Меню

Электродвигатель постоянного тока тахогенератор

Что такое тахогенератор и зачем он нужен?

Тахогенератор ТП-75-20-0,2 фото

Тахогенераторы (или генераторы тахометров) — это электромеханические устройства, которые выдают напряжение, пропорциональное скорости вращения вала. Они используются для питания тахометров и измерения скорости двигателей и других вращающихся устройств.

Принцип работы тахогенератора

Большинство современных тахогенераторов относятся к типам с постоянными магнитами. В этих устройствах используется вращающийся якорь, один конец которого прикреплен к валу машины для измерения скорости вращения. Якорь вращается в фиксированном магнитном поле, так что его вращение вызывает электродвижущую силу (напряжение), пропорциональную скорости вала. Контакты якоря подключены к цепи вольтметра, преобразующей напряжение в значение скорости.

Тахогенераторы со скользящей крышкой — менее распространенный тип, в котором используется алюминиевая чашка, вращающаяся внутри электромагнитного статора с обмоткой, чашка прикреплена к валу. Переменный ток подается на одну обмотку статора, создавая вихревые токи вокруг чашки. Вращение чашки индуцирует пропорциональное напряжение в другой обмотке статора.

Область применения тахогенератора

Тахогенераторы должны быть прочными, надежными, точными, чувствительными и стабильными. Эти приборы (тахогенераторы постоянного тока, тахогенераторы переменного тока, бесщеточные тахогенераторы постоянного тока) адаптированы для любой отрасли:

  • станки;
  • системы дозирования;
  • подъемно-транспортные системы;
  • подъемники;
  • оборудование для производства бумаги;
  • текстильные машины;
  • линии по производству стекла;
  • прокатные станы;
  • железнодорожная промышленность и т.п.

Эти датчики производятся с различными механическими вариациями и размерами корпуса, а также с различными электрическими характеристиками, например, для напряжений от 2 до 6000 вольт при 1000 об / мин, скорости вращения до 12000 об / мин, машин с валом и подшипниками, машин с полым валом.

Фото — внешний вид тахогенератора

Тахогенератор с твердым валом

Такие тахогенераторы соединены с валом, который, в свою очередь, соединен с внешним устройством вращения. Это вращение внешнего устройства, которое вращает вал тахогенератора и таким образом генерирует определенный диапазон напряжений в соответствии со скоростью и направлением вала.

Тахогенераторы могут указывать направление вращения из-за того, что если вал тахогенератора перевернуть, полярность выходного напряжения изменится. Он лучше всего подходит для работы с высокими нагрузками.

Полый вал

Тахогенераторы с полым валом внутренне отличаются от вариантов со сплошным тем, что они имеют четыре магнитных полюса, а не два. Такая конструкция позволяет тахогенератору работать с нагрузками с более низким напряжением. Примером использования тахогенератора постоянного тока с полым валом является определение скорости лифта.

Тахогенератор постоянного тока устанавливается в подъемное оборудование на канатном шкиве, приводящем в движение кабели. Он позволяет точно контролировать скорость троса, чтобы лифт останавливался на нужном этаже и делал это плавно.

Неисправности тахогенераторов

Каждый тахогенератор перед вводом в постоянную эксплуатацию должен быть подвержен нескольким этапам тестирования. Если не придерживаться рекомендаций производителя, то тахогенератор может не только прослужить мало времени, но и получить серьезную поломку уже в начале своей работы.

Из-за неисправностей может неверно определяться скорость вращения вала, что приведет к механической поломке. Большие нагрузки могут повредить не только тахогенератор, но и устройство, к которому он подключен.

Зачастую в тахогенераторах приходят в неисправность:

  1. шкив — в результате износа или механических повреждений;
  2. токосъемные щетки — в большинстве случаев из-за износа;
  3. износ токосъемных колец;
  4. проблемы с регулятором напряжения;
  5. короткое замыкание витков статорной обмотки;
  6. подшипник может разрушиться;
  7. повреждения диодного моста;
  8. провода зарядной цепи приходят в негодность.

Источник

Исполнительные двигатели и тахогенераторы постоянного тока

Исполнительные двигатели постоянного тока

Исполнительные двигатели постоянного токаИсполнительные двигатели постоянного тока — маломощные машины, используемые в автоматике и телемеханике, в системах автоматического управления, регулирования и- контроля автоматизированных установок, где они преобразуют электрический сигнал измерительного органа — напряжение управления — в угловое перемещение вала для воздействия на управляющий, регулирующий или контролирующий аппарат. В тех случаях, когда поступающий сигнал недостаточен для приведения в действие исполнительного двигателя, применяют магнитный или полупроводниковый усилитель мощности.

