Меню

Электродвижущая сила источника тока эдс закон ома для замкнутой цепи

ЭДС. Закон Ома для полной цепи

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: электродвижущая сила, внутреннее сопротивление источника тока, закон Ома для полной электрической цепи.

До сих пор при изучении электрического тока мы рассматривали направленное движение свободных зарядов во внешней цепи, то есть в проводниках, подсоединённых к клеммам источника тока.

Как мы знаем, положительный заряд :

• уходит во внешнюю цепь с положительной клеммы источника;

• перемещается во внешней цепи под действием стационарного электрического поля, создаваемого другими движущимися зарядами;

• приходит на отрицательную клемму источника, завершая свой путь во внешней цепи.

Теперь нашему положительному заряду нужно замкнуть свою траекторию и вернуться на положительную клемму. Для этого ему требуется преодолеть заключительный отрезок пути — внутри источника тока от отрицательной клеммы к положительной. Но вдумайтесь: идти туда ему совсем не хочется! Отрицательная клемма притягивает его к себе, положительная клемма его от себя отталкивает, и в результате на наш заряд внутри источника действует электрическая сила , направленная против движения заряда (т.е. против направления тока).

Сторонняя сила

Тем не менее, ток по цепи идёт; стало быть, имеется сила, «протаскивающая» заряд сквозь источник вопреки противодействию электрического поля клемм (рис. 1 ).

Рис. 1. Сторонняя сила

Эта сила называется сторонней силой; именно благодаря ей и функционирует источник тока. Сторонняя сила не имеет отношения к стационарному электрическому полю — у неё, как говорят, неэлектрическое происхождение; в батарейках, например, она возникает благодаря протеканию соответствующих химических реакций.

Обозначим через работу сторонней силы по перемещению положительного заряда q внутри источника тока от отрицательной клеммы к положительной. Эта работа положительна, так как направление сторонней силы совпадает с направлением перемещения заряда. Работа сторонней силы называется также работой источника тока.

Во внешней цепи сторонняя сила отсутствует, так что работа сторонней силы по перемещению заряда во внешней цепи равна нулю. Поэтому работа сторонней силы по перемещению заряда вокруг всей цепи сводится к работе по перемещению этого заряда только лишь внутри источника тока. Таким образом, — это также работа сторонней силы по перемещению заряда по всей цепи.

Мы видим, что сторонняя сила является непотенциальной — её работа при перемещении заряда по замкнутому пути не равна нулю. Именно эта непотенциальность и обеспечивает циркулирование электрического тока; потенциальное электрическое поле, как мы уже говорили ранее, не может поддерживать постоянный ток.

Опыт показывает, что работа прямо пропорциональна перемещаемому заряду . Поэтому отношение уже не зависит от заряда и является количественной характеристикой источника тока. Это отношение обозначается :

Данная величина называется электродвижущей силой (ЭДС) источника тока. Как видим, ЭДС измеряется в вольтах (В), поэтому название «электродвижущая сила» является крайне неудачным. Но оно давно укоренилось, так что приходится смириться.

Когда вы видите надпись на батарейке: «1,5 В», то знайте, что это именно ЭДС. Равна ли эта величина напряжению, которое создаёт батарейка во внешней цепи? Оказывается, нет! Сейчас мы поймём, почему.

Закон Ома для полной цепи

Любой источник тока обладает своим сопротивлением , которое называется внутренним сопротивлением этого источника. Таким образом, источник тока имеет две важных характеристики: ЭДС и внутреннее сопротивление.

Пусть источник тока с ЭДС, равной , и внутренним сопротивлением подключён к резистору (который в данном случае называется внешним резистором, или внешней нагрузкой, или полезной нагрузкой). Всё это вместе называется полной цепью (рис. 2 ).

Рис. 2. Полная цепь

Наша задача — найти силу тока в цепи и напряжение на резисторе .

За время по цепи проходит заряд . Согласно формуле (1) источник тока совершает при этом работу:

Так как сила тока постоянна, работа источника целиком превращается в теплоту, которая выделяется на сопротивлениях и . Данное количество теплоты определяется законом Джоуля–Ленца:

Итак, , и мы приравниваем правые части формул (2) и (3) :

После сокращения на получаем:

Вот мы и нашли ток в цепи:

Формула (4) называется законом Ома для полной цепи.

Если соединить клеммы источника проводом пренебрежимо малого сопротивления , то получится короткое замыкание. Через источник при этом потечёт максимальный ток — ток короткого замыкания:

Из-за малости внутреннего сопротивления ток короткого замыкания может быть весьма большим. Например, пальчиковая батарейка разогревается при этом так, что обжигает руки.

