Меню

Электронная нагрузка для переменного тока схема

Нагрузка электронная своими руками: схема. Самодельная электронная нагрузка на полевом транзисторе

С целью проверки блоков питания существует электронная нагрузка. Данное устройство работает по принципу генерации сигнала. К основным параметрам модификаций стоит относить пороговое напряжение, допустимую перегрузку, а также коэффициент рассеивания. Существует несколько типов устройств. Для того чтобы разобраться в нагрузках, в первую очередь рекомендуется ознакомиться со схемой прибора.

Схема модификации

Стандартная схема нагрузки включается в себя резисторы, выпрямитель и порты модулятора. Если рассматривать устройства небольшой частоты, то у них используются трансиверы. Данные элементы работают на открытых контактах. Для передачи сигнала используются компараторы. В последнее время популярными считаются нагрузки на стабилизаторах. В первую очередь их разрешается применять в сети постоянного тока. У них быстро происходит процесс преобразования. Также стоит отметить, что неотъемлемым элементом любой нагрузки считается усилитель и регулятор. Данные устройства замыкаются на обкладке. У них довольно высокая проводимость. За процесс генерации у моделей отвечает именно модулятор.

нагрузка электронная

Типы модификаций

Различают импульсные и программируемые устройства. В отдельную категорию выделены лабораторные, которые подходят для мощных блоков питания. Также модификации отличаются по частоте, с которой они работают. Низкочастотные нагрузки оснащаются транзисторами с канальным переходником. Они используются в сети переменного тока. Модели высокочастотного типа изготавливаются на базе открытого тиристора.

Импульсные устройства

Как делается импульсная электронная нагрузка? В первую очередь для сборки эксперты рекомендуют подобрать хороший тиристор. При этом модулятор подходит только на две фазы. Специалисты говорят о том, что расширитель должен работать попеременно. Рабочая частота у него обязана составлять примерно 4000 кГц. Трансивер в нагрузку устанавливается через модулятор. После пайки конденсаторов стоит заняться усилителем.

Для стабильной работы нагрузки потребуется три фильтра канальной направленности. Для проверки прибора применяется тестер. Сопротивление должно составлять примерно 55 Ом. При средней загруженности самодельная электронная нагрузка выдает номинальное напряжение в районе 200 Вт. Для поднятия чувствительности применяются компараторы. При замыканиях системы стоит проверять цепь от конденсатора. Если сопротивление на контактах занижено, значит, трансивер нужно менять на емкостный аналог. Многие специалисты указывают на возможность использования волновых фильтров, у которых хорошая проводимость. Регуляторы для этих целей применяются на триоде.

электронная нагрузка схема

Программируемые модели

Электронная программируемая нагрузка собирается довольно просто. С этой целью применяется расширительный трансивер на 230 В. Для передачи сигнала используется три контактора, которые отходят от транзистора. Для контроля процессом преобразования применяются регуляторы. Наиболее часто используются именно линейные аналоги. Триод применяется с изолятором. В данном случае потребуется паяльная лампа. Непосредственно резистор фиксируется на трансивере.

Для модели однозначно не подойдут обычные компараторы, у которых низкий коэффициент рассеивания. Также стоит отметить, что многие допускают ошибку, когда устанавливают один фильтр. Для нормальной работы приора используются только емкостные аналоги. Номинальное напряжение на выходе должно составлять примерно 200 В при сопротивлении на уровне 40 Ом. Если собирать устройства на однопереходном расширителе, то линейные модели не подходят.

В первую очередь прибор не будет работать из-за большой перегрузки тиристора. Также стоит отметить, что для модели потребуется строчный модулятор с низкой чувствительностью. Некоторые специалисты при сборке используют стабилизаторы. Если рассматривать простую модификацию, то подойдет регулируемый тип. Однако чаще всего используют именно инвертирующие элементы.

