Меню

Физика электрический ток взаимодействие

ПОСТОЯННЫЙ ТОК

Электрический ток это упорядоченное движение заряженных частиц (электронов и ионов). За направление тока условно принято направление движения положительных зарядов, т.е. от « + » к « — ».

Условия, необходимые для существования электрического тока:

  • Наличие свободных заряженных частиц;
  • Наличие электрического поля, действующего на заряженные частицы с силой в определённом направлении;
  • Наличие замкнутой электрической цепи.

Действия тока:

  1. Тепловое: проводник по которому течет ток нагревается.
  2. Химическое: электрический ток может изменять химический состав проводника (электролита).
  3. Магнитное: ток оказывает силовое воздействие на соседние токи и намагниченные тела. Вокруг проводника с током существует магнитное поле.

Постоянный ток

Электродвижущая сила.

Если два заряженных тела соединить проводником, то через него пойдет кратковременный ток. Избыточные электроны с отрицательно заряженного тела перейдут на положительно заряженное. Потенциалы тел окажутся одинаковыми, значит, напряжение на концах проводника станет равно нулю, и ток прекратится. Для существования длительного тока в проводнике нужно поддерживать разность потенциалов на его концах неизменной. Этого можно достичь, перенося свободные электроны с положительного тела на отрицательное так, чтобы заряды тел не менялись со временем.

Силы электрического взаимодействия сами по себе не способны осуществлять подобное разделение зарядов. Они вызывают притяжение электронов к положительному телу и отталкивание от отрицательного. Поэтому внутри источника тока должны действовать сторонние силы, имеющие неэлектрическую природу и обеспечивающие разделение электрических зарядов.

Сторонние силы — любые силы, действующие на электрические заряженные частицы, за исключение сил, электростатического происхождения (т.е. кулоновских).

ЭДС – электродвижущая сила – физическая величина, определяемая работой , совершаемой сторонними силами при перемещении единичного положительного заряда от «+» полюса к «-» полюсу внутри источника тока. Является энергетической характеристикой источника тока.

Основные характеристики электрического тока

Виды соединений источников тока

Шунтирование амперметра.

Важным примером применения последовательного и параллельного соединения проводов являются различные схемы включения электроизмерительных приборов. Допустим, что имеется некоторый амперметр, рассчитанный на максимальный ток Imax, а требуется измерить большую силу тока. В этом случае параллельно к амперметру присоединяют малое сопротивление r, по которому направится большая часть тока. Его называют обычно шунтом. Сопротивление амперметра – R, и пусть R/r=n. Сила тока в цепи, амперметре и в шунте равны соответственно I, Iа и Iш

Параллельное присоединение шунта к измерительному прибору с целью изменения его чувствительности называют шунтированием. Схема шунтирования амперметра добавочным малым сопротивлением r.

Постоянный ток. Работа и мощность. Закон Джоуля – Ленца.

Работа электрического поля по перемещению заряда ∆ q из одной точки в другую равна произведению напряжения U между этими точками на величину заряда Dq: A=DqU

Учитывая, что Dq = IDt получаем: A= IUDt = I 2 RDt = Dt

При прохождении тока через проводник происходит его нагревание, значит электрическая энергия переходит в тепловую.

Читайте также:  Что представляет собой индукционный ток

Закон Джоуля – Ленца гласит: количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивлению проводника и времени.

Q = I 2 R t – закон Джоуля – Ленца.

Закон открыт экспериментально независимо друг от друга Дж.Джоулем и Э.Х.Ленцем. Q = А – по закону сохранения энергии.

Мощность электрического тока равна работе, которая совершается током за единицу времени.

Дополнительные материалы по теме

пост эл ток

закон ома

соединение проводников

закон ома для полной цепи

Конспект урока «Постоянный ток. Формулы и схемы».

Источник

Взаимодействие токов

Взаимодействие токов — приходящая на единицу длины каждого из параллельных проводников, пропорциональна величинам токов и обратно пропорциональна расстоянию между ними.