Читайте также:  Как направлен ток в круговом проводнике рисунок 179

Зная силу тока (формула (4) ), мы можем найти напряжение на резисторе с помощью закона Ома для участка цепи:

Это напряжение является разностью потенциалов между точками и (рис. 2 ). Потенциал точки равен потенциалу положительной клеммы источника; потенциал точки равен потенциалу отрицательной клеммы. Поэтому напряжение (5) называется также напряжением на клеммах источника.

Мы видим из формулы (5) , что в реальной цепи будет — ведь умножается на дробь, меньшую единицы. Но есть два случая, когда .

1. Идеальный источник тока. Так называется источник с нулевым внутренним сопротивлением. При формула (5) даёт .

2. Разомкнутая цепь. Рассмотрим источник тока сам по себе, вне электрической цепи. В этом случае можно считать, что внешнее сопротивление бесконечно велико: . Тогда величина неотличима от , и формула (5) снова даёт нам .

Смысл этого результата прост: если источник не подключён к цепи, то вольтметр, подсоединённый к полюсам источника, покажет его ЭДС.

КПД электрической цепи

Нетрудно понять, почему резистор называется полезной нагрузкой. Представьте себе, что это лампочка. Теплота, выделяющаяся на лампочке, является полезной, так как благодаря этой теплоте лампочка выполняет своё предназначение — даёт свет.

Количество теплоты, выделяющееся на полезной нагрузке за время , обозначим .

Если сила тока в цепи равна , то

Некоторое количество теплоты выделяется также на источнике тока:

Полное количество теплоты, которое выделяется в цепи, равно:

КПД электрической цепи — это отношение полезного тепла к полному:

КПД цепи равен единице лишь в том случае, если источник тока идеальный .

Закон Ома для неоднородного участка

Простой закон Ома справедлив для так называемого однородного участка цепи — то есть участка, на котором нет источников тока. Сейчас мы получим более общие соотношения, из которых следует как закон Ома для однородного участка, так и полученный выше закон Ома для полной цепи.

Участок цепи называется неоднородным, если на нём имеется источник тока. Иными словами, неоднородный участок — это участок с ЭДС.

На рис. 3 и источник тока. ЭДС источника равна , его внутреннее сопротивление считаем равным нулю (усли внутреннее сопротивление источника равно , можно просто заменить резистор на резистор ).

Рис. 3. ЭДС «помогает» току:

Сила тока на участке равна , ток течёт от точки к точке . Этот ток не обязательно вызван одним лишь источником . Рассматриваемый участок, как правило, входит в состав некоторой цепи (не изображённой на рисунке), а в этой цепи могут присутствовать и другие источники тока. Поэтому ток является результатом совокупного действия всех источников, имеющихся в цепи.

Пусть потенциалы точек и равны соответственно и . Подчеркнём ещё раз, что речь идёт о потенциале стационарного электрического поля, порождённого действием всех источников цепи — не только источника, принадлежащего данному участку, но и, возможно, имеющихся вне этого участка.

Напряжение на нашем участке равно: . За время через участок проходит заряд , при этом стационарное электрическое поле совершает работу:

Кроме того, положительную работу совершает источник тока (ведь заряд прошёл сквозь него!):

Сила тока постоянна, поэтому суммарная работа по продвижению заряда , совершаемая на участке стационарным элетрическим полем и сторонними силами источника, целиком превращается в тепло: .

Подставляем сюда выражения для , и закон Джоуля–Ленца:

Сокращая на , получаем закон Ома для неоднородного участка цепи:

или, что то же самое:

Обратите внимание: перед стоит знак «плюс». Причину этого мы уже указывали — источник тока в данном случае совершает положительную работу, «протаскивая» внутри себя заряд от отрицательной клеммы к положительной. Попросту говоря, источник «помогает» току протекать от точки к точке .

Отметим два следствия выведенных формул (6) и (7) .

1. Если участок однородный, то . Тогда из формулы (6) получаем — закон Ома для однородного участка цепи.

2. Предположим, что источник тока обладает внутренним сопротивлением . Это, как мы уже упоминали, равносильно замене на :

Теперь замкнём наш участок, соединив точки и . Получим рассмотренную выше полную цепь. При этом окажется, что и предыдущая формула превратится в закон Ома для полной цепи:

Таким образом, закон Ома для однородного участка и закон Ома для полной цепи оба вытекают из закона Ома для неоднородного участка.

Может быть и другой случай подключения, когда источник «мешает» току идти по участку. Такая ситуация изображена на рис. 4 . Здесь ток, идущий от к , направлен против действия сторонних сил источника.

Читайте также:  Управление колебание тока напряжения

Рис. 4. ЭДС «мешает» току:

Как такое возможно? Очень просто: другие источники, имеющиеся в цепи вне рассматриваемого участка, «пересиливают» источник на участке и вынуждают ток течь против . Именно так происходит, когда вы ставите телефон на зарядку: подключённый к розетке адаптер вызывает движение зарядов против действия сторонних сил аккумулятора телефона, и аккумулятор тем самым заряжается!