Лабораторные модификации

Собирается лабораторная электронная нагрузка своими руками с мощным тиристором. Резисторы применяются с емкостью от 40 пФ. Специалисты говорят о том, что конденсаторы можно применять только расширительного типа. Особое внимание при сборке стоит обращать на модулятор. Если использовать проводной аналог, то для нагрузки потребуется три фильтра. Простая электронная нагрузка имеет модулятор фазового типа с проводимостью от 30 мк. Сопротивление составляет примерно 55 Ом. Также стоит отметить, что нагрузки часто складываются на базе коммутируемого трансивера. Основная особенность таких устройств кроется в высокой пульсации. При этом проводимость обеспечивается на отметке 30 мк.

электронная нагрузка своими руками

Устройство на полевом транзисторе

Электронная нагрузка на полевом транзисторе делается только на базе компаратора, а тиристор используется регулируемого типа. При сборке в первую очередь стоит подобрать конденсаторный блок, который играет роль генератора импульсов. Всего для модификации потребуется три фильтра. Резистор устанавливается за обкладками. Специалисты говорят о том, что электронная нагрузка на полевом транзисторе выдает сопротивление 40 Ом.

Если проводимость сильно повышается, значит, устанавливается емкостный конденсатор. Непосредственно трансивер рекомендуется использовать на два контакта. Реле устанавливается стандартно с регулятором. Номинальное напряжение у нагрузок данного типа составляет не более 400 Вт. Специалисты утверждают, что обкладка должна фиксироваться за резистором. Если рассматривать высокочастотную модель для блоков питания на 300 В, то модулятор потребуется волнового типа. При этом за тиристором устанавливается тетрод.

Модель с плавной регулировкой тока

Схема электронной нагрузки с плавной регулировкой тока включает в себя один тиристор. Конденсаторы для модели потребуются расширительного типа с низкой проводимостью. Также стоит отметить, что в нагрузку ставится один усилитель. Наиболее часто применяются волновые аналоги, у которых имеется фазовый переходник. Непосредственно регулятор устанавливается за модулятором, а номинальное напряжение должно составлять около 300 Вт.

Простая электронная нагрузка с плавной регулировкой тока имеет два контактора для подключения. Тиристоры иногда могут использоваться на обкладках. Компараторы в устройствах устанавливаются со стабилизаторами и без них. В данном случае многое зависит от рабочей частоты. Если этот параметр превышает 300 кГц, то лучше не устанавливать стабилизатор. В противном случае значительно повысится коэффициент рассевания.

Устройство на базе TL494

Электронная нагрузка на базе TL494 собирается довольно просто. Резисторы для модификаций подбираются строчного типа. Как правило, у них высокая емкость. И они способны работать в сети постоянного тока. При сборке модели тиристор применяется на две обкладки. Электронная импульсная нагрузка на базе TL494 работает с расширителем фазового либо импульсного типа.

Наиболее часто встречается первый вариант. Номинальное напряжение у нагрузок стартует от 220 Вт. Фильтры используются полного типа, а проводимость равняется не более 4 мк. При установке регулятора важно оценить выходное сопротивление. Если данный параметр не является постоянным, то для модели используется усилитель. Контакторы устанавливаются с переходниками и без них. Выходное напряжение в цепи составляет у нагрузок примерно 300 Вт. При включении приборов часто повышается ток. Происходит это за счет нагрева модулятора. Избежать данной проблемы пользователь способен за счет понижения чувствительности.

Модели на 100 Вт

Электронная нагрузка (схема показана ниже) на 100 Вт предполагает применение двух канальных тиристоров. Транзистор у моделей довольно часто используется на расширительной основе. У него проводимость составляет около 5 мк. Также стоит отметить, что существуют нагрузки на реле. Они больше всего подходят для мощных блоков питания. Для самостоятельной сборки дополнительно применяются волновые компараторы. Самодельные устройства выдают напряжение не более 300 В, а рабочая частота стартует от 120 кГц.

схема электронной нагрузки с плавной регулировкой тока

Устройства на 200 Вт

Нагрузка электронная на 200 Вт включает в себя две пары тиристоров, которые соединяются попарно. У многих моделей используются проводные компараторы низкой частоты. Также стоит отметить, что для сборки модификации потребуется модулятор. Для ускорения процесса генерации сигнала используются усилители. Данные элементы способны работать только от проводных фильтров.