Исполнительные двигатели обычно работают в условиях частых пусков, остановок и реверсов. Они отличаются значительным начальным пусковым моментом и быстродействием. Зависимости вращающего момента и скорости якоря от напряжения управления у них в большинстве случаев близки к линейным.

Исполнительные двигатели постоянного токаВ зависимости от системы питания цепей двигателя различают исполнительные двигатели с якорным управлением и с полюсным управлением. При якорном управлении обмоткой управления является обмотка якоря, в связи с чем напряжение управления подводят к ее зажимам, а неизменный ток возбуждения обеспечивает независимый источник электрической энергии постоянного напряжения. В случае полюсного управления обмоткой управления служит обмотка возбуждения главных полюсов и напряжение управления подводят к ее зажимам, а напряжение на зажимах якоря, задаваемое независимым источником электрической энергии постоянного напряжения, сохраняется неизменным .

Обычно используют якорное управление. Изменение полярности напряжения управления вызывает противоположное направление вращения якоря.

Исполнительные двигатели постоянного тока изготовляют номинальной мощности от долей ватта до 600 Вт нормальной и специальной конструкций.

Исполнительные двигатели постоянного токаДвигатели нормальной конструкции аналогичны машинам постоянного тока общего применения, но отличаются от них тем, что станина с главными полюсами так же, как и якорь, собрана из тонких изолированных друг от друга листов электротехнической стали, что способствует улучшению свойств этих машин в переходных режимах. Кроме того, добавочные полюсы в этих машинах отсутствуют, так как реакция якоря невелика и процессы коммутации вполне удовлетворительны. Поскольку скорость якоря небольшая, вентилятор на валу таких двигателей не предусмотрен.

К двигателям специальной конструкции относятся магнитоэлектрические машины с возбуждением основного магнитного поля с помощью постоянных магнитов, а также малоинерционные машины, отличающиеся конструкцией якоря. К последним относятся: двигатели с полым немагнитным якорем — полым тонкостенным цилиндром из пластмассы с запрессованной обмоткой из медного провода с внутренним неподвижным ферромагнитным магнитопроводом, укрепленным на подшипниковом щите, и менее долговечные двигатели с дисковым якорем — тонким немагнитным диском из керамики, текстолита, стекла, а иногда из алюминия с печатной обмоткой, представляющей совокупность радиально расположенных по обе стороны диска проводников из медной фольги, по которой скользят серебряно-графитные щетки. Названные конструкции отличаются малым моментом инерции якоря, что обеспечивает высокое быстродействие исполнительного двигателя.

Читайте также:  Водный раствор азотной кислоты проводит электрический ток или нет

Исполнительные двигатели постоянного тока

Масса исполнительных двигателей постоянного тока в 2 — 4 раза меньше, чем масса одинаковых по номинальной мощности исполнительных асинхронных двигателей, а к. п. д. их при номинальной мощности 5. 10 Вт составляет около 0,3 и достигает значения 0,65 и несколько выше для двигателей номинальной мощностью 200 — 300 Вт.

Исполнительные двигатели постоянного тока

Тахогенераторы постоянного тока

Тахогенераторы постоянного токаТахогенераторы постоянного тока — машины небольшой мощности, предназначенные для преобразования механической величины в электрический сигнал — выходное напряжение. В частности, их используют для контроля и измерения скорости вала исполнительного устройства, с которым соединен вал тахогенератора, зажимы якоря которого соединены с измерительным прибором. Помимо этого, тахогенераторы применяют в электромеханических счетно-решающих устройствах для выполнения вычислительных операций, а также в устройствах автоматической отработки генерируемых ускоряющих и успокаивающих сигналов.

Тахогенераторы бывают магнитоэлектрические с возбуждением основного магнитного поля с помощью постоянных магнитов и электродинамические с электромагнитным возбуждением, обусловленным М. д. с. обмотки возбуждения, питаемой от независимого источника электрической энергии постоянного напряжения.

Выходное напряжение тахогенератора в режиме холостого хода изменяется линейно в зависимости от скорости якоря, а при нагрузке эта линейность несколько нарушается, причем тем больше, чем меньшим сопротивлением обладает измерительный прибор, присоединенный к зажимам якоря. Все же для каждого тахогенератора существует относительно небольшой диапазон измеряемых скоростей, в пределах которого при определенном достаточно большом сопротивлении измерительного прибора и неизменных условиях цепи возбуждения выходную характеристику можно считать практически линейной.

