсатора в электрических цепях очень похожи. RL и RC цепочки часто используют для сглаживания всплесков напряжений в различных фильтрах.

Единицей измерения индуктивности в международной системе СИ является генри. Величина размеров в 1 Гн – это такая индуктивность, при которой ЭДС составляет 1 В, при скорости изменения тока на 1 А за секунду.

Индуктивность определяет количество энергии, выделяющейся в результате действия собственного магнитного поля при самоиндукции. Эту энергию легко рассчитать по формуле: Wм = LI 2 /2.

Собственная энергия катушки численно равна работе, которую необходимо выполнить источником питания при преодолении ЭДС самоиндукции.

Важно знать, что в результате резкого разрыва цепи с большой индуктивностью, энергия высвобождается в виде искры или даже с образованием дугового разряда.

Примеры использования на практике

Явление самоиндукции нашло широкое практическое применение. Автолюбители прекрасно знают, что такое катушка зажигания. Без неё карбюраторный двигатель не запустится.

Работает этот важный узел следующим образом:

  1. На катушку с большой индуктивностью подаётся бортовое напряжение 12 В.
  2. Электрическая цепь резко обрывается специальным прерывателем.
  3. Накопленная энергия самоиндукции поступает по высоковольтным проводам на свечу и образует на её электродах мощную искру.
  4. Искровой разряд зажигает топливную смесь, приводя в движение поршень.

В современных автомобилях разрыв цепи выполняет электроника, но суть от этого не меняется – для образования искры по-прежнему используется энергия самоиндукции.

Мы уже упоминали о сетевых фильтрах, в которых используется явление самоиндукции. RL цепочка реагирует на любое изменение параметров. При его возрастании она задерживает во времени пиковые скачки и заполняет собственными вихревыми токами провалы. Таким образом, происходит сглаживание напряжения в электрически цепях.

В блоках питания электронной аппаратуры таким же способом убирают:

  • шумы:
  • пульсации;
  • нежелательные частоты.

Самоиндукция дросселей используется в люминесцентных лампах для розжига электродов. После срабатывания стартера происходит разрыв контактов, в результате чего в дросселе наводится ЭДС самоиндукции. Энергия дросселя разжигает дугу на электродах, и люминесцентная лампа начинает светиться.

Перечисленные примеры демонстрируют полезное применение самоиндукции. Однако, как это всегда бывает, индуктивная ЭДС может наносить вред. При разъединении контактов выключателей, нагрузкой которых являются цепи с большой индуктивностью, возможны дуговые разряды. Они разрушают контакты, замедляют время защиты и т.п. С целью снижения риска от негативных влияний самоиндукции автоматические выключатели оборудуют дугогасительными камерами.

В таких случаях приходится принимать меры для нейтрализации энергии ЭДС самоиндукции. Ещё большая потребность в рассеянии энергии самоиндукции возникает в полупроводниковых ключах, чувствительных к пробоям.

В промышленности и энергетике самоиндукция является серьёзной проблемой. При отключении нагруженных линий ЭДС самоиндукции может достигать опасных для жизни величин. Это требует дополнительных затрат на принятие мер предосторожности. В частности, необходимо устанавливать на линиях устройства, препятствующие молниеносному размыканию цепи.

Видео в помощь

Источник



Токи при размыкании и замыкании цепи.

date image2015-10-22
views image11169

facebook icon vkontakte icon twitter icon odnoklasniki icon

При всяком изменении силы тока в проводящем контуре возникает э.д.с. самоиндукции, в результате чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции. Экстратоки самоиндукции, согласно правилу Ленца, всегда направлены так, чтобы препятствовать изменениям тока в цепи, т.е. направлены противоположно току, создаваемому источником. При выключении источника тока экстратоки имеют такое же направление, что и ослабевающий ток. Следовательно, наличие индуктивности в цепи приводит к замедлению исчезновения или установления тока в цепи.

Читайте также:  Взаимодействие электрических токов сила взаимодействия параллельных токов

Рассмотрим процесс выключения тока в цепи, содержащей источник тока с э.д.с. Ei, сопротивление R и индуктивность L. Под действием внешней э.д.с. в цепи течет постоянный ток Io =E/R (внутренним сопротивлением источника тока пренебрегаем).

