Меню

Генератор маломощной электростанции вырабатывает ток напряжением 500 в

Мощность синхронного генератора (альтернатора)

В самом начале нужно определиться с терминологией. Электрическая энергия вырабатывается классическим синхронным генератором, иначе называемым альтернатором. Он приводится во вращательное движение бензиновым или дизельным двигателем. Генератор и мотор объединяются воедино и представляют собой генераторный агрегат.

Величина мощности, вырабатываемой агрегатом, напрямую определяется двумя составляющими:

  • крутящий момент приводного вала (зависит от мощности мотора);
  • выработка альтернатором нужной силы тока.

Мощность двигателя обусловлена такими техническими параметрами, как объём цилиндров и компрессия. В качестве единицы измерения мощности бензиновых и дизельных моторов обычно используют «лошадиную силу» — 1 л.с. Реже применяют традиционные киловатты — 1 кВт.

Сила тока определяется, главным образом, диаметром (толщиной) провода, из которого наматываются обмотки альтернатора. И, конечно же, на силу тока, а, следовательно, и электрическую мощность влияет магнитный поток — чем он выше, тем мощнее синхронный генератор.

В общем случае процесс роста нагрузки при подключении к генератору потребителей состоит в следующем. Появление в цепи ещё одного потребителя вызывает увеличение силы тока, циркулирующего по обмоткам альтернатора. Чем он выше, тем сильнее магнитное поле сопротивляется вращению вала двигателя. Это приводит к уменьшению количества оборотов, вследствие чего устройство регулировки скорости вращения вала даёт команду на увеличение количества горючего, из-за чего повышается число оборотов и восстанавливается генерация электроэнергии.

Из вышеизложенного становится очевидным, что независимо от конкретной конструкции генераторного агрегата объём потребляемого мотором горючего всегда находится в прямой зависимости от величины нагрузки. Таким образом, для того или иного генераторного агрегата можно довольно точно указать расход горючего на выработку 1 кВт электрической энергии. Эта величина составляет около 285 г. А вот потребление горючего в единицу времени, скажем, 9 л/ч, может определяться лишь при условии постоянной нагрузочной мощности на протяжении всего периода, в данном случае, 1 часа.

Некоторые поставщики генераторных агрегатов говорят о реальной возможности функционирования устройств при перегрузке в 300%. Эти коммерсанты определённо лукавят, не оговаривая одного очень важного момента. Дело в том, что от перегрузки может страдать не только альтернатор. Он, в принципе, может выдержать рост потребляемой мощности до указанной величины — примерно в течение 20 секунд.

Однако такая перегрузка оказывает негативное влияние и на двигатель, поскольку его вал стремится остановить трёхкратно возросшая сила тормозящего магнитного поля. В результате мотор может вовсе остановиться. Это означает, что если альтернатор ещё может выдержать катастрофическое увеличение мощности, то генераторный агрегат в целом — вряд ли. Читая рекламную информацию о защищённости генератора от перегрузок, всегда следует помнить об этом аспекте.

Считаем важным сказать о том, какая мощность обычно указывается в техническом описании генераторного агрегата. Здесь следует отметить, что нагрузка может быть активной и реактивной. Вал двигателя нагружает активная нагрузочная энергия и горючее расходуется, в основном, на неё. Величина тока, протекающего по обмоточным проводам альтернатора, определяется суммой активной и реактивной составляющих нагрузки, которая часто называется полной мощностью.

По этой причине в техническом описании обычно указывается 2 мощности — полная и активная. Полная измеряется в киловольт-амперах (кВА) и является, образно говоря, «пропускной способностью» альтернатора по току. Активная измеряется киловаттами (кВт) и равняется мощности, которую развивает двигатель при вращении вала.

Пример

Мощность генераторного агрегата составляет 100кВт/125кВА. Это означает, что мотор вращает вал с активной мощностью в 100 кВт, и потребители могут «добирать» нужный им объём электроэнергии за счёт реактивной составляющей, но при этом величина полной мощности не может быть более 125 кВА.

