Меню

Генератор это преобразователь постоянного тока в переменный

Все о преобразователе напряжения — понятие, характеристики и принцип действия

Все о преобразователе напряжения — понятие, характеристики и принцип действия

Устройства, которые способны преобразовать переменный ток из различного рода источника называют преобразователями напряжения или инверторами.

Сегодня, подобная силовая техника, широко распространена в машиностроении, промышленном производстве техники и в бытовой сфере.

Предлагаем более подробно ознакомиться с данным прибором.

Общая информация

Под преобразователем понимают электротехнический прибор, способный преобразовать электроэнергию, имеющую одни параметры, в электроэнергию с другими параметрами.

В качестве параметров рассматриваются: ток, напряжение, фаза.

Преобразователи классифицируют на:

  • управляемый и неуправляемый, то есть на выходе параметры либо регулируются, либо нет
  • электромашинный (вращающийся) и полупроводниковый (статический), который бывает диодным, тиристорным и транзисторным
  • выпрямитель, инвертор, преобразователь частоты, регулятор напряжения переменного или постоянного тока, фазовый преобразователь

Наиболее распространенной моделью преобразователя, на сегодняшний день, является полупроводниковый тиристорный или транзисторный преобразователь. Это обуславливается рядом преимуществ и функциональных возможностей, таких как: высокое быстродействие и КПД, длительный срок эксплуатации, простота в обслуживании и использовании.

Подобные преобразователи имеют и ряд недостатков. Например они чувствительны к перегрузкам тока и напряжения.

Устройство прибора

Преобразователи напряжения не обходятся без следующих комплектующих элементов:

  • ключевого коммутирующего элемента
  • источника питания
  • индуктивного накопителя питания
  • фильтра-конденсатора
  • блокировочного диода

В зависимости от порядка включения и сочетания каждого из перечисленных выше элементов, создается инвертирующий преобразователь, повышающий или понижающий.

Принцип работы

Преобразователи напряжения (инверторы), обеспечивая максимальное значение коэффициента полезного действия, вырабатывают напряжение, величина которого необходима для питания определенного вида аппаратуры. Трансформатор выступает как промежуточный элемент, который временно переводит напряжение из постоянного значения в переменное.

Преимущества инвертора перед генератором

Сфера применения преобразователей широка: от промышленного производства до бытового использования. Главным достоинством данного прибора считается его функциональность, так как помимо функций преобразования электрических параметров, он может выполнять функции генератора. Но инвертор и генератор различны в принципе действия и назначении.

Более того, преобразователь имеет ряд преимуществ перед дизельными или бензиновыми генераторами:

  • значения габаритов и веса ниже
  • не требуется постоянный контроль над уровнем и давлением масла, уровнем топлива, температурой и уровнем охлаждающей жидкости
  • незначительное потребление энергии на холостом ходу
  • длительный срок эксплуатации
  • экологичный и не шумный
  • способен выполнять функции пуско-зарядного устройства, источника бесперебойного питания и восстановителя аккумулятора
  • доступная цена

Основные виды

Преобразователи напряжения (инверторы) бывают следующих типов:

    импульсные устройства

Подобный прибор используется для преобразования напряжения. Если требуется создать высокую частоту тока, то применяют импульсные модели преобразователей, которые собираются с колебательными контурами.

автомобильные устройства

Данные модели применяют для преобразования машинного тока от аккумулятора в переменный ток. Способны работать в трех режимах – рабочем режиме, режиме перегрузки не более получаса и пусковом режиме. Мощность автомобильного инвертора должна быть больше мощности устройств, которые предполагается в него включать.

бытовые устройства

Подобные виды преобразователей используются в качестве резервного источника питания. Эти модели представляют собой комбинированный вид преобразователей – инвертора и аккумуляторных батарей.

  • бестрансформаторные устройства
  • Главным преимуществом этой модели является цена, так как в комплектацию не входит трансформатор, на изготовление которого требуется дорогостоящий цветной металл.

    Но такой преобразователь имеет весомый недостаток – вышедший из строя один элемент спровоцирует остановку работы прибора в целом.

    Ознакомиться с ассортиментом преобразователи напряжения (инверторы) можно по ссылке

    Источник

    Принцип действия генератора постоянного напряжения

    21 октября 2019

    Время на чтение:

    Когда-то генераторы постоянного тока, преобразующие механическую энергию в электрическую, были единственными источниками электроэнергии. На сегодня чаще всего используются надежные трехфазные преобразователи переменного тока. Но в некоторых отраслях постоянный ток был регулярно востребован, поэтому устройства для выработки последнего неизменно совершенствовались.