В момент времени t = 0 отключим источник тока. Ток через катушку индуктивности начнет уменьшаться, что приведет к возникновению эдс самоиндукции Es= –L(dI/dt), препятствующей, согласно правилу Ленца, уменьшению тока. В каждый момент времени ток в цепи определяется законом Ома I =Es/R, или

IR =–L(dI/dt). (18.1)

Разделив переменные, получим dI/I = – Rdt/L. Интегрируя это уравнение по I (от Io до I) и t (от 0 до t), находим ln(I/Io) = – Rt/L, или

I(t) =Io exp (– t/τ), (18.2)

где τ =L/R – постоянная, называемая временем релаксации, равная времени, в течение которого сила тока уменьшается в е раз.

Таким образом, в процессе отключения источника э.д.с. сила тока убывает по экспоненциальному закону (18.2) и определяется кривой 1 на рис. (19). Чем больше индуктивность цепи и меньше сопротивление, тем больше τ и, следовательно, тем медленнее уменьшается ток в цепи при ее размыкании.

При замыкании цепи помимо внешней э.д.с E возникает э.д.с самоиндукции Es= –L(dI/dt), препятствующая, согласно правилу Ленца, возрастанию тока. По закону Ома IR = E + Es или

IR = E –L(dI/dt). Введя новую переменную u = IR – E, преобразу- Рис.19. ем это уравнение к виду du/u = – dt/τ , где τ – время релаксации.

В момент замыкания (t = 0) сила тока I =0 и u = –E. Следовательно, интегрируя по u (от –E до IR–E) и t (от 0 до t), находим ln[(IR–E)/(–E)] = –t/τ, или

I(t)=Io[1-exp(–t/τ)], (18.3)

где Io= E/R – установившийся ток (при t → ¥).

Таким образом, в процессе включения источника э.д.с нарастание силы тока в цепи задается функцией (18.3) и определяется кривой 2 на рис.19. Сила тока возрастает от начального значения I=0 и асимптотически стремится к установившемуся значению Io= E/R. Скорость нарастания тока определяется тем же временем релаксации τ =L/R, что и убывание тока. Установление тока происходит тем быстрее, чем меньше индуктивность цепи и больше ее сопротивление.

Контур, содержащий индуктивность, нельзя резко размыкать, так как возникновение при этом значительных э.д.с. самоиндукции может привести к пробою изоляции и выводу из строя электрических приборов.

Трансформаторы.

Принцип действия трансформаторов, применяемых для повышения или понижения напряжения переменного тока, основан на явлении взаимной индукции. Первые трансформаторы были сконструированы и введены в практику русским электротехником П.Н.Яблочковым (1847 – 1894) и русским физиком И.Ф.Усагиным (1855 – 1919). Принципиальная схема трансформатора показана на рис. 20.

Первичная и вторичная катушки (обмотки), имеющие соответственно n1 и n2 витков, укреплены на замкнутом железном сердечнике. Так как концы первичной обмотки присоединены к источнику переменного напряжения с э.д.с. E1, то в ней возникает переменный ток создающий в сердечнике трансформатора переменный магнитный поток Ф, который практически полностью локализован в

железном сердечнике и, следовательно, почти целиком

пронизывает витки вторичной обмотки. Изменение этого потока вызывает во вторичной обмотке появление э.д.с. электромагнитной индукции, а в первичной – э.д.с. самоиндукции.

По закону Ома, ток I1, первичной обмотки определяется алгебраической суммой внешней э.д.с. и э.д.с. самоиндукции: I1R1=[Ei–d(n1Ф)/dt], где R1 – сопротивление первичной обмотки. Падение напряжения I1R1 на сопротивлении R1, при быстропеременных полях мало по сравнению с каждой из двух э.д.с., поэтому E1»n1dФ/dt.

Э.д.с. электромагнитной индукции, возникающая во вторичной обмотке,

Сравнивая выражения для E1 и E2, получим, что э.д.с., возникающая во вторичной обмотке,

где знак минус показывает, что э.д.с. в первичной и вторичной обмотках противоположны по фазе. Отношение числа витков n1/n2 показывающее, во сколько раз э.д.с. во вторичной обмотке трансформатора больше (или меньше), чем в первичной, называется коэффициентом трансформации.