Трансформация трехфазного генератора в однофазный

Довольно часто практическое использование маломощного 3-фазного генератора для электропитания большого количества однофазных потребителей связано с неудобствами. Например, при мощности станции в 30 кВт каждая фаза рассчитана соответственно на 10 кВт. Если к какой-либо фазе подключить нагрузку, превышающую этот показатель, то сработает защитная автоматика, и генератор отключится.

Применение однофазных генераторных агрегатов позволяет при включении потребителей не рассчитывать каждый раз их распределение и мощность. 1-фазный генератор можно получить путём несложной трансформации 3-х фазного. Для этого нужно лишь переключить определённым образом обмоточные провода статора и заменить ряд компонентов на отводном электрощите. Нижеследующие рисунки отлично иллюстрируют процесс переделки 3-фазного генератора в 1-фазный. Рассмотрим их подробнее.

Читайте также:  Электродвигатели с управлением постоянным током

В процессе генерации на выходе 3-фазного альтернатора возникает напряжение, снимаемое с 6 сегментов обмоток, которые соединяются взаимно в виде «звезды» (см. рис.).

Прямоугольники — это отдельные обмотки напряжением 110 В. Если соединить их так, как показано на следующем рисунке, то 3-фазный альтернатор станет 1-фазным.

Параллельное соединение обмоток позволяет вдвое увеличить фазный ток. Максимальное значение мощности 3-фазного альтернатора при силе тока на одной обмотке в I А подсчитывается по формуле 3(фазы)×220 В×I А. Наибольшая же мощность 1-фазной модификации будет составлять уже 220 В×2I (А). Следует учитывать, что при трансформации 3-фазного альтернатора в 1-фазный его активная мощность (кВА) ограничивается диаметром обмоточных проводов и составляет 2/3 от суммарной мощности по паспорту устройства до переделки. При этом трансформация электрической части генераторного агрегата не влияет на мощность его механического узла — двигателя. Она остаётся неизменной.

Пример

3-фазный генератор мощностью 20 кВА/16 кВт трансформирован в 1-фазный. Это привело к следующим изменениям. 20 кВА уменьшились до 13,3 кВА (20 к ВА×2/3=13,3 кВА). И независимо от того, что мотор может развить механическую мощность в 16 кВт, что обеспечит выработку 20 кВА, обмотки альтернатора не смогут выдержать свыше 13,3 кВА. По этой причине в переделанных модификациях 1-фазных электростанций альтернатор должен ограничивать мощность. В заводских генераторных агрегатах, 1-фазных изначально, используются более мощные альтернаторы. Именно это является причиной повышенной цены.

JCB Dieselmax 444

Источник: Компания «Техэкспо»

Источник

8 простых шагов для осознанной покупки бензогенератора: распечатай и запомни

Чем холоднее на улице, тем больше ценишь блага цивилизации. Освещение, горячая вода, отопление — вся инженерка в загородном доме зависит от электричества. Если его выключили или на линии случилась авария, а снаружи мороз — беда. В этой ситуации сделаешь всё, чтобы не замерзнуть, и не сидеть в темноте. В форс-мажорной ситуации, одним из вариантов спасения дома и его жильцов, становится электрический генератор. Расскажем, как его выбрать.

  • Как выбрать электрический генератор
  • Как рассчитать предполагаемую нагрузку на генератор
  • Как рассчитать мощность генератора
  • Таблица, для расчета мощности генератора по пиковой нагрузке
  • Плюсы и минусы бензиновых и дизельных генераторов
  • Какой генератор купить — одно- или трёхфазный
  • Как сократить затраты на покупку генератора

Базовые принципы подбора генератора

Если вы забьёте в поисковике словосочетание «купить генератор или электростанцию», то интернет выдаст десятки моделей с разной стоимостью, мощностью и «наворотами». Глаза разбегается. Как выбрать, оптимальную модель бензогенератора и не переплатить? Воспользуйтесь простым алгоритмом от FORUMHOUSE и разбейте процесс подбора на шаги:

  1. Подумайте, для каких целей вам нужен бензогенератор?
  • Для резервного электроснабжения основных потребителей в загородном доме при временном отключении электричества.
  • Для длительной и постоянной работы и электроснабжения мощных потребителей.
  • Для редких поездок на дачу или на природу — рыбалку, охоту и т.д.

