Меню

Физика мощность через скорость формула

Формула мощности

Определение и формулы мощности

Мощностью некоторой силы является скалярная физическая величина, которая характеризует скорость произведения работы данной силой. Мощность часто обозначают буквами: N, P.

В том случае, если за равные малые промежутки времени выполняется разная работа, то мощность является переменной во времени. Тогда вводят мгновенное значение мощности:

где $\delta A$ – элементарная работа, которую выполняет сила, $\Delta t$ – отрезок времени в течение, которого данная работа была выполнена. Если мгновенная мощность не является постоянной величиной, то выражение (1) определяет среднюю мощностьза время $\Delta t$.

Мощность силы можно определить как скалярное произведение силы на скорость, с которой движется точка приложения рассматриваемой силы:

где $F_<\tau>$ – проекция силы $\bar$ на направление вектора скорости ( $\bar$).

При поступательном движении некоторого тела, имеющего массу m под воздействием силы $\bar$ мощность можно вычислить, применяя формулу:

В общем случае произвольного перемещения твердого тела суммарная мощность есть алгебраическая сумма мощностей всех сил, которые действуют на тело:

где $\bar_$ – скорость перемещения точки, к которой приложена сила $\bar_$.

В случае поступательного движения твердого тела со скоростью $\bar$ мощность можно определить при помощи формулы:

где $\bar$ – главный вектор внешних сил.

Если твердое тело совершает вращение вокруг точки О или вокруг неподвижной оси, которая проходит через точку О, то формулой для счет мощности можно считать выражение:

где $\bar$ – главный момент внешних сил по отношению к точке О, $\bar$ – мгновенная угловая скорость вращения тела.

Единицы измерения мощности

Основной единицей измерения мощности силы в системе СИ является: [P]=вт (ватт)

Примеры решения задач

Задание. Какова мощность (P(t)), развиваемая силой, если она действует на тело, которое имеет массу m и под воздействием приложенной силы движется поступательно. Сила описывается законом: $F(t)=2 t \cdot \bar+3 t^ <2>\bar$

Решение. В качестве основы для решения задачи используем формулу для мощности вида:

Из второго закона Ньютона мы имеем:

$$F=m a \rightarrow a=\frac ; v=\int a d t=\int \frac d t=\frac<1> \int F d t(1.2)$$

В выражение (2.2) подставим уравнение, заданное в условии задачи для F(t), имеем:

$$v=\frac<1> \int\left(2 t \cdot \bar+3 t^ <2>\bar\right) d t=\frac<1>\left(t^ <2>\cdot \bar+t^ <3>\bar\right)(1.3)$$

Подставим выражение для скорости из (1.3) в (1.1), получим:

$$P=\left(2 t \cdot \bar+3 t^ <2>\bar\right) \frac<1>\left(t^ <2>\cdot \bar+t^ <3>\bar\right)=\frac<1>\left(2 t^<3>+3 t^<5>\right)$$

Ответ. $P=\frac<1>\left(2 t^<3>+3 t^<5>\right)$

Формула мощности не по зубам? Тебе ответит эксперт через 10 минут!

Задание. Какова мгновенная мощность силы тяжести на высоте h/2. если камень массы m падает с высоты h. Сопротивление воздуха не учитывать.

Решение. Сделаем рисунок.

В качестве основы для решения задачи используем формулу для мгновенной мощности вида:

Сила, действующая на тело – сила тяжести. Она направлена по оси Y, выражение для ее проекции на ось Y запишем как:

Читайте также:  Расчет активной мощности генератора

В начальный момент времени тело имело скорость равную нулю, тогда скорость тела в проекции на ось Y можно вычислить, используя выражение:

Найдем момент времени, в который тело окажется на половине высоты (y=h/2), применим уравнение, которое описывает равноускоренное движение (из начальных условий y=0, v=0):

Используем выражения (2.2), (2.3), (2.4) подставим в (2.1), получим искомую мгновенную мощность силы тяжести на половине пути свободно падающего тела:

Ответ. $P=m \sqrt h>$

Источник

§ 26.2. Мощность

Часто важна «быстрота» совершения работы, которая определяется мощностью.

Мощностью N называют отношение совершенной работы А к промежутку времени t, за который эта работа совершена: N = A/t

Например, строительный кран поднимает сотни кирпичей на высоту многоэтажного дома за считаные секунды, а человеку для этого потребовалось бы несколько дней. Значит, мощность подъемного крана во много раз больше мощности человека.