Пренебрегая потерями энергии, которые в современных трансформаторах не превышают 2% и связаны в основном с выделением в обмотках джоулевой теплоты и появлением вихревых токов, и применяя закон сохранения энергии, можем записать, что мощности тока в обеих обмотках трансформатора практически одинаковы:

откуда, учитывая соотношение (19.2), найдем E2 /E1 = I1/I2 = n2/n1, т.е. токи в обмотках трансформатора обратно пропорциональны числу витков в этих обмотках.

Если n2/n1>1, то имеем дело с повышающим трансформатором, увеличивающим переменную э.д.с. и понижающим ток (применяется, например, для передачи электроэнергии на большие расстояния, так как в данном случае потери на джоулеву теплоту, пропорциональные квадрату силы тока, снижаются). Если n2/n1

Источник

ЭДС самоиндукции и индуктивность цепи

Дата публикации: 01 марта 2015 .
Категория: Статьи.

При замыкании выключателя в цепи, представленной на рисунке 1, возникнет электрический ток, направление которого показано одинарными стрелками. С появлением тока возникает магнитное поле, индукционные линии которого пересекают проводник и индуктируют в нем электродвижущую силу (ЭДС). Как было указано в статье «Явление электромагнитной индукции», эта ЭДС называется ЭДС самоиндукции. Так как всякая индуктированная ЭДС по правилу Ленца направлена против причины, ее вызвавшей, а этой причиной будет ЭДС батареи элементов, то ЭДС самоиндукции катушки будет направлена против ЭДС батареи. Направление ЭДС самоиндукции на рисунке 1 показано двойными стрелками.

Таким образом, ток устанавливается в цепи не сразу. Только когда магнитный поток установится, пересечение проводника магнитными линиями прекратится и ЭДС самоиндукции исчезнет. Тогда в цепи будет протекать постоянный ток.

Рисунок 1. Электродвижущая сила самоиндукции в момент замыкания цепи направлена против ЭДС источника напряжения Рисунок 2. График постоянного тока

На рисунке 2 дано графическое изображение постоянного тока. По горизонтальной оси отложено время, по вертикальной оси – ток. Из рисунка видно, что если в первый момент времени ток равен 6 А, то в третий, седьмой и так далее моменты времени он также и будет равен 6 А.

На рисунке 3 показано, как устанавливается ток в цепи после включения. ЭДС самоиндукции, направленная в момент включения против ЭДС батареи элементов, ослабляет ток в цепи, и поэтому в момент включения ток равен нулю. Далее в первый момент времени ток равен 2 А, во второй момент времени – 4 А, в третий – 5 А, и только спустя некоторое время в цепи устанавливается ток 6 А.

При размыкании цепи (рисунок 4) исчезающий ток, направление которого показано одинарной стрелкой, будет уменьшать свое магнитное поле. Это поле, уменьшаясь от некоторой величины до нуля, будет вновь пересекать проводник и индуктировать в нем ЭДС самоиндукции.

При выключении электрической цепи с индуктивностью ЭДС самоиндукции будет направлена в ту же сторону, что и ЭДС источника напряжения. Направление ЭДС самоиндукции показано на рисунке 4 двойной стрелкой. В результате действия ЭДС самоиндукции ток в цепи исчезает не сразу.

Таким образом, ЭДС самоиндукции всегда направлена против причины, ее вызвавшей. Отмечая это ее свойство, говорят что ЭДС самоиндукции имеет реактивный характер.

Графически изменение тока в нашей цепи с учетом ЭДС самоиндукции при замыкании ее и при последующем размыкании в восьмой момент времени показано на рисунке 5.

Рисунок 5. График нарастания и исчезновения тока в цепи с учетом ЭДС самоиндукции Рисунок 6. Индукционные токи при размыкании цепи

При размыкании цепей, содержащих большое количество витков и массивные стальные сердечники или, как говорят, обладающих большой индуктивностью, ЭДС самоиндукции может быть во много раз больше ЭДС источника напряжения. Тогда в момент размыкания воздушный промежуток между ножом и неподвижным зажимом рубильника будет пробит и появившаяся электрическая дуга будет плавить медные части рубильника, а при отсутствии кожуха на рубильнике может ожечь руки человека (рисунок 6).

В самой цепи ЭДС самоиндукции может пробить изоляцию витков катушек, электромагнитов и так далее. Во избежание этого в некоторых выключающих приспособлениях устраивают защиту от ЭДС самоиндукции в виде специального контакта, который замыкает накоротко обмотку электромагнита при выключении.