  1. Определите вашу основную группу потребителей электричества.

Например, зимой у вас в доме отключили свет. Вам нужно запитать:

  • освещение;
  • телевизор и ноутбук;
  • холодильник;
  • газовый котёл;
  • циркуляционный насос;
  • скважинный насос или насосную станцию.

Второй вариант, вам нужно строить дом. Электричества на участке нет, или, его часто и надолго отключают. В этом случае, ваша приоритетная группа потребителей:

  • Электрические инструменты — дрель, болгарка, перфоратор, циркулярная пила и т.д.;
  • Бетономешалка.
  • Сварочный инвертор.
  • Погружной или дренажный насос.
  • Мощные прожекторы освещения.

Третий вариант — вы редко выбираетесь на дачу или едете за город на пикник. Ваша группа потребителей:

  • Несколько осветительных приборов.
  • Ноутбук, телевизор.
  • Зарядники для мобильных устройств.
  • Небольшой переносной холодильник.
  • Маломощный насос.

  1. Определив необходимый список устройств для резервного электроснабжения, выпишите на листок бумаги их потребляемую мощность.

Мощность потребителя указывают на табличке на корпусе, где написаны его технические характеристики, или в инструкции по эксплуатации.

Допустим, после подсчёта, у вас получилось, что общая потребляемая мощность всех необходимых вам приборов не превышает 2.3 кВт. Вы открываете список генераторов в интернет-магазине. Смотрите технические описания моделей. Видите, что есть подходящая вам по цене электростанция. Производитель указал, что:

  • Номинальная мощность оборудования – 2 кВт.
  • Максимальная мощность оборудования – 2.5 кВт.
Читайте также:  Сила тока у литий ионных аккумуляторов

Вы думаете, что этого генератора вам хватит «за глаза». Не спешите делать выводы. Надо учесть важные моменты.

  1. Как рассчитать необходимую вам мощность генератора?

Чтобы разобраться в этом вопросе, запомните, что:

  • При номинальной мощности генератор может работать продолжительное время, т.к. он эксплуатируется в оптимальном режиме, предусмотренном производителем.
  • На максимальной мощности, в зависимости от модели и её характеристик, генератор может работать лишь непродолжительное время, после чего уйдёт в защиту из-за перегрузки.

Так, значит генератор, номинальной мощностью 2 кВт не подходит. Так какой купить? Вам нужно рассчитать мощность оборудования, в зависимости от предполагаемой нагрузки, и добавить к ней резерв. Делается это так:

  • Вы уже записали совокупную мощность приборов, которые вы хотите запитать от генератора.

К этой мощности прибавьте запас + 10 — 20%.

Также надо учесть коэффициент пускового тока. Почему это так важно? При старте некоторых видов электрического оборудования — скважинного насоса, бетономешалки, холодильника, они потребляет большую мощность, чем указано на корпусе или в инструкции. Сравнительные данные приведены в таблице.

Допустим, что номинальная и пусковая мощность лампы накаливания 80 Вт, коэффициент пускового тока 1. А вот пусковая мощность киловаттного погружного насоса и бетономешалки уже 5 и 3.5 кВт, т.к. коэффициент 5 и 3.5. Т.е., генератор без запаса по мощности, просто не потянет оборудование на старте.

  1. Пример расчёта мощности электрической станции

Предположим, что вы хотите подключить к генератору:

  • Лампу накаливания — 100 Вт х 1 (коэффициент пускового тока) = 100 Вт.
  • Холодильник — 700 Вт х 3.5 (коэффициент пускового тока) = 2450 Вт.
  • Насосную станцию — 800 Вт х 5 (коэффициент пускового тока) = 4000 Вт.
  • Телевизор – 300 Вт х 1 (коэффициент пускового тока) = 300 Вт

Итого: 100 + 2450 + 4000 + 300 = 6850 Вт + 10% (запас мощности), т.е. — 6850 х 1.1 = 7535 Вт.