Единица мощности. За единицу мощности в СИ принимают такую мощность, при которой работа в 1 Дж совершается за 1 с. Эту единицу мощности назвали ватт (Вт): 1 Вт = Дж/с

Часто используют также такие единицы мощности, как киловатт (1 кВт = 10 3 Вт) и мегаватт (1 МВт = 10 6 Вт).

Чтобы получить представление о единицах мощности, решим задачу.

Решим задачу

Какую мощность развивает школьник массой 50 кг, взбегая с первого этажа на пятый за полминуты? Высоту этажа примем равной 3 м.

«Мощность» человеческого разума. Итак, человек может развивать мощность всего в десятки и сотни ватт. Зато мощность созданных разумом человека двигателей в тысячи, миллионы и даже миллиарды раз превышает мощность самого человека (рис. 26.1). Например, мощность легкового автомобиля достигает 100 кВт, а большого пассажирского авиалайнера — 100 МВт. Наибольшую на сегодня мощность развивают двигатели космических ракет — сотни тысяч МВт.

Сравнение мощностей

Рис. 26.1. Сравнение мощности человека с мощностью созданных им двигателей

Как выразить мощность через силу и скорость? Пройденный путь s выражается через скорость v и время движения t формулой s = vt. Поэтому

Таким образом, мощность равна произведению модуля силы на модуль скорости.

Следовательно, чтобы увеличить силу при той же мощности двигателя, надо уменьшить скорость. Вот почему на подъеме водитель производит переключение на первую скорость: чтобы увеличить силу тяги двигателя при той же мощности, надо уменьшить скорость движения.

Источник



Механическая работа и мощность

Содержание

  1. Работа различных сил
  2. Работа силы упругости
  3. Работы силы трения покоя
  4. Знак работы силы
  5. Геометрический смысл работы
  6. Мощность
  7. Коэффициент полезного действия

Второй закон Ньютона в импульсной форме позволяет определить, как меняется скорость тела по модулю и направлению, если в течение некоторого времени на него действует определенная сила:

В механике также важно уметь вычислять изменение скорости по модулю, если при перемещении тела на некоторый отрезок на него действует некоторая сила. Воздействия на тела сил, приводящих к изменению модуля их скорости, характеризуется величиной, зависящей как от сил, так и от перемещений. Эту величину в механике называют работой силы.

Читайте также:  Линии электропередач как источник реактивной мощности

Работа силы обозначается буквой А. Это скалярная физическая величина. Единица измерения — Джоуль (Дж).

Работа силы равна произведению модуля силы, модуля перемещения и косинусу угла между ними:

Механическая работа совершается, если:

  1. На тело действует сила.
  2. Под действием этой силы тело перемещается.
  3. Угол между вектором силы и вектором перемещения не равен 90 градусам (потому что косинус прямого угла равен нулю).

Внимание! Если к телу приложена сила, но под ее действием тело не начинает движение, механическая работа равна нулю.

Пример №1. Груз массой 1 кг под действием силы 30 Н, направленной вертикально вверх, поднимается на высоту 2 м. Определить работу, совершенной этой силой.

Так как перемещение и вектор силы имеют одно направление, косинус угла между ними равен единице. Отсюда:

Работа различных сил

Любая сила, под действием которой перемещается тело, совершает работу. Рассмотрим работу основных сил в таблице.

Модуль силы тяжести: F тяж = mg

Работа силы тяжести: A = mgs cosα

Модуль силы трения скольжения: F тр = μN = μmg

Работа силы трения скольжения: A = μmgs cosα

Модуль силы упругости: F упр = kx

Работа силы упругости:

Работа силы упругости

Работа силы упругости не может быть определена стандартной формулой, так как она может применяться только для постоянной по модулю силы. Сила же упругости меняется по мере сжатия или растяжения пружины. Поэтому берется среднее значение, равное половине суммы сил упругости в начале и в конце сжатия (растяжения):

Нужно также учесть, что перемещение тела под действием силы упругости равно разности удлинения пружины в начале и конце:

Перемещение и направление силы упругости всегда сонаправлены, поэтому угол между ними нулевой. А косинус нулевого угла равен 1. Отсюда работа силы упругости равна:

Работы силы трения покоя

Работы силы трения покоя всегда равна 0, так как под действием этой силы тело не сдвигается с места. Исключение составляет случай, когда покоящееся тело лежит на подвижном предмете, на который действует некоторая сила. Относительно системы координат, связанной с подвижным предметом, работа силы трения покоя будет нулевой. Но относительно системы отсчета, связанной с Землей, эта сила будет совершать работу, так как тело будет двигаться, оставаясь на поверхности движущегося предмета.