Схема включения тахогенератора постоянного тока независимого возбуждения

Схема включения тахогенератора постоянного тока независимого возбуждения

Тахогенераторы постоянного токаСущественный недостаток тахогенераторов постоянного тока — пульсация выходного напряжения из-за незначительного периодического изменения магнитного потока вследствие неравномерности воздушного зазора и неравенства проводимостей якоря в различных радиальных направлениях, в том числе обусловленных зубчатой конструкцией его магнитопровода, а также из-за вибрации щеток, неровностей и эллиптичности коллектора и коммутационных процессов — в значительной мере устранен в тахогенераторе с полым якорем, который устроен так же, как и малоинерционный исполнительный двигатель постоянного тока с аналогичным якорем.

Неточность установки щеток по геометрической нейтрали коллектора тахогенсратора приводит к асимметрии выходного напряжения, т. е. к генерированию двух различных напряжений в обмотке якоря при противоположных направлениях его вращения с одинаковой скоростью. При правильном расположении щеток асимметрия напряжений находится в пределах от 0,3 до 1% номинального напряжения тахогенератора.

Источник



Тахогенераторы. Виды и устройство. Работа и применение

Тахогенераторы это электрические машины небольшой мощности, которые служат для превращения частоты вращения вала в сигнал электрического тока на выходе. При соединении вала тахогенератора с валом исследуемого агрегата можно получать значение числа его оборотов вращения по имеющемуся значению напряжения на выходе. Эта величина напрямую зависит от числа оборотов рабочего вала.

Виды и устройство

Индукционные, постоянного тока.

Синхронные.

Асинхронные.

Индукционные тахогенераторы

Takhogeneratory induktsionnye

Такие устройства подобны генераторам постоянного тока, имеющим независимое возбуждение с помощью постоянных магнитов. Для них характерно изменение значения передаточного коэффициента. Это возникает вследствие нелинейности сопротивления прилегания щеток. Реагирование якоря образует неравномерную магнитную индукцию в промежутках генератора. Это особенно заметно при незначительной скорости.

Уменьшение нелинейности происходит путем применения омедненных металлизированных щеток. При использовании таких щеток наблюдается незначительное падение напряжения. Нелинейность вследствие реакции якоря уменьшается вследствие понижения скорости и возрастания сопротивления потребителя нагрузки.

На качество функционирования этого устройства влияют погрешности в технологии изготовления и особенности конструкции, включающие в себя:
  • Импульсные перепады напряжения в коллекторе. На них влияет число пластин в устройстве коллектора.
  • Зубчатое устройство якоря.
  • Оборотные пульсации из-за несимметрии воздушных промежутков.

При небольшом числе оборотов вала из-за вышеперечисленных погрешностей возникает искажение сигнала на выходе, снижается частота и увеличивается амплитуда. Это ограничивает нижний предел скорости тахогенератора. Для того, чтобы сделать работу более качественной и сгладить пульсации, в устройстве тахогенератора используют как можно больше количество пластин в коллекторе. А также применяются якоря со специальными пазами, имеющими особенность в устройстве, в них есть скос на 1 деление зуба. За счет этого возрастает воздушный зазор.

Чтобы повысить точность устройства, в тахогенератор устанавливают якорь без пазов. Пульсации снижают путем подключения конденсаторов, которые выступают фильтром высокой частоты.

Синхронные тахогенераторы

Takhogeneratory sinkhronnye

Эти устройства по внешнему виду похожи на маломощный синхронный электродвигатель с магнитным и электрическим возбуждением, имеющие маленький ротор, играющий роль магнита. Для выравнивания частоты и амплитуды, зависящей напрямую от оборотов вращения, применяются выпрямители на основе полупроводниковых приборов.

Такой вид тахогенератора работает с переменной частотой, что затрудняет его использование в простых схемах. Он имеет низкую чувствительность к возможности изменения направления крутящего момента вала электродвигателя. В устройствах тахогенераторов синхронного типа выполняют значительное число пар полюсов, поэтому они используются для приводов механизмов с малой скоростью вращения.