    Как работает

    Функционирование генератора основывается на свойствах, которые следуют из известного закона электромагнитной индукции. Когда замкнутый контур разместить между полюсами магнита (постоянного), то в условиях вращения он будет проходить через магнитный поток. Во время перехода вырабатывается электродвижущая сила, возрастающая при приближении к полюсу. В случае, если присоединить нагрузку, то образуется поток тока. Когда витки рамки будут выходить из области воздействия магнита, то ЭДС будет уменьшаться и достигнет нуля при горизонтальном положении рамки. При дальнейшем вращении противолежащие контурные части изменят магнитную полярность.

    Альтернатор постоянного тока

    Значения ЭДС в активных обмотках контура вычисляются по формулах: е1= В I v sin wt, е2= — В I v sin wt, где I — длинна одной стороны рамки, В — магнитная индукция, v — скорость вращения (линейная) контура, t — время, wt — угол пересечения магнитного потока рамкой.

    Направление тока меняется в период смены полюсов. Поскольку вращение коллектора происходит одновременно с рамой, то электроток на нагрузке имеет одинаковое направление. Такая схема лежит в основе выработки постоянного электричества. Суммарная ЭДС будет иметь следующий вид: е= 2В I v sin wt.

    Принцип действия генератора

    Такой ток почти непригоден для применения, поскольку присутствуют пульсации ЭДС. Последние надо уменьшать к допустимому уровню. Для этой цели применяют много магнитных полюсов, рамки заменяют якорями, у которых намного больше обмоток и коллекторов. К тому же, соединение обмоток выполняется разными методами.

    Ротор производится из стали. В пазы на сердечниках укладываются витки провода, которые составляют рабочую обмотку якоря. Проводники соединяют последовательно. Они образуют секции, создающие замкнутую цепь.

    Интересно! Для процесса генерации неважно: вращаются обмотки контура или магнит. По этой причине роторы для маломощных альтернаторов изготавливают из постоянных магнитов, а переменный ток выпрямляют при помощи диодных мостов или иными схемами.

    Узнать, из чего состоит генератор постоянного тока, поможет картинка 4.

    Устройство машины постоянного тока

    Установка состоит из главных узлов:

    • неподвижная часть — главные и дополнительные полюса, станина;
    • вращающаяся часть (якорь) — стальной сердечник, коллектор.
    Читайте также:  Номинальный ток для кабеля 25мм2

    В процессе работы установки ток проводится сквозь обмотку и образуется магнитный поток полюсов. Специальные неподвижные щетки (из сплава графита) способствуют объединению обеих частей генератора в единую цепь.

    Устройство и принцип действия генератора постоянного тока за долгий период применения остались прежними, несмотря на некоторые совершенствования.

    Классификация

    Существуют генераторы постоянного тока с независимым возбуждением обмоток, с самовозбуждением. Последние модели используют электричество, которое ими же вырабатывается. По способу объединения обмоток якорей альтернаторы делят на устройства с возбуждением следующих типов:

    • смешанным;
    • параллельным;
    • последовательным.

    Схема генератора постоянного тока представлена на картинке 5.

    Схемы альтернатора

    С параллельным возбуждением

    Чтобы электроприборы работали в нормальном режиме, необходимо стабильное напряжение, которое не зависит от изменений в общей нагрузке. Эта проблема решается методом настройки параметров возбуждения. В таких генераторах катушка подключена (через реостат) параллельно обмотке якоря. Реостат может замыкают обмотку. В противном случае при разъединении цепи возбуждения внезапно повысится ЭДС самоиндукции, что может повредить изоляционный материал. В состоянии непродолжительного замыкания энергия превращается в тепловую, чем предотвращается разрушение устройства.

    Электромашины с возбуждением такого вида не требуют внешнего источника питания. Самовозбуждение обмоток происходит под действием остаточного магнетизма в сердечнике магнита. Последние, для улучшения описанного процесса, производят из стали. Самовозбуждение длится до тех пор, пока ток не станет максимальным, а электродвижущая сила не покажет номинальное значение.

    Преимущество вышеописанных электрогенераторов в том, что на них почти не влияют электротоки при коротком замыкании.