Что изменится теперь в выводе наших формул? Только одно — работа сторонних сил станет отрицательной:

Тогда закон Ома для неоднородного участка примет вид:

где по-прежнему — напряжение на участке.

Давайте соберём вместе формулы (7) и (8) и запишем закон Ома для участка с ЭДС следующим образом:

Ток при этом течёт от точки к точке . Если направление тока совпадает с направлением сторонних сил, то перед ставится «плюс»; если же эти направления противоположны, то ставится «минус».

Источник

Замкнутая и разомкнутая электрическая цепь

К основным элементам электрических цепей относятся:

  • источники питания;
  • провода;
  • потребители (приемники);
  • защитные и коммутационные устройства.

Элементы электрических цепей бывают активными либо пассивными. Пассивными элементами являются провода, потребители и конденсаторы. Активными считаются двигатели, аккумуляторы, которые заряжаются, и источники питания.

Электрическая цепь может находиться в замкнутом или разомкнутом положении.

Электрическая цепь в замкнутом положении

Наиболее простой замкнутой цепью считается соединение проводниками источника питания с приемником. Проводники всегда должны изолироваться.

Для того, чтобы обеспечить стабильную и безопасную работу электроцепи, в нее включают вспомогательные элементы. К ним относятся приборы измерения напряжения и тока, разнообразные включатели и переключатели, а также прочие устройства.

Замкнутая электрическая цепь делится на две составляющие: внутреннюю и внешнюю.

Закон Ома для замкнутой цепи

Закон Ома для замкнутой цепи показывает зависимость силы тока от электродвижущей силы, сопротивления источника питания и сопротивлений нагрузки.

Сложно разобраться самому?

Попробуй обратиться за помощью к преподавателям

Значение силы тока равняется отношению ЭДС источника к суммарному значению внешнего и внутреннего сопротивления цепи. Данную зависимость опытным путем вывел ученый Георг Ом в начале XIX века и описал ее следующим математическим выражением:

где \(I\) – сила тока;

\(ε\) – ЭДС источника питания;

\(R\) – внешнее сопротивление цепи;

\(r\) – внутренне сопротивление источника.

Чтобы рассчитать силу тока на отдельно взятом сопротивлении, используют следующее выражение:

После проведения преобразований, ЭДС источника питания замкнутой цепи с несколькими внешними сопротивлениями (потребителями) будет выглядеть так:

Физическое понимание закона Ома для замкнутой цепи

Замкнутая цепь может быть образована потребителями только в сочетании с источником питания. Ток, который протекает через потребителя, возвращается к источнику. Именно поэтому на силу тока влияет как сопротивление потребителя, так и сопротивление самого источника. Соответствующим образом общее сопротивление любой замкнутой цепи равняется сумме сопротивления потребителя и сопротивления источника.

Физический смысл зависимости силы тока от ЭДС и сопротивлений состоит в том, что с увеличением ЭДС растет энергия носителей зарядов. Это значит, что скорость их упорядоченного движения увеличивается. Однако, если при этом увеличивается сопротивление цепи, их движение замедляется, и соответственно, уменьшается сила тока.

Электроток течет по замкнутой цепи, обязательным условием его бесперебойного движения есть надежные соединения всех элементов.

Не нашли что искали?

Просто напиши и мы поможем

Источниками питания в различных цепях могут быть аккумуляторы, генераторы и гальванические элементы.

Также существуют различные потребители, в основном это осветительные приборы и двигатели различных устройств.

Для надежного соединения используют металлические провода разнообразных размеров и с различными свойствами. Зачастую проводники изолирую между собой.

Для того, чтобы ток начал перемещаться по цепи, должны быть соединены две ее точки, причем в одной из этих точек должен быть избыток носителей заряда. Таким образом, создается разность потенциалов между ними. Главным устройством, создающим такую разность, есть источник питания.

Потребители в электроцепи считаются нагрузками. Нагрузки создают сопротивление течению тока.

Электроток применяют для создания искусственного освещения. Простые электролампочки есть наглядным примером простой замкнутой цепи.

Электрическая цепь в разомкнутом положении

Если заряды не протекают по цепи, то на ее концах есть напряжение. В таком положении цепь, как бы, находится в процессе ожидания соединения данных концов для течения тока. Такая цепь считается разомкнутой.

Для подключения и отключения электролампочек необходим разрыв электроцепи. Для удобного использования были придуманы различные рубильники и выключатели. Их функцией является управление потоком электрических зарядов.