Трансивер стоит устанавливать за обкладками. В данном случае напряжение нагрузки равняется примерно 400 В. Специалист говорят о том, что плохо работают устройства на проводниковых трансиверах. У них низкая проводимость, есть проблемы и с перегревом. Если наблюдаются скачки напряжения, стоит поменять компаратор. Еще проблема может заключаться в резисторе.

Читайте также:  Генератор тока высокой частоты тесла

Как сделать устройство на 300 Вт?

Нагрузка электронная на 300 Вт предполагает применение двух тиристоров фазового типа. Номинальное напряжение устройств равняется примерно 230 Вт. Показатель перегрузки в данном случае зависит от проводимости компаратора. При самостоятельной сборке этого устройства потребуется модулятор канального типа. Для установки элемента применяется паяльная лампа.

Регуляторы часто используются с переходником. Реле устанавливается низкоомного типа. Коэффициент рассеивания у самодельной модификации составляет примерно 80%. Также стоит отметить, что контакторы используются низкой чувствительности. Как проверить нагрузку перед включением? Сделать это можно при помощи тестера. Выходное напряжение у самодельных устройств, как правило, равняется 50 Ом. Если рассматривать модели с одним компаратором, то у них этот параметр может быть занижен.

Модели для блоков на 10 А

Нагрузка электронная для блока питания на 10 А собирается при помощи расширительного тиристора. Транзисторы довольно часто применяются на 5 пФ, у которых низкая проводимость. Также стоит отметить, что специалисты не советуют использовать линейные аналоги. У них малая чувствительность. Они сильно повышают коэффициент рассеивания. Для подключения к блоку применяются контакторы. Модуляторы довольно часто используются с переходниками.

Если рассматривать схему на конденсаторном блоке, то у них частота в среднем равняется 400 кГц. При этом чувствительность может меняться. Контакторы довольно часто фиксируются за модулятором. Стабилизаторы следует использовать на две обкладки. Также стоит отметить, что для сборки модификации потребуется полюсный резистор. Он сильно помогает увеличивать скорость генерации импульса.

самодельная электронная нагрузка

Устройства для блоков на 15 А

Наиболее распространенными считаются нагрузки для блоков на 15 А. У них используются открытые резисторы. При этом трансиверы применяются разной полярности. Кроме того, они отличаются по чувствительности. В среднем напряжение приборов равняется 320 В. Модели между собой отличаются по проводимости. С целью самостоятельной сборки применяются компараторы на регуляторах. Перед началом их установки крепятся стабилизаторы.

Специалисты говорят о том, что расширители можно устанавливать только через обкладку. Проводимость на входе обязана составлять не более 6 мк. При установке регулятора тщательно зачищается компаратор. Если собирать простую модель, то модулятор можно использовать инверторного типа. При этом сильно повысится коэффициент рассеивания. Пороговое напряжение в среднем равняется 200 В. Допустимый параметр мощности составляет не более 240 Вт. Также стоит отметить, что для нагрузки применяются фильтры разных типов. В данном случае многое зависит от проводимости компаратора.

Схема устройств для блоков на 20 А

Электронная нагрузка (схема показана ниже) для блоков на 20 А производится на базе двоичных резисторов. У них поддерживается стабильная высокая проводимость. Чувствительность при этом равняется примерно 6 мВ. Некоторые модификации выделяются высоким параметром перегрузки. Реле у моделей используются на волновых транзисторах. Для решения проблем с преобразованием используются компараторы. Расширители часто встречаются фазового типа. И у них может быть несколько переходников. При необходимости устройство можно собрать самостоятельно. Для этого применяется конденсаторный блок.

Номинальное напряжение у самодельных нагрузок стартует от 300 Вт, а частота в среднем составляет 400 кГц. Специалисты не советуют применять переходные компараторы. Регуляторы используются с обкладками. Для установки компаратора потребуется изолятор. Если рассматривать нагрузки на двух тиристорах, то там используются фильтры. В среднем емкость модуля равняется 3 пФ. Показатель рассеивания у самодельных моделей стартует от 50%. При сборке устройства особое внимание стоит уделять переходнику для подключения к блоку питания. Контакторы побираются полюсного типа. Они должны выдерживать большие перегрузки и не перегреваться.