    С независимым возбуждением

    Источниками питания для обмоток нередко стают аккумуляторы или же иные устройства. В машинах с малой мощностью применяются постоянные магниты, обеспечивающие присутствие главного магнитного потока. На валу альтернатора располагают микрогенератор (возбудитель), который вырабатывает электроток для возбуждения якорных обмоток. Для этой цели необходимо от 1 до 3 % номинального тока якоря. Изменение электродвижущей силы выполняется регулирующим реостатом.

    Достоинство: на возбуждающий ток не имеет воздействия напряжение на зажимах.

    С последовательным возбуждением

    Последовательными обмотками вырабатывается ток, который равняется электротоку альтернатора. В случае холостого хода отсутствует нагрузка, поэтому возбуждение нулевое. Это обозначает, что регулировочные свойства не существуют.

    В агрегате с последовательным возбуждением почти нет тока, если ротор вращается на холостых оборотах. Чтобы запустить возбуждение, требуется подключение нагрузки к зажимам устройства. Явная связанность напряжения с нагрузкой считается огромным минусом последовательных обмоток. Подобные агрегаты используются лишь для питания электрических приборов, у которых нагрузка постоянная.

    Со смешанным возбуждением

    Самые лучшие свойства собраны в конструкции агрегатов со смешанным возбуждением. Особенность устройств в том, что они состоят из двух катушек:

    • основная — подключена параллельным способом к обмоткам якоря;
    • вспомогательная — подключена последовательным способом.

    В цепи основной присутствует реостат, который регулирует ток возбуждения. Процедура самовозбуждения генератора со смешанным типом такая же, как у агрегата с параллельными обмотками (в самовозбуждении не принимает участия последовательная обмотка, так как отсутствует исходный ток). А свойства холостого хода идентичны характеристикам генератору с параллельной обмоткой. Такие особенности разрешают настраивать напряжение на зажимах устройства.

    Технические параметры

    Работа генератора определяется зависимостью между основными величинами, которые являются его главными характеристиками:

    • отношения между величинами на холостом ходу;
    • внешние параметры;
    • регулировочные значения.

    Внешняя характеристика генератора постоянного тока крайне важна, так как раскрывает взаимосвязь напряжения и нагрузки. Она отображена на графике. Согласно последнего наблюдается незначительное уменьшение напряжения, но оно почти не зависит от нагрузочного тока (если сохраняется скорость оборотов двигателя).

    Внешняя характеристика ГПТ

    В устройствах с параллельным возбуждением больше выражено влияние нагрузки на напряжение. Это объясняется уменьшением тока в обмотках. Чем выше ток нагрузки, тем быстрее будет уменьшаться напряжение на зажимах агрегата.

    Свойства ГПТ с параллельным возбуждением

    Если увеличить величину тока при последовательном возбуждении, то вырастет ЭДС. Но напряжение не достигнет высокого значения электродвижущей силы, так как часть энергии уйдет на потери от вихревых токов.

    Свойства ГПТ с последовательным возбуждением

    При достижении напряжением максимального значения и одновременным увеличением нагрузки, первое начинает стремительно снижаться в то время, как кривая электродвижущей силы продолжает подниматься. Это считается большим недостатком, ограничивающим использование генератора такого типа.

    В устройствах со смешанным возбуждением предвиденные встречные подключения обеих катушек. Конечная сила при однонаправленном подключении равняется сумме векторов намагничивающих сил, при встречном — их разнице.

    При равномерном увеличении нагрузки напряжение на зажимах почти не меняется. Оно будет расти лишь тогда, если число проводов последовательной обмотки превышает число витков, которое соответствует номинальному возбуждению якоря.

    Свойства ГПТ со смешанным возбуждением

    Генераторы со встречным включением применяются в том случае, если нужно ограничить токи короткого замыкания. К примеру, при подсоединении аппаратов для сварки.

    Важной характеристикой генератора считается его КПД — соотношение полезной и полной мощности: η = P 2 / P1. При холостом ходе такое отношение равно нулю (η=0). При номинальных нагрузках КПД достигнет максимального значения. Мощные агрегаты имеют коэффициент полезного действия около 90 %.

    Электродвижущая сила (ее значение) пропорциональна магнитному потоку, числу проводников (активных) в обмотках, частоте вращения якоря. Если менять последние параметры, то можно легко управлять значением ЭДС. Последнее относится и к напряжению. Нужный результат достигается методом изменения частоты вращения якоря.

    Мощность

    Выделяют полезную и полную мощности устройства. При постоянной электродвижущей силе полная мощность находится в прямо пропорциональной зависимости от тока: P=EIa. Полезная, которая отдается в цепь, Р1=UI.