Причины погрешности:
  • Выходное напряжение имеет зависимость от величины сопротивления цепи.
  • Несимметричность воздушного зазора обуславливает появление пульсаций низкой частоты.
  • В магнитном потоке присутствуют пульсации от зубьев.
  • Изменение температуры влияет на параметры машины.
Читайте также:  Схемы стабилизаторов тока для питания светодиодов

Для нормального функционирования синхронных тахогенераторов подойдут такие же меры и условия, как для электрических устройств постоянного тока. Импульсы напряжения уравниваются путем использования устройства ротора со специальными полюсами, обеспечивающими необходимую ЭДС. Чтобы уменьшить зубцовые пульсации, применяют сглаживающий фильтр.

Из преимуществ синхронных тахогенераторов можно отметить:
  • Устойчивость к вибрациям.
  • Защита от пыли и влаги.
  • Взрывобезопасносная конструкция.
Асинхронные тахогенераторы

Takhogeneratory asinkhronnye

Конструкция асинхронного тахогенератора похожа на устройство 2-фазного исполнительного электродвигателя, имеющего тонкостенный замкнутый ротор. Питание тахогенератора, а точнее его обмотки возбуждения, производится от электросети переменного тока.

Выходная обмотка образует двойную ЭДС. 1-я из них имеет величину переменного тока внутри ротора, 2-я ЭДС – вращения снаружи ротора. 1-я ЭДС образует суммарный магнитный поток под действием токов. При действии 2-й ЭДС токи образуют магнитный поток в катушках тахогенератора – выходы ЭДС.

Амплитуда и частота графика синусоиды сети напрямую зависит от скорости вращения ротора тахогенератора. Для смены направления вращения нужно изменить фазу выхода на противоположную.

Источник

Электрический двигатель постоянного тока

Эра электродвигателей берёт своё начало с 30-х годов XIX века, когда Фарадей на опытах доказал способность вращения проводника, по которому проходит ток, вокруг постоянного магнита. На этом принципе Томасом Девенпортом был сконструирован и испытан первый электродвигатель постоянного тока. Изобретатель установил своё устройство на действующую модель поезда, доказав тем самым работоспособность электромотора.

Практическое применение ДПТ нашёл Б. С. Якоби, установив его на лодке для вращения лопастей. Источником тока учёному послужили 320 гальванических элементов. Несмотря на громоздкость оборудования, лодка могла плыть против течения, транспортируя 12 пассажиров на борту.

Лишь в конце XIX столетия синхронными электродвигателями начали оснащать промышленные машины. Этому способствовало осознание принципа преобразования электродвигателем постоянного тока механической энергии в электричество. То есть, используя электродвигатель в режиме генератора, удалось получать электроэнергию, производство которой оказалось существенно дешевле от затрат на выпуск гальванических элементов. С тех пор электродвигатели совершенствовались и стали завоёвывать прочные позиции во всех сферах нашей жизнедеятельности.

Устройство и описание ДПТ

Конструктивно электродвигатель постоянного тока устроен по принципу взаимодействия магнитных полей.

Самый простой ДПТ состоит из следующих основных узлов:

Схематическое изображение простейшего ДПТ

  1. Двух обмоток с сердечниками, соединенных последовательно. Данная конструкция расположена на валу и образует узел, называемый ротором или якорем.
  2. Двух постоянных магнитов, повёрнутых разными полюсами к обмоткам. Они выполняют задачу неподвижного статора.
  3. Коллектора – двух полукруглых, изолированных пластин, расположенных на валу ДПТ.
  4. Двух неподвижных контактных элементов (щёток), предназначенных для передачи электротока через коллектор до обмоток возбуждения.

Рисунок 1. Схематическое изображение простейшего электродвигателя постоянного тока.

Рассмотренный выше пример – это скорее рабочая модель коллекторного электродвигателя. На практике такие устройства не применяются. Дело в том, что у такого моторчика слишком маленькая мощность. Он работает рывками, особенно при подключении механической нагрузки.

Статор (индуктор)

В моделях мощных современных двигателях постоянного тока используются статоры, они же индукторы, в виде катушек, намотанных на сердечники. При замыкании электрической цепи происходит образование линий магнитного поля, под действием возникающей электромагнитной индукции.

Для запитывания обмоток индуктора ДПТ могут использоваться различные схемы подключения:

  • с независимым возбуждением обмоток;
  • соединение параллельно обмоткам якоря;
  • варианты с последовательным возбуждением катушек ротора и статора;
  • смешанное подсоединение.

Схемы подключения наглядно видно на рисунке 2.