простая электронная нагрузка

Устройства компании AMETEK

Нагрузки данной торговой марки выделяются низкой проводимостью. Они замечательно подходят для блоков питания на 15 А. Среди моделей данной фирмы имеется множество импульсных модификаций. Продельная перегрузка у них не высокая, но обеспечивается высокая скорость генерации импульса. Специалисты в первую очередь отмечают хорошую защищенность элементов. У них используется несколько фильтров. Они справляются с фазовыми помехами, которые искажают сигналы.

Если рассматривать модели высокой частоты, то у них имеется несколько тиристоров. Также стоит отметить, что на рынке представлены модификации на проводных компараторах. На базе обычной нагрузки данной торговой марки можно собрать отличный прибор для разных блоков питания. У моделей отличные стабилизаторы и очень чувствительные транзисторы.

Особенности устройств серии Sorensen

Стандартная нагрузка электронная данной серии включает в себя тиристор и линейный компаратор. Многие модели производятся с полюсными фильтрами, которые способны работать при высокой частоте. Также стоит отметить, что на рынке представлены лабораторные модификации. У них достаточно низкий коэффициент рассеивания. Модели довольно часто применяются коммутируемого типа. Показатель перегрузки в среднем равняется 20 А. Системы защиты используются разных классов. На прилавках магазинов есть импульсные модели. Они хорошо подходят для тестирования компьютерных блоков питания. Расширители в устройствах применяются с обкладками.

Модели серии ITECH

Нагрузки данной серии выделяются высокой проводимостью. У них хорошая защищенность. В этом случае используется несколько трансиверов. Электронная нагрузка для блока питания в среднем работает при частоте 200 кГц. Перегрузка при этом равняется 4 А. Усилители в устройствах применяются с контактными переходниками. Тиристоры используются фазового либо кодового типа. Среди моделей данной серии встречаются программируемые модификации. Они хорошо подходят для тестирования компьютерных блоков питания. Трансиверы можно встреть с расширителями и без них.

Нагрузки на базе IRGS4062DPBF

Делается электронная нагрузка своими руками на базе этого транзистора довольно просто. Стандартная схема модели включает в себя два конденсаторных блока и один расширитель. Сразу стоит отметить, что модели этого класса хорошо подойдут для блоков питания на 10 А. Параметр напряжение у нагрузок равняется 200 Вт. Фильтры для устройств подбираются низкой частоты. Они способны работать при больших нагрузках.

В первую очередь при сборке устанавливается тиристор, а компаратор можно использовать разного типа. Непосредственно транзистор устанавливается при помощи паяльника. Если проводимость у него превышает 5 мк, то стоит устанавливать дипольный фильтр вначале цепи. Специалисты говорят о том, что электронная нагрузка на транзисторе IRGS4062DPBF может делаться с переходными компараторами. Однако у них высокий коэффициент рассеивания.

электронная нагрузка на базе tl494

Также стоит отметить, что модели этой серии подходят только для цепей постоянного тока. Допустимый параметр перегрузки приборов равняется 5 А. Если рассматривать устройства на импульсных компараторах, то у них имеется масса преимуществ. В первую очередь в глаза бросается высокая частота. При этом сопротивление приборы показывают на уровне 50 Ом.

У них нет проблем с проводимостью и резкими скачками напряжения. Стабилизаторы разрешается применять разных типов. Однако они должны работать в цепи постоянного тока. Еще на рынке представлены модификации без конденсаторов. Коэффициент рассеивания у них равняется примерно 55%. Для устройств данного класса это очень мало.

Устройства на базе KTC8550

Нагрузки на базе данных транзисторов очень ценятся среди профессионалов. Модели замечательно подходят для тестирования блоков небольшой мощности. Показатель допустимой перегрузки, как правило, равняется 5 А. У моделей могут использоваться разные системы защиты. При сборке модификации разрешается применять двоичные модуляторы с проводимостью 4 мк. Таким образом, устройства будут выдавать большую частоту на уровне 300 кГц.