    Реакция якоря

    Если к альтернатору подключить внешнюю нагрузку, то электротоки его обмотки создадут магнитное поле. Тогда возникнет сопротивление полей якоря и статора. Поле будет самым сильным в тех местах, где ротор приближается к магнитным полюсам, очень слабым — в точках максимального удаления. Ротор чувствует магнитное насыщение стальных катушечных сердечников. Сила реакции напрямую зависит от насыщенности в проводах. В результате на пластинках коллекторов будет происходить искрение щеток.

    Читайте также:  Векторных диаграмм для расчета электрических цепей переменного тока

    Реакция ротора

    Уменьшение реакции достигается при использовании восполняющих магнитных полюсов или передвижением щеток с линии оси.

    Где используются

    Еще совсем недавно генераторы постоянного тока устанавливались на транспорте для железных дорог. Но сейчас их вытесняют синхронные трехфазные устройства. Переменный ток синхронных агрегатов выпрямляют полупроводниковыми установками. Некоторые новые локомотивы используют асинхронные двигатели, которые работают на переменном токе.

    Применение ГПТ

    Такие же обстоятельства и с автогенераторами, которые постепенно замещают асинхронными устройствами с дальнейшим выпрямлением.

    Сварочный генератор

    Стоит заметить, что передвижное оборудование для сварки (имеющие автономное питание) обычно находится в паре с таким генератором. Отдельные отрасли промышленности продолжают применять мощные агрегаты описанного типа.

    Источник

    

    Как устроен генератор переменного тока — назначение и принцип действия

    Люди пользуются энергией электрического тока практически во всех сферах своей деятельности. Сейчас нелегко представить жизнь без электричества, которое с помощью специального оборудования преобразуется из механической энергии. Рассмотрим подробнее, как происходит этот процесс, и как устроены современные генераторы.

    Как устроен генератор переменного тока - назначение и принцип действия

    Превращение механической энергии в электрическую

    Любой генератор работает по принципу магнитной индукции. Самый простой генератор переменного тока можно представить, как катушку, которая вращается в магнитном поле. Также есть вариант, при котором катушка остается неподвижной, но магнитное поле только её пересекает. Именно во время этого движения и вырабатывается переменный ток. По такому принципу функционирует огромное количество генераторов во всем мире, объединенных в систему электроснабжения.

    Устройство и конструкция генератора переменного тока

    Стандартный электрогенератор имеет следующие компоненты:

    Как устроен генератор переменного тока - назначение и принцип действия

    • Раму, к которой закреплен статор с электромагнитными полюсами. Изготовлена она из металла и должна выполнять защитную функцию всех элементов механизма.
    • Статор, к которому крепится обмотка. Изготавливается он из ферромагнитной стали.
    • Ротор – подвижный элемент, на сердечнике которого располагается обмотка, образующая электрический ток.
    • Узел коммутации, который отводит электричество с ротора. Представляет собой систему подвижных токопроводящих колец.

    В зависимости от назначения, генератор имеет определенные особенности конструкции, но существуют два компонента, которыми обладает любое устройство, конвертирующее механическую энергию в электричество:

    1. Ротор – подвижная цельная деталь из железа;
    2. Статор – неподвижный элемент, который изготовлен из железных листов. Внутри него есть пазы, внутри которых располагается проволочная обмотка.

    Для получения большей магнитной индукции, между этими элементами должно быть небольшое расстояние. По своей конструкции генераторы бывают:

    • С подвижным якорем и статическим магнитным полем.
    • С неподвижным якорем и вращающимся магнитным полем.

    В настоящее время более распространено оборудование с вращающимися магнитными полями, т.к. значительно удобнее снимать электрический ток со статора, чем с ротора. Устройство генератора имеет немало сходств с конструкцией электродвигателя.

    Как устроен генератор переменного тока - назначение и принцип действия

    Схема генератора переменного тока

    Принцип работы электрогенератора: в тот момент, когда половина обмотки находится на одном из полюсов, а другая на противоположном, ток движется по цепи от минимального до максимального значения и обратно.

    Классификация и виды агрегатов

    Все электрогенераторы можно распределить по критерию работы и по типу топлива, из которого и образуется электроэнергия. Все генераторы делятся на однофазные (выход напряжения 220 Вольт, частота 50 Гц) и трехфазные (380 Вольт с частотой 50 Гц), а также по принципу работы и типу топлива, которое конвертируется в электричество. Ещё генераторы могут использоваться в разных сферах, что определяет их технические характеристики.