Схемы подключения обмоток статора

Рисунок 2. Схемы подключения обмоток статора ДПТ

У каждого способа есть свои преимущества и недостатки. Часто способ подключения диктуется условиями, в которых предстоит эксплуатация электродвигателя постоянного тока. В частности, если требуется уменьшить искрения коллектора, то применяют параллельное соединение. Для увеличения крутящего момента лучше использовать схемы с последовательным подключением обмоток. Наличие высоких пусковых токов создаёт повышенную электрическую мощность в момент запуска мотора. Данный способ подходит для двигателя постоянного тока, интенсивно работающего в кратковременном режиме, например для стартера. В таком режиме работы детали электродвигателя не успевают перегреться, поэтому износ их незначителен.

Ротор (якорь)

В рассмотренном выше примере примитивного электромотора ротор состоит из двухзубцового якоря на одной обмотке, с чётко выраженными полюсами. Конструкция обеспечивает вращение вала электромотора.

В описанном устройстве есть существенный недостаток: при остановке вращения якоря, его обмотки занимают устойчивое. Для повторного запуска электродвигателя требуется сообщить валу некий крутящий момент.

Этого серьёзного недостатка лишён якорь с тремя и большим количеством обмоток. На рисунке 3 показано изображение трёхобмоточного ротора, а на рис. 4 – якорь с большим количеством обмоток.

Ротор с тремя обмоткамиРисунок 3. Ротор с тремя обмотками Якорь со многими обмоткамиРисунок 4. Якорь со многими обмотками

Подобные роторы довольно часто встречаются в небольших маломощных электродвигателях.

Для построения мощных тяговых электродвигателей и с целью повышения стабильности частоты вращения используют якоря с большим количеством обмоток. Схема такого двигателя показана на рисунке 5.

Схема электромотора с многообмоточным якорем

Рисунок 5. Схема электромотора с многообмоточным якорем

Коллектор

Если на выводы обмоток ротора подключить источник постоянного тока, якорь сделает пол-оборота и остановится. Для продолжения процесса вращения необходимо поменять полярность подводимого тока. Устройство, выполняющее функции переключения тока с целью изменения полярности на выводах обмоток, называется коллектором.

Самый простой коллектор состоит из двух, изолированных полукруглых пластин. Каждая из них в определённый момент контактирует со щёткой, с которой снимается напряжение. Одна ламель всегда подсоединена к плюсу, а вторая – к минусу. При повороте вала на 180º пластины коллектора меняются местами, вследствие чего происходит новая коммутация со сменой полярности.

Такой же принцип коммутации питания обмоток используются во всех коллекторах, в т. ч. и в устройствах с большим количеством ламелей (по паре на каждую обмотку). Таким образом, коллектор обеспечивает коммутацию, необходимую для непрерывного вращения ротора.

Читайте также:  Формула трехфазной системы токов

В современных конструкциях коллектора ламели расположены по кругу таким образом, что каждая пластина соответствующей пары находится на диаметрально противоположной стороне. Цепь якоря коммутируется в результате изменения положения вала.

Принцип работы

Ещё со школьной скамьи мы помним, что на провод под напряжением, расположенный между полюсами магнита, действует выталкивающая сила. Происходит это потому, что вокруг проволоки образуется магнитное поле по всей его длине. В результате взаимодействия магнитных полей возникает результирующая «Амперова» сила:

F=B×I×L, где B означает величину магнитной индукции поля, I – сила тока, L – длина провода.

Вектор «Амперовой» всегда перпендикулярен до линий магнитных потоков между полюсами. Схематически принцип работы изображён на рис. 6.

Принцип работы ДПТ

Рис. 6. Принцип работы ДПТ

Если вместо прямого проводника возьмём контурную рамку и подсоединим её к источнику тока, то она повернётся на 180º и остановится в в таком положении, в котором результирующая сила окажется равной 0. Попробуем подтолкнуть рамку. Она возвращается в исходное положение.

Поменяем полярность тока и повторим попытку: рамка сделала ещё пол-оборота. Логично припустить, что необходимо менять направление тока каждый раз, когда соответствующие витки обмоток проходят точки смены полюсов магнитов. Именно для этой цели и создан коллектор.

Схематически можно представить себе каждую якорную обмотку в виде отдельной контурной рамки. Если обмоток несколько, то в каждый момент времени одна из них подходит к магниту статора и оказывается под действием выталкивающей силы. Таким образом, поддерживается непрерывное вращение якоря.

Типы ДПТ

Существующие электродвигатели постоянного тока можно классифицировать по двум основным признакам: по наличию или отсутствию в конструкции мотора щеточно-коллекторного узла и по типу магнитной системы статора.