Читайте также:  Чему равен ток в неразветвленной части цепи при параллельном соединении

Если говорить про недостатки, то стоит отметить, что модификации не способны работать с блоками питания на 10 А. В первую очередь возникают проблемы с импульсными скачками. Перегрев конденсатора также даст о себе знать. Чтобы решить данную проблему, на нагрузки устанавливаются расширители. Триоды, как правило, применяются с двумя обкладками и изолятором.

Источник

«Электроника и Радиотехника»

Домашний мастер.

  • Главная
  • Схемы
  • Музыка
  • Файлы
  • Contact me

Устройство заменяет нагрузку в виде набора постоянных или переменных резисторов и поможет при испытании и налаживании блоков питания.

Выбор силового транзистора зависит от того какой максимальный ток нагрузки вы желаете получить, соответственно подбирается измерительная головка и шунт. Допустимо использовать параллельное включение силовых транзисторов, при этом нагрузка на каждый из них уменьшиться, а общий ток увеличиться.

Испытуемый блок питания подключается к входным клеммам и резистором R2 выставляется желаемый ток.
Конструкцию можно выполнить навесным монтажом в любом подходящем корпусе, например от компьютерного блока питания, с вентилятором для обдува радиатора.

Основные параметры транзистора TIP36. Datasheet

Обозначение контактов:
Международное: C — коллектор, B — база, E — эмиттер.
Российское: К — коллектор, Б — база, Э — эмиттер.

Улучшенная схема электронной нагрузки с плавной регулировкой тока.
В качестве нагрузочного элемента здесь применен мощный полевой транзистор, обеспечивающий значительные преимущества по сравнению с традиционно используемыми для этой цели громоздкими реостатами. Однако в процессе испытаний нагрузочные элементы нагреваются, и температурный дрейф их параметров затрудняет проведение испытаний.
В предлагаемом устройстве ток через нагрузочный элемент стабилизирован, поэтому он практически не подвержен температурному дрейфу и не зависит от напряжения проверяемого источника, что очень удобно при снятии нагрузочных характеристик и проведении других испытаний, особенно длительных.
С помощью эквивалента нагрузки можно проверять не только стабилизированные и нестабилизированные блоки питания, но и батареи (гальванические, аккумуляторные, солнечные и т. д.).


Схема эквивалента нагрузки показана на рис. 1.

По принципу работы это — источник тока, управляемый напряжением (ИТУН). Эквивалент нагрузки — мощный полевой транзистор IRF3205, который выдерживает ток до 110А, напряжение до 55V и рассеиваемую мощность до 200W. Резистор R1 — датчик тока. Резистором R5 изменяют ток через резистор R2 и соответственно напряжение на нем, которое равно Uпит = R2/(R2+R3+R5), где Uпит — напряжение питания. На ОУ DA1.1 и транзисторе VT1 собран усилитель с отрицательной обратной связью с истока этого транзистора на инвертирующий вход ОУ. Действие ООС проявляется в том, что напряжение на выходе ОУ вызывает такой ток через транзистор VT1, чтобы напряжение на резисторе R1 было равно напряжению на резисторе R2. Поэтому резистором R5 регулируют напряжение на резисторе R2 и соответственно ток через нагрузку (транзистор VT1), равный Uпит = R2/[R1(R2+R3+R5)]. Пока ОУ находится в линейном режиме, указанное значение тока через транзистор VT1 не зависит ни от напряжения на его стоке, ни от дрейфа параметров транзистора при его разогреве. Цепь R4C2 подавляет самовозбуждение транзистора и обеспечивает его устойчивую работу в линейном режиме. Для питания устройства необходимо напряжение 9. 12V, которое обязательно должно быть стабильным, поскольку от него зависит стабильность тока нагрузки. Ток, потребляемый устройством, не превышает 10 мА.


Рис.2 Конструкция и детали.

В устройстве использованы детали для поверхностного монтажа, размещенные на печатной плате (рис. 2) из фольгированного стеклотекстолита, которая вместе с транзистором установлены на теплоотводе. Транзистор прикрепляют к теплоотводу винтом. Плату допустимо приклеить к теплоотводу для большей механической прочности. При изготовлении теплоотвода в виде пластины его площадь должна быть не менее 100. 150 см2 на 10 Вт рассеиваемой мощности. Для повышения эффективности при длительных испытаниях желательно применить вентилятор. Резистор R1 составлен из девяти сопротивлением по 0,1 Ом (мощностью 1 Вт), включенных параллельно и последовательно, как показано на рис. 2. Остальные постоянные резисторы — типоразмера 1206 и мощностью 0,125 Вт. Переменный резистор R5 -СПО, СП4. Конденсатор — С2 К10-17В, остальные — танталовые.