    По принципу работы

    Разделяют асинхронные и синхронные генераторы переменного тока.

    Асинхронный

    У асинхронных электрогенераторов нет точной зависимости ЭДС от частоты вращения ротора, но здесь работает такой термин, как «скольжение S». Оно определяет эту разницу. Величина скольжения вычисляется, поэтому некоторое влияние элементов генератора в электромеханическом процессе асинхронного двигателя все же есть.

    Синхронный

    Как устроен генератор переменного тока - назначение и принцип действия

    Такой генератор обладает физической зависимостью от вращательного движения ротора к генерируемой частоте электроэнергии. В таком устройстве ротор является электромагнитом, состоящим из сердечников, обмоток и полюсов. Статором являются катушки, которые соединены по принципу звезды, и имеющими общую точку – ноль. Именно в них вырабатывается электрический ток.
    Ротор приводит в движение посторонняя сила подвижных элементов (турбин), которые двигаются синхронно. Возбуждение такого генератора переменного тока может быть, как контактным, так и бесконтактным.

    По типу топлива двигателя

    Удаленность от электросети с появлением генераторов больше не становится препятствием для пользования электроприборами.

    Газовый генератор

    Как устроен генератор переменного тока - назначение и принцип действия

    В качестве топлива здесь используется газ, во время сгорания которого и вырабатывается механическая энергия, которая затем заменяется электрическим током. Преимущества использования газогенератора:

    • Безопасность для окружающей среды, ведь газ при сгорании не выделяет вредных элементов, копоти и токсичных продуктов распада;
    • Экономически это очень выгодно – сжигать дешевый газ. В сравнении с бензином, это обойдется значительно дешевле;
    • Подача топлива осуществляется автоматически. Бензин и дизельное топливо требуется по мере необходимости подливать, а газовый генератор обычно подключают к системе газоснабжения;
    • Благодаря автоматике, аппарат приходит в действие самостоятельно, но для этого он должен располагаться в теплом помещении.

    Дизельный генератор

    Как устроен генератор переменного тока - назначение и принцип действия

    Эту категорию составляют преимущественно однофазные агрегаты мощностью 5 кВт. 220 Вольт и частота 50 Гц являются стандартными для бытовой техники, поэтому дизельный аппарат неплохо справляется со стандартной нагрузкой. Как можно догадаться, для его работы требуется дизельное топливо. Почему стоит выбрать именно дизельный электрогенератор:

    • Относительная дешевизна топлива;
    • Автоматика, позволяющая автоматически запускать генератор при прекращении подачи электрического тока;
    • Высокий уровень противопожарной безопасности;
    • В течении длительного периода времени агрегат на дизеле способен проработать без сбоев;
    • Внушительная долговечность – некоторые модели способны работать в общей сумме 4 года непрерывной эксплуатации.
    Читайте также:  Узо для больших токов

    Бензогенератор

    Как устроен генератор переменного тока - назначение и принцип действия

    Такие аппараты довольно востребованы как бытовое оборудование. Несмотря на то, что бензин дороже газа и дизеля, такие генераторы имеют немало сильных сторон:

    • Малые габариты при высокой мощности;
    • Просты в эксплуатации: большинство моделей можно запустить вручную, а более мощные генераторы оснащены стартером. Регулируется напряжение под определенную нагрузку при помощи специального винта;
    • В случае перегрузки генератора автоматически срабатывает защита;
    • Просты в обслуживании и ремонте;
    • Во время работы не издают много шума;
    • Можно применять и в помещении, и на улице, но следует защищать от попадания влаги.

    Источник

    СТАТИЧЕСКИЕ ПРЕОБРАЗОВАТЕЛИ ПОСТОЯННОГО ТОКА В ПЕРЕМЕННЫЙ

    На ЛА с первичной системой электроснабжения постоянного тока для получения переменного тока постоянной частоты до последнего времени использовались главным образом электромашинные преобразователи, имеющие ряд недостатков: большую полетную массу, низкий КПД, недостаточно высокую надежность, большие затраты времени на обслуживание.

    В настоящее время для ЛА созданы надежные статические преобразователи постоянного тока в переменный (инверторы) на транзисторах мощностью в несколько киловатт, превосходящие по основным параметрам электромашинные преобразователи. КПД транзисторных преобразователей достигает 95%.