Рассмотрим основные отличия.

По наличию щеточно-коллекторного узла

Двигатели постоянного тока для коммутации обмоток, которых используются щёточно-коллекторные узлы, называются коллекторными. Они охватывают большой спектр линейки моделей электромоторов. Существуют двигатели, в конструкции которых применяется до 8 щёточно-коллекторных узлов.

Функции ротора может выполнять постоянный магнит, а ток от электрической сети подаётся непосредственно на обмотки статора. В таком варианте отпадает надобность в коллекторе, а проблемы, связанные с коммутацией, решаются с помощью электроники.

В таких бесколлекторных двигателях устранён один из недостатков –искрение, приводящее к интенсивному износу пластин коллектора и щёток. Кроме того, они проще в обслуживании и сохраняют все полезные характеристики ДПТ: простота в управлении связанном с регулировкой оборотов, высокие показатели КПД и другие. Бесколлекторные моторы носят название вентильных электродвигателей.

По виду конструкции магнитной системы статора

В конструкциях синхронных двигателей существуют модели с постоянными магнитами и ДПТ с обмотками возбуждения. Электродвигатели серий, в которых применяются статоры с потоком возбуждения от обмоток, довольно распространены. Они обеспечивают стабильную скорость вращения валов, высокую номинальную механическую мощность.

О способах подключения статорных обмоток шла речь выше. Ещё раз подчеркнём, что от выбора схемы подключения зависят электрические и тяговые характеристики двигателей постоянного тока. Они разные в последовательных обмотках и в катушках с параллельным возбуждением.

Управление

Не трудно понять, что если изменить полярность напряжения, то направление вращения якоря также изменится. Это позволяет легко управлять электромотором, манипулируя полярностью щеток.

Механическая характеристика

Рассмотрим график зависимости частоты от момента силы на валу. Мы видим прямую с отрицательным наклоном. Эта прямая выражает механическую характеристику электродвигателя постоянного тока. Для её построения выбирают определённое фиксированное напряжение, подведённое для питания обмоток ротора.

Примеры механических характеристик ДПТ

Примеры механических характеристик ДПТ независимого возбуждения

Регулировочная характеристика

Такая же прямая, но идущая с положительным наклоном, является графиком зависимости частоты вращения якоря от напряжения питания. Это и есть регулировочная характеристика синхронного двигателя.

Построение указанного графика осуществляется при определённом моменте развиваемом ДПТ.

Регулировочная характеристика ДПТ

Пример регулировочных характеристик двигателя с якорным управлением

Благодаря линейности характеристик упрощается управление электродвигателями постоянного тока. Поскольку сила F пропорциональна току, то изменяя его величину, например переменным сопротивлением, можно регулировать параметры работы электродвигателя.

Регулирование частоты вращения ротора легко осуществляется путём изменения напряжения. В коллекторных двигателях с помощью пусковых реостатов добиваются плавности увеличения оборотов, что особенно важно для тяговых двигателей. Это также один из эффективных способов торможения. Мало того, в режиме торможения синхронный электродвигатель вырабатывает электрическую энергию, которую можно возвращать в энергосеть.

Области применения

Перечислять все области применения электродвигателей можно бесконечно долго. Для примера назовём лишь несколько из них:

  • бытовые и промышленные электроинструменты;
  • автомобилестроение – стеклоподъёмники, вентиляторы и другая автоматика;
  • трамваи, троллейбусы, электрокары, подъёмные краны и другие механизмы, для которых важны высокие параметры тяговых характеристик.

Преимущества и недостатки

К достоинствам относится:

  • Линейная зависимость характеристик электродвигателей постоянного тока (прямые линии) упрощающие управление;
  • Легко регулируемая частота вращения;
  • хорошие пусковые характеристики;
  • компактные размеры.

У асинхронных электродвигателей, являющихся двигателями переменного тока очень трудно достичь таких характеристик.

Недостатки:

  • ограниченный ресурс коллектора и щёток;
  • дополнительная трата времени на профилактическое обслуживание, связанное с поддержанием коллекторно-щёточных узлов;
  • ввиду того, что мы пользуемся сетями с переменным напряжением, возникает необходимость выпрямления тока;
  • дороговизна в изготовлении якорей.

По перечисленным параметрам из недостатков в выигрыше оказываются модели асинхронных двигателей. Однако во многих случаях применение электродвигателя постоянного тока является единственно возможным вариантом, не требующим усложнения электрической схемы.

Видео в дополнение к написанному



Источник