Меню

Гамма постоянная по мощности эквивалентной дозы

6 Гамма- и керма-постоянные.

Гамма-постоянная – мощность экспозиционной дозы излучения (в рентгенах в 1 час), создаваемая в воздухе нефильтрованным гамма-излучением точечного источника активностью в 1 мКи на расстоянии 1 см от него; служит для характеристики гамма-излучения изотопа.

В связи с переходом к СИ и отказом от использования экспозиционной дозы, как дозиметрической величины, введены новая величина для характеристики источников γ-излучения керма-постоянная.

Керма-постоянная – отношение мощности кермы воздуха K, создаваемой фотонами с энергией больше заданного порогового значения от точечного изотропно-излучающего источника данного радионуклида, находящегося в вакууме на расстоянии от источника, умноженной на квадрат этого расстояния к активности А источника:

Керма воздуха (К) — скалярная физическая величина, характеризующая общую первоначальную кинетическую энергию, передаваемую заряженным частицам воздуха в результате облучения нейтральными частицами. Равна отношению переданной кинетической энергии к массе вещества в данном объёме воздуха.

Мощность кермы воздуха – это приращение кермы воздуха за единицу времени.

Другими словами, керма постоянная нуклида — это сумма начальных кинетических энергий всех заряженных частиц, освобождённых незаряженным ионизирующим излучением (таким как фотоны или нейтроны) в нуклиде, отнесённая к массе образца.

7 Керма-эквивалент.

Керма – эквивалент– это мощность воздушной кермы фотонного излучения с энергией больше 30 кЭв точечного изотропного источника, умноженная на квадрат расстояния от источника.

Если известен Гэквисточника, то Кэквбудет равен Ке=2,04 М

Кеявляется характеристикой гамма излучающего радионуклида, необходимой для определения дозы от него на некотором расстоянии.

8 Радиевый гамма-эквивалент

Миллиграмм эквивалент радия – это единица гамма – эквивалента радиоактивного препарата, гамма – излучение которого при данной фильтрации и тождественных условиях измерения создает такую же мощность экспозиционной дозы, как гамма – излучение одного миллиграмма государственного эталона Raв равновесии с основными дочерними продуктами распада при платиновом фильтре толщиной 0,5 мм.

1 мг Ra3,7 х 10 7 расп/с или 1 мКи

Если известна активность радионуклида, то гамма – эквивалент этого источника можно расчитать

9 Классификация источников излучения

Источник ионизирующего излучения — объект, содержащий радиоактивный материал или техническое устройство, испускающее или способное в определенных условиях испускать ионизирующее излучение.

Радионуклидный источник ионизирующего излучения — источники ионизирующего излучения, содержащий радиоактивный материал. Источник — все, что может вызывать облучение при испускании ионизирующего излучения или выбросе радиоактивных веществ или материалов, и могут рассматриваться как единый источник в целях радиационной защиты и безопасности.

По происхождению существуют природные и искусственные источники излучения.

Природные источники ионизирующего излучения:

Спонтанный радиоактивный распад радионуклидов.

Термоядерные реакции, например на Солнце.

Индуцированные ядерные реакции в результате попадания в ядро высокоэнергетичных элементарных частиц или слияния ядер.

Искусственные источники ионизирующего излучения:

Ускорители элементарных частиц (генерируют потоки заряженных частиц, а также тормозное фотонное излучение).

Рентгеновский аппарат как разновидность ускорителей, генерирует тормозное рентгеновское излучение.

По физической основе генерации излученияразделяют радионуклидные источники на основе естественных и искусственных радиоактивных изотопов, и физико-технические источники (нейтронные и рентгеновские трубки, ускорители заряженных частиц и пр.).

Для радионуклидных источников различают открытые и закрытые источники излучения.

Открытый источник ионизирующего излучения— при использовании которого возможно поступление содержащихся в нём радиоактивных веществ в окружающую среду.

Закрытый источник ионизирующего излучения— в котором радиоактивный материал заключён в оболочку (ампула или защитное покрытие), предотвращающую контакт персонала с радиоактивным материалом и его поступление в окружающую среду свыше допустимых уровней в условиях применения и износа, на которые он рассчитан.

По видам излучениявыделяют источники гамма-излучения, источники заряженных частиц и источники нейтронов. Для радионуклидных источников такое разделение не является абсолютным, т.к. при ядерных реакциях, индуцирующих излучение, основной вид излучения источника может сопровождаться существенным вкладом сопутствующих видов излучения.