    По сравнению с электромашинными статические преобразователи обладают следующими преимуществами: время выхода на рабочий режим меньше в 5—10 раз и составляет доли секунды; в несколько раз меньше пусковые токи; лучше качество переходных процессов; отсутствуют акустические шумы, создаваемые при работе преобразователя; большой срок службы, малые масса и габариты.

    Применение кремниевых транзисторов позволяет создавать преобразователи, работающие при температурах 80— 100°С. Полупроводниковые приборы в инверторах работают в ключевом режиме.

    Инверторы на транзисторах можно подразделить на два типа: с самовозбуждением и с независимым возбуждением.

    Инверторы с самовозбуждением выполняют на небольшие мощности (до нескольких десятков ватт), в основном по двухтактной схеме (рис. 8.3,а). Схема состоит из трансформатора Тр, сердечник которого вы­полнен из стали с прямоугольной петлей гистерезиса, и двух транзисторов Т1, Т2, включенных по схеме с общим эмиттером. Делитель напряжения R1R2 служит для запуска преобразователя при включении на­пряжения сети Uc. В этом случае на резисторе R1 появляется небольшое напряжение (0,3—0,6 В), отрицательный полюс которого приложен к базам транзисторов, вызывая отпирание одного из них. Схема работает следующим образом.

    Предположим, что в некоторый момент времени открыт транзистор Т1. Тогда напряжение питания Uc (за вычетом падения напряжения на участке эмиттер — коллектор ΔUэ-к) оказывается приложенным к половине коллекторной обмотки NK и создает в ней и в других обмотках ЭДС с полярностью, указанной на рис. 8.3, а без скобок.

    ЭДС базовой обмотки Мб’ создает на базе транзистора Т1 отрицательное по отношению к эмиттеру напряжение, а ЭДС Nб« в этот момент создает на базе транзистора Т2 положительное напряжение. Следовательно, в момент, когда транзистор Т\ открыт, транзистор Т2 закрыт.

    Транзистор Т1 будет открыт до тех пор, пока магнитный поток в сердечнике трансформатора не достигнет насыщения. Так как в момент насыщения скорость изменения магнитного потока почти равна нулю, ЭДС во всех обмотках трансформатора также станет почти равной нулю. Происходящее при этом резкое уменьшение токов в обмотках вызывает появление в них ЭДС противоположной полярности (указана на рис. 8.3, а в скобках). В этом случае базовая обмотка Nб« создает на базе транзистора Т2 отрицательное напряжение, что приводит к отпиранию этого транзистора и возникновению тока в коллекторной обмотке Мк». При этом ЭДС базовой обмотки Nб» возрастает, что вызывает дальнейшее увеличение коллекторного тока и т. д.

    Транзисторы Т1 и Т2 работают в ключевом режиме, а изме­няющийся магнитный поток в сердечнике трансформатора индуцирует во вторичной обмотке переменную ЭДС, форма которой близка к прямоугольной. Частота тока (в герцах), полученного на выходе трансформатора, определяется по формуле

    где Uc — напряжение сети, В;

    Uэ-к — падение напряжения на участке эмиттер — коллектор, В;

    В — магнитная индукция, Тл;

    s — сечение магнитопровода, см2;

    NK — число витков половины коллекторной обмотки;

    Коб — обмоточный коэффициент.

    В инверторах мощностью свыше 50 Вт применяется схема с независимым возбуждением.

    Инверторы с независимым возбуждением представляют собой сочетание маломощного инвертора с самовозбуждением (генератора) и усилителя мощности (рис. 8.3, б). Эта схема обеспечивает постоянство частоты и формы кривой переменного напряжения, а также уменьшает зависимость выходного напряжения от тока нагрузки инвертора.

    Преобразователь состоит из генератора (транзисторы Т1, Т2 и трансформатор Тр1) и усилителя мощности (транзисторы Т3, Т4 и трансформатор Тр2). Генератор собран по схеме с общим эмиттером, работа которой рассмотрена выше, усилитель мощности— по схеме с общей базой. Выходная обмотка генератора является одновременно входной обмоткой усилителя мощности. Мощность генератора расходуется во входной цепи усилителя и определяется входным сопротивлением последнего.

    Входное сопротивление одного плеча усилителя равно входному сопротивлению транзистора. Полученный от генератора прямоугольный сигнал переменного напряжения усиливается и трансформируется выходным трансформатором Тр2 в цепь нагрузки.

    Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

    Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

    Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

    Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

    Источник