Следует учитывать, что ЭДС самоиндукции проявляет себя не только в моменты включения и выключения цепи, но также и при всяких изменениях тока.

Величина ЭДС самоиндукции зависит от скорости изменения тока в цепи. Так, например, если для одной и той же цепи в одном случае в течение 1 секунды ток в цепи изменился с 50 до 40 А (то есть на 10 А), а в другом случае с 50 до 20 А (то есть на 30 А), то во втором случае в цепи будет индуктироваться втрое большая ЭДС самоиндукции.

Величина ЭДС самоиндукции зависит от индуктивности самой цепи. Цепями с большой индуктивностью являются обмотки генераторов, электродвигателей, трансформаторов и индукционных катушек, обладающих стальными сердечниками. Меньшей индуктивностью обладают прямолинейные проводники. Короткие прямолинейные проводники, лампы накаливания и электронагревательные приборы (печи, плитки) индуктивностью практически не обладают и появления ЭДС самоиндукции в них почти не наблюдается.

Магнитный поток, пронизывающий контур и индуктирующий в нем ЭДС самоиндукции, пропорционален току, протекающему по контуру:

где L – коэффициент пропорциональности. Он называется индуктивностью. Определим размерность индуктивности:

Размерность индуктивности

Ом × сек иначе называется генри (Гн).

1 генри = 10 3 ; миллигенри (мГн) = 10 6 микрогенри (мкГн).

Индуктивность, кроме генри, измеряют в сантиметрах:

1 генри = 10 9 см.

Так, например, 1 км линии телеграфа обладает индуктивностью 0,002 Гн. Индуктивность обмоток больших электромагнитов достигает нескольких сотен генри.

Если ток в контуре изменился на Δi, то магнитный поток изменится на величину Δ Ф:

Величина ЭДС самоиндукции, которая появится в контуре, будет равна (формула ЭДС самоиндукции):

Величина ЭДС самоиндукции

При равномерном изменении тока по времени выражение будет постоянным и его можно заменить выражением . Тогда абсолютная величина ЭДС самоиндукции, возникающая в контуре, может быть найдена так:

Абсолютная величина ЭДС самоиндукции

На основании последней формулы можно дать определение единицы индуктивности – генри:

Определение единицы индуктивности

Проводник обладает индуктивностью 1 Гн, если при равномерном изменении тока на 1 А в 1 секунду в нем индуктируется ЭДС самоиндукции 1 В.

Как мы убедились выше, ЭДС самоиндукции возникает в цепи постоянного тока только в моменты его включения, выключения и при всяком его изменении. Если же величина тока в цепи неизменна, то магнитный поток проводника постоянен и ЭДС самоиндукции возникнуть не может (так как . В моменты изменения тока в цепи ЭДС самоиндукции мешает изменениям тока, то есть оказывает ему своеобразное сопротивление.

Бифилярная обмотка катушки
Рисунок 7. Бифилярная обмотка катушки

Часто на практике встречаются случаи, когда нужно изготовить катушку, не обладающую индуктивностью (добавочные сопротивления к электроизмерительным приборам, сопротивления штепсельных реостатов и тому подобные). В этом случае применяют бифилярную обмотку катушки (рисунок 7)

Как нетрудно видеть из чертежа, в соседних проводниках токи проходят в противоположных направлениях. Следовательно, магнитные поля соседних проводников взаимно уничтожаются. Общий магнитный поток и индуктивность катушки будут равны нулю. Для еще более полного уяснения понятия индуктивности приведем пример из области механики.

Как известно из физики, по второму закону Ньютона ускорение, полученное телом под действием силы, пропорционально самой силе и обратно пропорционально массе тела:

Сравним последнюю формулу с формулой ЭДС самоиндукции, взяв абсолютное значение ЭДС:

Если в этих формулах изменения скорости во времени уподобить изменению тока во времени , механическую силу – электродвижущей силе самоиндукции, то масса тела будет соответствовать индуктивности цепи.

При равномерном прямолинейном движении a = 0, поэтому F = 0, то есть если на тело не действуют силы, его движение будет прямолинейным и равномерным (первый закон Ньютона).

В цепях постоянного тока величина тока не меняется и поэтому eL = 0.

Источник: Кузнецов М.И., «Основы электротехники» — 9-е издание, исправленное — Москва: Высшая школа, 1964 — 560с.

Источник