Читайте также:  Глубинный насос эцв с мощность

По назначениювыделяют калибровочные (образцовые), контрольные (рабочие) и промышленные (технологические) источники.

Промышленные источники излученияприменяют в различных производственных процессах и установках производственного назначения (ядерные методы каротажа, бесконтактные методы контроля технологических процессов, методы анализа вещества, дефектоскопия и т.п.).

Контрольные источникииспользуются для проверки и настройки ядерно-физических приборов и установок (спектрометров, радиометров, дозиметров и пр.) путем контроля за стабильностью и повторяемостью показаний приборов в определенной геометрии положения источника относительно детектора излучения.

Калибровочные источникииспользуются при калибровке и метрологической поверке ядерно-физической аппаратуры.

Источник



Учебное пособие: Радиационная безопасность и дозиметрия внешнего гамма-излучения методические указания к выполнению лабораторной работы №1 по курсу «Защита от излучений» Иваново 2009

Федеральное агентство по образованию

Государственное образовательное учреждение

высшего профессионального образования

«Ивановский государственный энергетический университет

Кафедра атомных электрических станций

РАДИАЦИОННАЯ БЕЗОПАСНОСТЬ
И ДОЗИМЕТРИЯ ВНЕШНЕГО ГАММА-ИЗЛУЧЕНИЯ

Методические указания к выполнению лабораторной работы №1

по курсу «Защита от излучений»

Составители: А.Ю. ТОКОВ, В.А. КРЫЛОВ, А.Н. СТРАХОВ

Редактор В.К. СЕМЕНОВ

Методические указания предназначены для студентов, обучающихся по специальности «Атомные электрические станции и установки», проходящих лабораторный практикум по физике ионизирующих излучений. Теоретический материал, приведенный в 1 разделе, дополняет и частично дублирует читаемый на лекциях.

Рекомендуются также студентам специальности «Безопасность жизнедеятельности» при изучении курса «Радиационная безопасность».

Утверждены цикловой методической комиссией ИФФ

кафедра атомных электрических станций ГОУВПО «Ивановский государственный энергетический университет имени В. И. Ленина»

РАДИАЦИОННАЯ БЕЗОПАСНОСТЬ И ДОЗИМЕТРИЯ

ВНЕШНЕГО ГАММА-ИЗЛУЧЕНИЯ

Методические указания к лабораторной работе №1

по курсу «Защита от излучений»

Составители: Токов Александр Юрьевич,

Крылов Вячеслав Андреевич,

Страхов Анатолий Николаевич

Подписано в печать 7.12.09. Формат 60х84 1/16.

Печать плоская. Усл. печ. л. 1,62. Тираж 100 экз. Заказ №

ГОУВПО «Ивановский государственный энергетический университет имени В. И. Ленина»

153003, г. Иваново, ул. Рабфаковская, 34.

Отпечатано в УИУНЛ ИГЭУ

1. ОСНОВЫ РАДИАЦИОННОЙ БЕЗОПАСНОСТИ

1.1. Биологическое действие ионизирующих излучений

Ионизирующее излучение, воздействуя на живой организм, вызывает в нем цепочку обратимых и необратимых изменений, «спусковым механизмом» которой является ионизация и возбуждение атомов и молекул вещества. Ионизация (т.е. превращение нейтрального атома в положительный ион) происходит в том случае, если ионизирующая частица (α, β – частица, рентгеновский или γ – фотон) передает электронной оболочке атома энергию, достаточную для отрыва орбитального электрона (т.е. превышающую энергию связи). Если передаваемая часть энергии меньше энергии связи, то происходит лишь возбуждение электронной оболочки атома.

В простых веществах, молекулы которых состоят из атомов одного элемента, процессу ионизации сопутствует процесс рекомбинации. Ионизированный атом присоединяет к себе один из свободных электронов, которые всегда имеются в среде, и вновь становится нейтральным. Возбужденный атом возвращается в нормальное состояние путем перехода электрона с верхнего энергетического уровня на более низкий, при этом испускается фотон характеристического излучения. Таким образом, ионизация и возбуждение атомов простых веществ не приводят к каким-либо изменениям физико-химической структуры облучаемой среды.