Вместо компонентов для поверхностного монтажа можно применить обычные, но тогда топологию печатной платы придется немного изменить. Номинальное напряжение конденсатора С1 должно быть не меньше напряжения проверяемого источника. Конденсатор С2 следует установить непосредственно на выводах транзистора VT1.
В устройстве применен ОУ LM358AM в случае использования других ОУ следует иметь в виду, что его питание в этом устройстве однополярное, поэтому он должен быть работоспособен при нулевом напряжении на обоих входах. Заменяя полевой транзистор, будьте внимательны: для этого устройства подходит большое число транзисторов фирмы IR, но некоторые из них могут работать неустойчиво. При отсутствии полевого можно применить составной биполярный транзистор структуры n-p-n с коэффициентом передачи тока не менее 1000 и соответствующим током коллектора, например, КТ827А—КТ827В. Выводы такого транзистора подключают соответственно: затвор — база, сток — коллектор, исток — эмиттер.

В этом случае сопротивление резистора R4 надо уменьшить до 510 Ом. Сильноточные цепи выполняют проводом соответствующего сечения.

Устройство не требует налаживания. Проверяемый источник питания с напряжением от 3 до 35V подключают к устройству с соблюдением полярности. Для уменьшения минимального значения напряжения контролируемого источника питания следует пропорционально уменьшить сопротивление резисторов R1 и R2. Ток, потребляемый эквивалентом нагрузки, регулируют резистором R5. Интервал регулировки тока при указанных на схеме номиналах элементов и напряжении питания 12V равен 0,5. 11А. Для уменьшения минимального значения тока можно ввести дополнительный переключатель, с помощью которого параллельно резистору R2 подключают резистор сопротивлением 100 Ом. В этом случае минимальное и максимальное значения тока уменьшатся в 10 раз.

Источник: журнал «Радио» №1 2005

Электронный предохранитель, осуществляет эффективную защиту в цепях электропитания с напряжением до 45V. Номиналы деталей приведены в таблице для разных токов срабатывания предохранителя.

I макс (A) R1 (Ом) R2 (Ом) VT1 VT2 VT3
5 100 0,12 2N1613 2N3055 BC148
0,5 1000 1 BC107 2N1613 BC148
0,1 4700 4,7 BC107 2N1613 BC148

Еще один вариант решения проблемы защиты блока питания от короткого замыкания (КЗ) в нагрузке, это включение последовательно с нагрузкой полевого транзистора со встроенным каналом.
В транзисторах такого типа на вольтамперной характеристике есть участок, на котором ток стока не зависит от напряжения между стоком и истоком. Поэтому на этом участке транзистор будет работает как стабилизатор или ограничитель тока.


Рис.1

Схема подключения транзистора к блоку питания показана на Рис.1, а вольтамперные характеристики транзистора для различных сопротивлений резистора R1 — на Рис.2.
Работает защита следующим образом. Если сопротивление резистора равно нулю (т. е. исток соединен с затвором), а нагрузка потребляет ток около 0,25А, то падение напряжения на полевом транзисторе не превышает 1,5V, и практически на нагрузке будет все выпрямленное напряжение. При появлении же в цепи нагрузки КЗ ток через выпрямитель резко возрастает и при отсутствии транзистора может достичь нескольких ампер. Транзистор ограничивает ток короткого замыкания на уровне 0,45. 0,5А независимо от падения напряжения на нем. В этом случае выходное напряжение станет равным нулю, а все напряжение упадет на полевом транзисторе. Таким образом, в случае КЗ мощность, потребляемая от источника питания, увеличится в данном примере не более чем вдвое, что в большинстве случаев вполне допустимо и не отразится на «здоровье» деталей блока питания.