Выводы

В завершении статьи приведём ответы на самые частые вопросы, которые помогут вам сориентироваться при выборе генератора.

  1. Какой генератор купить? Бензиновый или дизельный?

Каждый тип оборудования имеет как плюсы, так и минусы. Для ориентира:

Если вам нужен генератор как резерв, на случай редких отключений электричества и мощностью не более 10 кВт, то оптимальный выбор – бензиновая электростанция.

Основные плюсы бензогенератора:

  • Стоит дешевле, чем дизельный.
  • Лучше заводится на морозе.
  • Проще в обслуживании и ремонте.

Плюсы дизельной электростанции:

  • Меньший расход топлива, чем у бензогенератора.
  • Больший, чем у бензогенератора, ресурс двигателя.

Минусов у дизеля тоже хватает:

  • Больший вес, чем у генератора с бензиновым двигателем.
  • Затруднён пуск на морозе, поэтому дизель лучше ставить в специально оборудованном и обогреваемом помещении.

  1. Какой генератор выбрать: однофазный и трёхфазный?

Если при исчезновении электроэнергии вам нужно запитать трёхфазный потребитель, то трёхфазник — ваш вариант. Большинству же загородных жителей, требуется подключить в доме только стандартное однофазное оборудование на 220В, поэтому нет смысла переплачивать за 380В.

  1. Я рассчитал необходимую мощность генератора. Получилось, что мне нужна слишком дорогая электростанция. Я не хочу тратить на бензогенератор много денег. Что делать?

Можно уменьшить количество подключаемых потребителей, оставив лишь необходимый минимум, или немного «схитрить». Например, не включать сразу холодильник и погружной насос, а, при отключении света, пользоваться техникой по очереди. Включили насосную станцию (холодильник выключен), набрали воды, выключили её. После этого включили холодильник и т.д., алгоритм понятен. С электроинструментом ещё проще. Навряд ли вы будете одновременно пользоваться бетономешалкой, болгаркой, сваркой и перфоратором. Работайте сначала одним инструментом, а потом другим.

У нас есть тема, из которой вы узнаете Какой генератор выбрать и купить.

Рекомендуем по-настоящему «горячие» зимние статьи:

  • Резервное отопление загородного дома газовым конвектором: преимущества резервного отопления газовыми конвекторами, как самостоятельно установить газовый конвектор, как рассчитать расход газа в время непрерывной работы конвектора.
  • Автономный дом: базовые принципы строительства: что такое автономный дом, какие инженерные решения чаще всего применяются в автономном доме.
  • Система резервного питания в загородном доме: пошагово, фото схемы, варианты подключения аккумуляторов, ИБП и инверторов.

В видео — Сборка электрического щитка в загородном доме: ввод электричества в дом, подключение бензогенератора и потребителей.

Читайте также:  Номинальный ток потребляемый светодиодами

Источник



Номинальное напряжение генератора крупных электростанций

Номинальное напряжение генератора крупных электростанций чаще всего бывает 6,3—24 кВ (исключением является 36, 75 кВ у синхронного генератора ТВМ-500).

Номинальный ток статора определяют из выражения:

Номинальный коэффициент мощности обычно равен 0,8—0,9.

Коэффициент полезного действия генераторов при номинальной нагрузке и номинальном коэффициенте мощности колеблется в пределах 0,9—0,95.

С уменьшением нагрузки и коэффициента мощности КПД генератора уменьшается.

На гидроэлектростанциях частота вращения гидротурбин обычно лежит в пределах 50—750 об/мин и определяется в основном величиной гидравлического напора, мощностью и конструкцией гидротурбины.

На крупных отечественных гидроэлектростанциях установлены, главным образом, агрегаты с частотой вращения 62,5—125 об/мин. Гидроагрегаты на такие частоты вращения имеют большее число полюсов, Так, при частоте вращения 62,5 об/мин и частоте тока 50 Гц ротор гидрогенератора имеет:

р = 50*60/62,5 = 48 пар полюсов.

Вследствие большого числа полюсов и сравнительно небольшой частоты вращения роторы генераторов выполняют с явно выраженными полюсами.