Иначе обстоит дело при облучении сложных молекул, состоящих из большого числа различных атомов (молекулы белка и других тканевых структур). Прямое действие излучения на макромолекулы приводит к их диссоциации, т.е. к разрывам химических связей вследствие ионизации и возбуждения атомов. Косвенное действие излучения на сложные молекулы проявляется через продукты радиолиза воды, составляющей основную часть массы тела (до 75 %). За счет поглощения энергии молекула воды теряет электрон, который быстро пере­дает свою энергию окружающим молекулам воды:

Н2 О => Н2 О + + е.

В результате образуются ионы, свободные ра­дикалы, ион-радикалы, имеющие неспаренный электрон (Н • , ОН • , гидроперекись HО2 • ), перекись водорода H2 O2 , атомарный кислород:

Читайте также:  Как выбрать счетчик электроэнергии по мощности

Н2 О + + Н2 О => Н3 О + + ОН+ Н;

Н+ О2 => НО2 ; НО2 + НО2 => Н2 О2 + 2О .

Свободные радикалы, содержащие неспаренные электроны, обладают чрезвы­чайно высокой реакционной способностью. Время жизни свободного радикала не превышает 10 -5 с. За это время продукты радиолиза воды либо рекомбинируют друг с другом, либо вступают в цепные каталитические реакции с молекулами белка, ферментов, ДНК и других клеточных структур. Индуцированные свободными радикалами химические реакции развиваются с большим выходом и вовлекают в этот процесс многие сотни и тысячи молекул, не затронутых излучением.

Действие ионизирующего излучения на биологические объекты можно разделить на три этапа, происходящие на разных уровнях:

1) на атомном уровне – ионизация и возбуждение атомов, происходящие за время порядка 10 -16 – 10 -14 с;

2) на молекулярном уровне – физико-химические изменения макромолекул, обусловленные прямым и радиолитическим действием излучения, приводящие к нарушениям внутриклеточных структур, за время порядка 10 -10 – 10 -6 с;

3) на биологическом уровне – нарушения функций тканей и органов, развивающиеся за время от нескольких секунд до нескольких суток или недель (при острых поражениях) либо за годы или десятилетия (отдаленные последствия облучения).

Основной ячейкой жи­вого организма является клетка, ядро которой у человека содержит 23 пары хромосом (молекул ДНК), несущих закодированную генетическую информацию, которая обеспечивает вос­произведение клетки и внутриклеточный синтез белков. Отдельные участки ДНК (гены), ответственные за фор­мирование какого-либо элементарного признака организма, располагаются в хромосо­ме в строго определенном порядке. Сама клетка и ее отношения с внекле­точным окружением поддерживаются с помощью сложной системы полупроницаемых мембран. Эти мембраны регулируют поступление воды, питательных веществ и элек­тролитов в клетку и вывод из нее. Любое повреждение может угрожать жизнеспособности клет­ки или ее способности к воспроизведению.

Среди разнообразных форм нарушений наиболее важным является повреждение ДНК. Однако клетка обладает сложной системой процессов восстановления, особенно в пределах ДНК. Если восстановление не является полным, то может появиться жизнеспособная, но измененная клетка (мутант). На появление и размножение измененных клет­ок могут повлиять, помимо облучения, и другие факторы, возникающие как до воздействия излу­чения, так и после него.

У высших организмов клетки организованы в ткани и органы, выполняющие разнообразные функции, например: производство и хранение энергии, мышечная активность для дви­жения, переваривание пищи и выделение отходов, снабжение кислородом, поиск и уничтожение клеток-мутантов и др. Ко­ординацию этих видов активности тела осуществляют нервная, эндокринная, кроветворная, иммунная и другие сис­темы, которые в свою очередь также состоят из специфических клеток, органов и тканей.

Случайное распределение актов поглощения энергии, создаваемых излучением, может различными путями повредить жизненно важные части двойной спирали ДНК и других макромолекул клетки. Если значительное число клеток органа или тка­ни погибло или неспособно к воспроизведению либо к нормальному функционированию, то может быть потеряна функция органа. В облученном органе или ткани нарушаются обменные процессы, подавляется активность ферментных систем, замедляется и прекращается рост тканей, возникают новые химические соединения, не свойственные организму, – токсины. Конечные нежелательные радиационные эффекты делятся на соматические и генетиче­ские.