Читайте также:  Чему равен ток знаем мощность

Рубильники есть наглядным примером принципа работы переключателей или выключателей. Однако для их применения в мощных электрических цепях требуется обустройство безопасной эксплуатации. Некоторые части рубильников бывают открытыми, поэтому есть опасность их воспламенения при попадании горючих материалов. На сегодняшний день есть выключатели, защищенные изолирующим корпусом.

Источник



Закон Ома для замкнутой цепи. ЭДС источника тока

date image2014-02-13
views image3634

facebook icon vkontakte icon twitter icon odnoklasniki icon

Е.

Закон Ома в дифференциальной форме.

Закон Ома для участка цепи.

Основные законы

Сила тока на участке цепи пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению этого участка цепи.

ЭДС источника тока — это работа

по перемещению электрического

заряда между полюсами источника тока.

ЭДС совершает работу внутри источника тока против сил электрического поля, имеет неэлектрическое

ЭДС источника тока — это разность потенциалов между полюсами разомкнутого источника токов.

Закон Ома для замкнутой цепи.

Зависимость между э.д.с. источника тока и силой тока в замкнутой электрической цепи, можно найти следующим образом.

R – внешнее сопротивление цепи

r – внутреннее сопротивление источника

Рисунок 42. А1 – работа по перемещению заряда внутри источника

Так как ток в цепи I, то , а и

Сила тока в замкнутой электрической цепи прямо пропорциональна ЭДС источника тока и обратно пропорциональна полному сопротивлению цепи.

Для расчета сложных электрических цепей применяются правила Кирхгоффа.

В сложных разветвленных электрических цепях различают узлы и замкнутые контуры.

Узлом — называется точка, в которой сходится больше двух ветвей, причем токи, входящие в узел берутся со знаком плюс, а выходящие из него — со знаком минус.

Источник

Электродвижущая сила. Закон Ома для замкнутой цепи. Источники тока

Электродвижущая сила. Закон Ома для замкнутой цепи. Источники тока.

Описание презентации по отдельным слайдам:

Электродвижущая сила.
Закон Ома для замкнутой цепи.
Источники тока.

Сторонние силы
Электродвижущая сила
Внешняя часть цепи
Внутренняя часть цепи
Источник тока
Понятия и величины:

Законы:
Ома для замкнутой цепи

Ток короткого замыкания

Правила электробезопасности в различных помещениях

Плавкие предохранители
Аспекты жизнедеятельности человека:

Электродвижущая сила. Закон Ома для замкнутой цепи. Источники тока.
Для получения в электрической цепи постоянного тока на заряды должны действовать какие-либо силы, отличные от (кулоновских) сил электростатического поля. Такие силы получили название сторонних сил. Характеристикой действия сторонних сил является электродвижущая сила (ЭДС), которая численно равна работе сторонних сил по перемещению единичного положительного (пробного) заряда по замкнутой цепи или, другими словами, определяется работой сторонних сил по перемещению заряда по замкнутому контуру, отнесенной к величине этого заряда,

ЭДС измеряется в вольтах. Участок цепи, на котором есть ЭДС, называют неоднородным участком цепи.
Внутри источника заряды движутся против кулоновских сил под действием сторонних сил, а во всей остальной цепи их приводят в движение электрическое поле. Такими источниками могут быть гальванические элементы, аккумуляторы, электрические генераторы постоянного тока.
ЭДС источника тока равна электрическому напряжению на его зажимах при разомкнутой цепи.
Из закона сохранения энергии следует, что работа сторонних сил равна выделившемуся в цепи количеству теплоты
Q = I2 ∙ R0 ∙ ∆t
где R0 = R + r – полное сопротивление цепи, а R – сопротивление внешней цепи,
r – внутреннее сопротивление источника.
Тогда ε ∙ I ∙ ∆t = I2 ∙ (R + r) ∆t

Отсюда получаем закон Ома для полной цепи:
Сила тока в полной цепи равна электродвижущей силе источника, деленной на сумму сопротивлений внешнего и внутреннего участков цепи.

В том случае, когда сопротивление внешней цепи стремится к нулю, в цепи возникает ток короткого замыкания – максимально возможный ток в данном источнике

Сила тока короткого замыкания – максимальная сила тока, которую можно получить от данного источника с электродвижущей силой и внутренним сопротивлением r. У источников с малым внутренним сопротивлением ток короткого замыкания может быть очень велик и вызывать разрушение электрической цепи или источника. Например, у свинцовых аккумуляторов, используемых в автомобилях, сила тока короткого замыкания может составлять несколько сотен ампер. Особенно опасны короткие замыкания в осветительных сетях, питаемых от подстанций (тысячи ампер). Чтобы избежать разрушительного действия таких больших токов, в цепь включаются предохранители или специальные автоматы защиты сетей. У гальванических элементов сила тока короткого замыкания небольшая и поэтому он для них не очень опасен.

Источник