Взаимодействие токов

Взаимодействие токов

Одним из важных примеров магнитного взаимодействия токов является взаимодействие параллельных токов. Закономерности этого явления были экспериментально установлены Ампером. Если по двум параллельным проводникам электрические токи текут в одну и ту же сторону, то наблюдается взаимное притяжение проводников. В случае, когда токи текут в противоположных направлениях, проводники отталкиваются. Взаимодействие токов вызывается их магнитными полями: магнитное поле одного тока действует силой Ампера на другой ток и наоборот.

Обозначения в формуле:

F — сила взаимодействия токов;

Взаимодействие токов— магнитная постоянная;

l1 и l2 — длинна проводника;

b — Расстояние между двумя проводниками, (r — радиус соответственно).

Источник



§ 1. Взаимодействие токов

Продолжим изучение электродинамики. Ознакомимся с магнитными полями, не изменяющимися с течением времени, и магнитными и электрическими полями, изменяющимися со временем. С электрическими полями, не изменяющимися с течением времени, вы ознакомились в 10 классе.

Неподвижные электрические заряды создают вокруг себя электрическое поле. Движущиеся заряды создают, кроме того, магнитное поле.

Между неподвижными электрическими зарядами действуют силы, определяемые законом Кулона. Согласно теории близкодействия это взаимодействие осуществляется так: каждый из зарядов создает электрическое поле, которое действует на другой заряд. Однако между электрическими зарядами могут существовать силы и иной природы. Их можно обнаружить с помощью следующего опыта.

Возьмем два гибких проводника, укрепим их вертикально, а затем присоединим нижними концами к полюсам источника тока (рис. 1.1). Притяжения или отталкивания проводников при этом не обнаружится 1 .

1 Проводники заряжаются от источника тока, но заряды проводников при разности потенциалов между ними в несколько вольт ничтожно малы. Поэтому кулоновские силы никак не проявляются.

Если теперь другие концы проводников замкнуть проволокой так, чтобы в проводниках возникли токи противоположного направления, то проводники начнут отталкиваться друг от друга (рис. 1.2). В случае же токов одного направления проводники притягиваются (рис. 1.3).

Называют магнитными силами

Взаимодействия между проводниками с током, т. е. взаимодействия между направленно движущимися электрическими зарядами, называют магнитными. Силы, с которыми проводники с током действуют друг на друга, называют магнитными силами.

Магнитное поле. Согласно теории близкодействия, подобно тому как в пространстве, окружающем неподвижные электрические заряды, возникает электрическое поле, в пространстве, окружающем токи, возникает поле, называемое магнитным.

Читайте также:  Учебный модуль по току

Электрический ток в проводнике создает вокруг себя магнитное поле, которое действует на ток в другом проводнике. А поле, созданное электрическим током второго проводника, действует на первый.

Магнитное поле представляет собой особую форму материи, посредством которой осуществляется взаимодействие между движущимися электрически заряженными частицами.

Перечислим основные свойства магнитного поля, которые установлены экспериментально.

1. Магнитное поле порождается электрическим током (направленно движущимися зарядами).

2. Магнитное поле обнаруживается по действию на электрический ток (на движущиеся заряды).

Подобно электрическому полю, магнитное поле существует реально, независимо от нас, от наших знаний о нем.

Экспериментальным доказательством реальности магнитного поля, как и реальности электрического поля, может служить факт существования электромагнитных волн.

Замкнутый контур с током в магнитном поле. Для изучения магнитного поля можно взять замкнутый контур малых (по сравнению с расстояниями, на которых магнитное поле заметно изменяется) размеров. Например, можно взять маленькую плоскую проволочную рамку произвольной формы (рис. 1.4). Подводящие ток проводники нужно расположить близко друг к другу (рис. 1.4, а) или сплести их вместе (рис. 1.4, б). Тогда результирующая сила, действующая со стороны магнитного поля на эти проводники, будет равна нулю.

Выяснить характер действия магнитного поля на контур с током можно с помощью следующего опыта.

Подвесим на тонких гибких проводниках, сплетенных вместе, маленькую плоскую рамку, состоящую из нескольких витков проволоки. На расстоянии, значительно большем размеров рамки, вертикально расположим провод (рис. 1.5, а). Рамка при пропускании электрического тока через нее и через провод поворачивается и располагается так, что провод оказывается в плоскости рамки (рис. 1.5, б). При изменении направления тока в проводе рамка поворачивается на 180°.