Соматические эффекты проявляются непосредственно у самого облученного либо как ранние выявляемые эффекты облучения (острая или хроническая лучевая бо­лезнь и локальные лучевые поражения), либо как отдаленные последствия (сокращение продолжительности жизни, возникновение опухолей или других заболеваний), прояв­ляющиеся через несколько месяцев или десятков лет после облучения. Генетические, или наследственные, эффекты – это последствия облучения генома зародышевых клеток, передающиеся по наслед­ству и вызывающие врожденные уродства и другие нарушения у потомков. Эти последствия облучения могут быть очень отдаленными и распространяться на несколько поколений людей.

Читайте также:  Мощности электрического тока лампочки

Выраженность эффекта вредного воздействия зависит от конкретной облученной ткани, а также от способности организма компенсировать или восстановить повреждение.

Способность к восстановлению клеток зависит от возраста человека в момент облучения, от пола, состояния здоровья и генетической предрасположенности организма, а также от величины поглощенной дозы (энергии излучения, поглощенной в единице массы биоткани) и, наконец, от вида первичного излучения , воздействовавшего на организм.

1.2. Пороговые и беспороговые эффекты при облучении человека

В соответствии с современными представлениями, изложенными в публикации 60 МКРЗ [1] и положенными в основу российских Норм радиационной безопасности НРБ-99, возможные вредные для здоровья последствия облучения подразделяются на два вида: пороговые (детерминированные) и беспороговые (стохастические) эффекты.

1. Детерминированные (пороговые) эффекты – непосредственные ранние, клинически выявляемые лучевые заболевания, имеющие дозовые пороги, ниже которых они не возникают, а выше – тяжесть эффектов зависит от дозы. К ним относятся острая или хроническая лучевая болезнь, лучевая катаракта, нарушение воспроиз­водительной функции, косметическое повреждение кожи, дистрофические поврежде­ния разных тканей и т.п.

Острая лучевая болезнь возникает после превышения некоторой пороговой дозы разового облучения и характеризуется симптомами, зависящими от уровня полученной дозы (табл.1.1). Хроническая лу­чевая болезнь развивается при систематически повторяющемся облучении, если разо­вые дозы ниже тех, которые вызывают острые лучевые поражения, но значи­тельно выше допустимых пределов. Признаками хронической лучевой болез­ни являются изменения состава крови (уменьшение числа лейкоцитов, малокровие) и ряд симптомов со стороны нервной системы. Аналогичные симптомы имеют место и при других заболеваниях, связанных с ослаблением иммунитета, поэтому идентифицировать хроническую лучевую болезнь весьма сложно, если факт облучения доподлинно не установлен.

Во многих органах и тканях идет непрерывный процесс потери и замены кле­ток. Возрастание потерь может компенсироваться повышением скорости заме­ны, но может возникнуть и временное, а иногда постоянное снижение числа клеток, способных поддерживать функцию органа или ткани.

Произошедшая потеря клеток может вызвать тяжелое нарушение, которое может быть обнаружено клинически. Следовательно, степень тяжести наблюдаемого эффекта зависит от дозы облучения и существует порог , ниже которого потеря клеток слишком мала, чтобы заметно нарушить функцию ткани или органа. Кроме гибели клеток, излучение может привести к повреждению тканей и другими способами: влияя на многочисленные функции ткани, включая регулирование клеточных процессов, воспалительные реакции, подавление иммунной системы, кроветворной системы (красный костный мозг). Все эти механизмы в конечном счете определяют степень тяжести детерминированных эффектов.

Значение пороговой дозы определяется радиочувствительностью клеток пораженного органа или ткани и способностью организма компенсировать или восстанавливать такое поражение. Как правило, детерминированные эффекты излучения специфичны и не возникают под действием других физических факторов, а связь между эффектом и облучением однозначна (детерминирована). Пороговые дозы возникновения детерминированных эффектов, приводящих к скорой гибели взрослых людей, приведены в табл.1.2. В случае длительного хронического облучения эти же эффекты возникают при больших суммарных дозах, чем в случае однократного облучения.

Средние дозовые пороги возникновения детерминированных эффектов приведены в табл. 1.1 – 1.3. Тяжесть эффекта (степень его выраженности)

возрастает у лиц, обладающих более высокой радиочувствительностью (дети, лица с ослабленным здоровьем лица с медицинскими противопоказаниями к работе с источниками излучений). Для таких лиц значения дозовых порогов облучения, указанных в табл.1.1, могут оказаться ниже в 10 и более раз.

Таблица 1.1. Воздействие различных доз радиации на здоровье взрослого человека

при однократном облучении

Виды соматических эффектов в организме человека

Источник