Гидрогенераторы выпускаются мощностью 8—640 МВт с номинальным напряжением 3,15—21 кВ.

Возбуждение синхронных генераторов

Для питания обмотки ротора используется машинное или вентильное возбуждение.

Мощность источника возбуждения составляет 0,3—1 % мощности синхронного генератора, напряжение возбуждения 115— 630 В. Системы возбуждения со статическими преобразователями в настоящее время являются основными для крупных синхронных машин.

Системы охлаждения

Нагрев генераторов есть следствие потерь энергии в обмотках статора и ротора, следствие потерь в стали статора, механических потерь (потерь на трение и вентиляцию). Для отвода тепла используются различные системы охлаждения.

При косвенном охлаждении в качестве охлаждающего вещества используются воздух или водород. Простейшим случаем такого охлаждения является проточное воздушное охлаждение, при котором холодный воздух проходит через генератор, поглощает выделяющееся там тепло и затем выбрасывается наружу.

При непосредственном охлаждении охлаждающее вещество (водород, вода, масло) проходит непосредственно по обмоткам, что является наиболее эффективным способом охлаждения турбогенераторов.

Генераторы имеют относительно большие геометрические размеры. Для них чаще применяется косвенная система воздушного охлаждения (есть машины с самовентиляцией и с независимым охлаждением).

«Электроснабжение строительно-монтажных работ», Г.Н. Глушков

Источник

Номинальное напряжение генератора крупных электростанций

Номинальное напряжение генератора крупных электростанций чаще всего бывает 6,3—24 кВ (исключением является 36, 75 кВ у синхронного генератора ТВМ-500).

Номинальный ток статора определяют из выражения:

Номинальный коэффициент мощности обычно равен 0,8—0,9.

Коэффициент полезного действия генераторов при номинальной нагрузке и номинальном коэффициенте мощности колеблется в пределах 0,9—0,95.

С уменьшением нагрузки и коэффициента мощности КПД генератора уменьшается.

На гидроэлектростанциях частота вращения гидротурбин обычно лежит в пределах 50—750 об/мин и определяется в основном величиной гидравлического напора, мощностью и конструкцией гидротурбины.

На крупных отечественных гидроэлектростанциях установлены, главным образом, агрегаты с частотой вращения 62,5—125 об/мин. Гидроагрегаты на такие частоты вращения имеют большее число полюсов, Так, при частоте вращения 62,5 об/мин и частоте тока 50 Гц ротор гидрогенератора имеет:

р = 50*60/62,5 = 48 пар полюсов.

Вследствие большого числа полюсов и сравнительно небольшой частоты вращения роторы генераторов выполняют с явно выраженными полюсами.

Гидрогенераторы выпускаются мощностью 8—640 МВт с номинальным напряжением 3,15—21 кВ.

Возбуждение синхронных генераторов

Для питания обмотки ротора используется машинное или вентильное возбуждение.

Мощность источника возбуждения составляет 0,3—1 % мощности синхронного генератора, напряжение возбуждения 115— 630 В. Системы возбуждения со статическими преобразователями в настоящее время являются основными для крупных синхронных машин.

Системы охлаждения

Нагрев генераторов есть следствие потерь энергии в обмотках статора и ротора, следствие потерь в стали статора, механических потерь (потерь на трение и вентиляцию). Для отвода тепла используются различные системы охлаждения.

При косвенном охлаждении в качестве охлаждающего вещества используются воздух или водород. Простейшим случаем такого охлаждения является проточное воздушное охлаждение, при котором холодный воздух проходит через генератор, поглощает выделяющееся там тепло и затем выбрасывается наружу.

При непосредственном охлаждении охлаждающее вещество (водород, вода, масло) проходит непосредственно по обмоткам, что является наиболее эффективным способом охлаждения турбогенераторов.

Генераторы имеют относительно большие геометрические размеры. Для них чаще применяется косвенная система воздушного охлаждения (есть машины с самовентиляцией и с независимым охлаждением).

«Электроснабжение строительно-монтажных работ», Г.Н. Глушков

Источник