Замкнутый контур с током в магнитном поле

Ориентирующее действие

Опыт показывает, что магнитное поле создается не только токами в проводниках. Любое направленное движение электрических зарядов вызывает появление магнитного поля. Так, например, токи в газах, полупроводниках вызывают возникновение в окружающем их пространстве магнитного поля. Смещение связанных электрических зарядов в диэлектрике, помещенном в переменное электрическое поле, также вызывает появление магнитного поля.

Из курса физики вам известно, что магнитное поле создается не только электрическим током, но и постоянными магнитами. Если мы подвесим на гибких проводах плоскую рамку с током между полюсами магнита, то рамка будет поворачиваться до тех пор, пока ее плоскость не установится перпендикулярно линии, соединяющей полюсы магнита (рис. 1.6). Таким образом, магнитное поле оказывает на рамку с током ориентирующее действие 2 .

2 Однородное магнитное поле оказывает на рамку, как показывает опыт, лишь ориентирующее действие. В неоднородном магнитном поле рамка, кроме того, будет двигаться поступательно, притягиваясь к проводнику с током или отталкиваясь от него.

Движущиеся заряды (электрический ток) создают магнитное поле.

Вокруг любых направленно движущихся зарядов возникает магнитное поле. Оно также появляется в случае, если в пространстве существует электрическое поле, изменяющееся со временем.

Читайте также:  Неразветвленная цепь переменного тока с индуктивным сопротивлением

Обнаруживается магнитное поле по действию на электрический ток.

Вопросы к параграфу

1. Какие взаимодействия называют магнитными?

2. Перечислите основные свойства магнитного поля.

Источник

Физика электрический ток взаимодействие

«Физика — 11 класс»

Неподвижные электрические заряды создают вокруг себя электрическое поле.
Движущиеся заряды создают вокруг себя электрическое поле и магнитное поле.

Взаимодействие токов

Между неподвижными электрическими зарядами действуют силы, которые можно определить по закону Кулона.
Каждый из зарядов создает свое электрическое поле, которое действует на другой заряд.

Взаимодействия между направленно движущимися электрическими зарядами (например, в проводниках с электрическим током) называют магнитными.
А силы, с которыми проводники с током действуют друг на друга, называют магнитными силами

.

Если параллельно расположенные проводники соединить так, чтобы в них:

— возникли токи одинакового направления, то проводники начнут притягиваться друг к другу;
— возникли токи противоположного направления, то проводники начнут отталкиваться друг от друга.

Магнитное поле

В пространстве, окружающем движущиеся заряды (или электрические токи) возникает поле, называемое магнитным.

Электрический ток в проводнике создает вокруг себя магнитное поле, которое действует на ток в другом проводнике. А поле, созданное электрическим током второго проводника, действует на первый.

Магнитное поле — это особая форма материи, посредством которой осуществляется взаимодействие между движущимися электрически заряженными частицами.

Свойства магнитного поля:

1. магнитное поле порождается электрическим током (направленно движущимися зарядами).
2. магнитное поле обнаруживается по действию на электрический ток (на движущиеся заряды).

Замкнутый контур с током в магнитном поле

1. Однородное магнитное поле оказывает на рамку ориентирующее действие.
Если подвесить на гибких проводах плоскую рамку с током между полюсами магнита (т.е. в однородном магнитном поле), то рамка будет поворачиваться до тех пор, пока ее плоскость не установится перпендикулярно линии, соединяющей полюсы магнита.

2. В неоднородном магнитном поле рамка, кроме поворачивания, будет двигаться поступательно, притягиваясь к проводнику с током или отталкиваясь от него.
Если подвесить рамку с током рядом с проводником тока, то рамка тоже поворачивается и располагается так, что провод оказывается в плоскости рамки, а кроме того, в зависимости от направления токов в проводнике и рамке, притягиваться или отталкиваться от него.
При изменении направления тока в проводе рамка повернется на 180°.

Движущиеся заряды (электрический ток) создают магнитное поле.
Вокруг любых направленно движущихся зарядов возникает магнитное поле.
Оно также появляется, если в пространстве существует электрическое поле, изменяющееся со временем.

Магнитное поле обнаруживается по действию на электрический ток.

Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин

Магнитное поле. Физика, учебник для 11 класса — Класс!ная физика

Источник