Рис. 2

Читайте также:  Метод контурных токов метод двух узлов метод эквивалентного генератора

Уменьшить ток короткого замыкания можно увеличением сопротивления резистора R1.
Нужно выбирать такой резистор, чтобы ток короткого замыкания был примерно вдвое больше максимального тока нагрузки.
Подобный способ защиты особенно удобен для блоков питания со сглаживающим RC-фильтром — тогда полевой транзистор включают вместо резистора фильтра (пример показан на рис. 3).
Поскольку во время КЗ на полевом транзисторе падает почти все выпрямленное напряжение, его можно использовать для световой или звуковой сигнализации. Вот, к примеру, схема включения световой сигнализации — рис.7. Когда с нагрузкой все в порядке, горит светодиод HL2 зеленого цвета. При этом падения напряжения на транзисторе недостаточно для зажигания светодиода HL1. Но стоит появиться КЗ в нагрузке, как светодиод HL2 гаснет, но зато вспыхивает HL1 красного свечения.

Рис. 3

Резистор R2 выбирают в зависимости от нужного ограничения тока КЗ по высказанным выше рекомендациям.
Схема подключения звукового сигнализатора приведена на рис. 4. Его можно подключать либо между стоком и истоком транзистора, либо между стоком и затвором, как светодиод HL1.
При появлении на сигнализаторе достаточного напряжения вступает в действие генератор ЗЧ, выполненный на однопереходном транзисторе VT2, и в головном телефоне BF1 раздается звук.
Однопереходный транзистор может быть КТ117А — КТ117Г, телефон — низкоомный (можно заменить динамической головкой небольшой мощности).


Рис. 4

Для слаботочных нагрузок в блок питания можно ввести ограничитель тока КЗ на полевом транзисторе КП302В. При выборе транзистора для других блоков следует учитывать его допустимую мощность и напряжение сток — исток.
Конечно, подобную автоматику можно ввести и в стабилизированный блок питания, не имеющий защиты от КЗ в нагрузке.

Источник



ЭЛЕКТРОННАЯ НАГРУЗКА С РЕГУЛИРОВКОЙ ТОКА

Для чего нужно такое устройство, как электронная нагрузка, наверное все в курсе — она позволяет создать имитацию очень мощного резистора на выходе блоков питания, зарядок, усилителей, ИБП и других схем при их настройке. Данная электронная нагрузка может выдержать более 100 Ампер тока, рассеивая более 500 Вт непрерывно и выдерживая 1 кВт мощности в импульсном режиме.

Схема самодельной электронной нагрузки на 500 Вт

Схема самодельной электронной нагрузки на 500 Вт

Схема в принципе несложная и тут используются два полевых транзистора с регулирующими ОУ. Каждый из двух каналов одинаков и включены они параллельно. Управляющие напряжения связаны между собой и нагрузка делится поровну между двумя мощными полевыми транзисторами. Здесь использованы для шунта 2 резистора на 50 А, формируя напряжение обратной связи 75 мВ. Очевидным преимуществом в выборе такого малого значения сопротивления (каждый шунт сопротивлением всего 1,5 миллиом) в том, что падение напряжения практически ничтожно. Даже при работе с нагрузкой 100 А, падение напряжения на каждом шунтирующем резисторе будет менее 0,1 В.

Недостатком использования такой схемы в том, что требуется ставить ОУ с очень низким входным смещением, так как даже небольшое изменение смещения может привести к большой погрешности в контролируемом токе. Например, при лабораторных испытаниях, всего 100 мкВ напряжения смещения приведет к изменению тока нагрузки на 0,1 А. Кроме того, трудно создать такие стабильные управляющие напряжения без использования ЦАП и прецизионных ОУ. Если вы планируете использовать микроконтроллер для управления нагрузкой, нужно будет либо использовать прецизионные ОУ для усиления напряжения с шунта, совместимые с ЦАП на выходе (например, 0-5 В) или использовать прецизионный делитель напряжения для создания управляющего сигнала.

Вся схема была собрана на куске текстолита методом упрощённого монтажа и размещена на верхней части большого алюминиевого блока. Поверхность металла отполирована для того, чтобы обеспечить хорошую теплопроводность между транзисторами и радиатором. Все соединения с большим током — не менее 5 проводов толстого многожильного провода, тогда они смогут выдерживать не менее 100 А без существенного нагрева или падения напряжения.