Пример №2. Груз массой 100 кг волоком перетащили на 10 м по плоскости, поверхность которой имеет коэффициент трения 0,4. Найти работу, совершенной силой трения скольжения.

A = μmgs cosα = 0,4∙100∙10∙10∙(–1) = –4000 (Дж) = –4 (кДж)

Знак работы силы

Знак работы силы определяется только косинусом угла между вектором силы и вектором перемещения:

  1. Если α = 0 о , то cosα = 1.
  2. Если 0 о o , то cosα > 0.
  3. Если α = 90 о , то cosα = 0.
  4. Если 90 о o , то cosα о , то cosα = –1.

Работа силы трения скольжения всегда отрицательна, так как сила трения скольжения направлена противоположно перемещению тела (угол равен 180 о ). Но в геоцентрической системе отсчета работа силы трения покоя будет отличной от нуля и выше нуля, если оно будет покоиться на движущемся предмете (см. рис. выше). В таком случае сила трения покоя будет направлена с перемещением относительно Земли в одну сторону (угол равен 0 о ). Это объясняется тем, что тело по инерции будет пытаться сохранить покой относительно Земли. Это значит, что направление возможного движения противоположно движению предмета, на котором лежит это тело. А сила трения покоя направлена противоположно направлению возможного движения.

Читайте также:  Castolin ct 27 мощность

Геометрический смысл работы

Механическая работа численно равна площади фигуры, ограниченной графиком с осями OF и OX.

Мощность

Мощность — физическая величина, показывающая, какую работу совершает тело в единицу времени. Мощность обозначается буквой N. Единица измерения: Ватт (Вт). Численно мощность равна отношению работы A, совершенной телом за время t:

Рассмотрим частные случаи определения мощности в таблице.

Мощность при равномерном прямолинейном движении тела

Работа при равномерном прямолинейном движении определяется формулой:

F т — сила тяги, s — перемещение тела под действием этой силы. Отсюда мощность равна:

Мощность при равномерном подъеме груза

Когда груз поднимается, совершается работа, по модулю равная работе силе тяжести. За перемещение в этом случае можно взять высоту. Поэтому:

Мгновенная мощность при неравномерном движении

Выше мы уже получили, что мощность при постоянной скорости равна произведению этой скорости на силу тяги. Но если скорость постоянно меняется, можно вычислить мгновенную мощность. Она равна произведению силы тяги на мгновенную скорость:

Мощность силы трения при равномерном движении по горизонтали

Мощность силы трения отрицательна так же, как и работа. Это связано с тем, что угол между векторами силы трения и перемещения равен 180 о (косинус равен –1). Учтем, что сила трения скольжения равна произведению силы нормальной реакции опоры на коэффициент трения:

Пример №3. Машина равномерно поднимает груз массой 10 кг на высоту 20 м за 40 с. Чему равна ее мощность?

Коэффициент полезного действия

Не вся работа, совершаемая телами, может быть полезной. В реальном мире на тела действует несколько сил, препятствующих совершению работы другой силой. К примеру, чтобы переместить груз на некоторое расстояние, нужно совершить работу гораздо большую, чем можно получить при расчете по формулам выше.

  • Работа затраченная — полная работа силы, совершенной над телом (или телом).
  • Работа полезная — часть полной работы силы, которая вызывает непосредственно перемещение тела.
  • Коэффициент полезного действия (КПД) — процентное отношение полезной работы к работе затраченной. КПД обозначается буквой «эта» — η. Единицы измерения эта величина не имеет. Она показывает эффективность работы механизма или другой системы, совершающей работу, в процентах.

КПД определяется формулой:

Работа может определяться как произведение мощности на время, в течение которого совершалась работа:

Поэтому формулу для вычисления КПД можно записать в следующем виде:

Частые случаи определения КПД рассмотрим в таблице ниже:

Источник