ЭЛЕКТРОННАЯ НАГРУЗКА С РЕГУЛИРОВКОЙ ТОКА

Выше приведено фото макетки, на которой впаяны два операционных усилителя повышенной точности LT1636. А модуль DC-DC преобразователя используется для преобразования входного напряжения на стабильных 12 В для контроллера вентилятора системы охлаждения. Вот они — 3 вентилятора на боковой стороне радиатора.

Источник

Электронная нагрузка для блока питания своими руками

Во время тестирования очередного самодельного или отремонтированного блока питания, чтобы создать нагрузку приходится подключать различные лампочки, мощные резисторы и кусочки спирали от электроплитки. Подбирать нужную нагрузку таким образом очень затратное по времени дело. Чтобы не тратить свое драгоценное время и нервы. Проще собрать простую электронную нагрузку своими руками.

По сути это простое устройство состоящее из мощных транзисторов, позволяющих плавно нагрузить блок питания стабильным регулируемым током.

На этом рисунке изображена схема электронной нагрузки на мощных транзисторах позволяющих нагрузить любой блок питания до 40А.

Схема электронной нагрузки для блока питания своими руками

Схема электронной нагрузки для блока питания

Как работает эта схема? Напряжение с тестируемого блока питания поступает на базу транзистора Т1 через делитель напряжения собранный на резисторах R1, P1 и P2 и ограничительный резистор R2 . Транзистор Т1 управляет четырьмя мощными транзисторами Т2, Т3, Т4 и Т5 выполняющими роль ключей и создающими управляемую нагрузку на блок питания. Для более точной и грубой установки тока нагрузки в схеме имеется два переменных резистора Р1 и Р2. Силу тока нагрузки и напряжение измеряет китайский электронный вольтметр амперметр. Возможна также установка стрелочных приборов на место электронного.

Электронная нагрузка для блока питания

Данная схема рассчитана на входное напряжение до 50В и силу тока до 40А. Если вы хотите увеличить силу тока добавьте в схему необходимое количество транзисторов TIP36C и шунтирующих резисторов 0.15 Ом 5 Вт. Каждый добавленный транзистор увеличивает силу тока на 10А.

В процессе работы транзисторы Т2, Т3, Т4 и Т5 очень сильно нагреваются, по этому требуются хорошее охлаждение. Установите каждый транзистор на большой радиатор размером 100х63х33 мм без изоляционных прокладок потому, что коллекторы транзисторов на схеме все равно соединены вместе.

Электронная нагрузка для блока питания

Радиаторы охлаждаются двумя мощными вентиляторами 120х120 мм. Которые питаются от отдельного блока питания через стабилизатор напряжения L7812CV, также отсюда питается китайский вольтметр амперметр. Транзистор Т1 и стабилизатор напряжения L7812CV установлены на отдельном небольшом радиаторе от компьютерного блока питания, чтобы не мешать силовым транзисторам работать.

Электронная нагрузка для блока питания

С помощью этого простого и надежного устройства легко нагружать и тестировать любые трансформаторные и импульсные блоки питания, а также аккумуляторы и другие источники питания.

Электронная нагрузка для блока питания

Надеюсь электронная нагрузка для блока питания будет полезной самоделкой для вашей домашней радио мастерской.

Радиодетали для сборки

  • Транзистор Т1 TIP41, MJE13009, КТ819
  • Транзисторы Т2, Т3, Т4, Т5 TIP36C
  • Стабилизатор напряжения L7812CV
  • Конденсатор С1 1000 мкФ 35В
  • Диоды 1N4007
  • Резисторы R1, R2 1K, R3 2.2K, R4, R5, R6, R7 0.15 Ом 5 Вт, Р1 10К, Р2 1К
  • Радиаторы 4 шт. размер 100х63х33 мм
  • Вентиляторы 2 шт. от компьютера 12В размер 120х120 мм
  • Китайский вольтметр амперметр на 50А с шунтом, можно поставить стрелочный прибор, будет намного точнее и надежнее

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как сделать электронную нагрузку для блока питания

Источник