Меню

Импульсный преобразователь напряжения повышающего типа

Как работает преобразователь напряжения

Время на чтение:

Электронная аппаратура, ее составные части требуют для питания элементов напряжение различной величины. До недавнего времени, а в некоторых случаях и сегодня, для получения нужного значения используют трансформаторы. Такой способ весьма прост, но обладает существенными недостатками: невозможность преобразования постоянного напряжения; большие габариты и вес трансформатора; необходимость использования дополнительных выпрямителей и стабилизаторов (в том числе с регулировкой) для каждого из значений напряжения вторичных обмоток; высокий уровень электромагнитных помех; низкий КПД. Большая часть перечисленных недостатков устранена в импульсных преобразователях.

Что такое импульсный преобразователь напряжения

Название конструкции произошло от принципа работы устройства. Выделяют такие основные особенности:

  • формирование высокочастотных импульсов;
  • преобразование амплитуды импульсов при помощи высокочастотного трансформатора;
  • выпрямление полученного напряжения.

У трансформатора много недостатков

Некоторые конструкции вместо трансформатора используют свойство емкости или индуктивности накапливать энергию. Разработаны микросхемы импульсных преобразователей (инверторов) напряжения, которые требуют для работы минимального количества дополнительных элементов. Это позволяет создавать конструкции с малым весом и габаритами.

Инверторный преобразователь

Обратите внимание! Даже преобразователи, использующие импульсный трансформатор, имеют намного меньшие размеры, чем классический трансформатор. Это связано с тем, что преобразование производится на высокой частоте.

Импульсное преобразование позволяет как повышать, так и понижать постоянное напряжение и легко производить его регулировку.

Технические характеристики прибора

Технические характеристики инверторов по большей части совпадают с таковыми у классических источников питания. Но есть и отличия. Импульсный преобразователь может работать при более широком диапазоне входного напряжения, имеет меньшие массу и габариты, более высокий КПД. Устройства отличаются высоким уровнем высокочастотных помех, но их легко снизить при использовании фильтров. Благодаря высокой частоте габариты фильтра невелики.

Обратите внимание! Инвертор имеет отрицательную величину входного сопротивления. На практике это выражается в том, что при увеличении напряжения питающей сети происходит снижение тока потребления.

Принцип работы

Принцип работы импульсного понижающего или повышающего преобразователя напряжения лучше рассмотреть на обобщенной блочной схеме. В основе схемы лежат:

  • выпрямитель;
  • входной фильтр;
  • генератор импульсов;
  • схема управления;
  • выходной выпрямитель;
  • выходной стабилизатор;
  • фильтр.

К сведению! Входное сетевое напряжение поступает на вход выпрямителя, а затем на фильтр, в результате чего получается постоянный ток, который служит для питания схемы устройства и для дальнейшей работы преобразователя.

Генератор формирует последовательность высокочастотных импульсов, а схема управления регулирует частоту или ширину импульсов. Данная регулировка позволяет изменять выходное напряжение в широких пределах, а также осуществлять его стабилизацию. Изменение тока нагрузки приводит к уменьшению напряжения.

Схема управления на основе измеренных данных дает команду на увеличение ширины импульсов, что приводит к увеличению напряжения. При уменьшении тока нагрузки происходят аналогичные изменения (импульс имеет меньшую длительность). Таким образом выполняется стабилизация.

Важно! Использование обратной связи гарантирует стабильность параметров не только при изменении нагрузки, но и в полном диапазоне входного напряжения.

Назначение преобразователя

Импульсные преобразователи используются для питания устройств различного назначения. Основная сфера применения — малогабаритные устройства, мощные стабилизаторы. Всем известны зарядные устройства с габаритами, сравнимыми с сетевой вилкой для мобильных устройств, а также инверторные сварочные аппараты, которые имеют в несколько раз пониженный, чем у трансформаторных устройств, вес и имеющие более высокие потребительские свойства.

Сварочный трансформатор

Обратите внимание! Использование инверторных преобразователей позволяет повысить экономичность устройств и снизить энергопротребление.

Как правильно и где использовать прибор

Применение импульсных устройств требует соблюдения некоторых условий:

  • экранировка корпуса прибора, чтобы понизить уровень излучаемых помех;
  • установка фильтров на входе устройства для предотвращения передачи помех через питающую сеть;
  • обеспечение циркуляции воздуха для эффективного охлаждения силовых элементов схемы.

Максимально допустимую нагрузку к источнику питания допускается подключать только при высоком значении входного напряжения. Это связано с тем, что при его снижении для обеспечения номинальных выходных значений полупроводниковые ключи генератора инвертора большую часть времени находятся в открытом состоянии. Это может вызвать их перегрев и выход из строя.

Важно! Большинство схем импульсных преобразователей напряжения построено таким образом, что часть элементов находится под потенциалом сети, что может вызвать удар электрическим током. Использовать такие преобразователи можно только при условии надежного заземления конструкции.

Микросхемы импульсных преобразователей

Для многих стандартных областей применения разработаны интегральные микросхемы стабилизаторов. Использование микросхем позволяет создавать конструкции, содержащие минимальное количество элементов и не требующие настройки. В случае питания небольшой нагрузки не требуется даже использование мощных ключевых элементов. Это позволяет создавать малогабаритные и надежные источники питания. В качестве примера зарядные устройства для мобильных телефонов.

Преобразователь на ИМС

Интегральные микросхемы в преобразователях могут выполнять различные функции, поэтому они делятся по функциональному назначению:

  • широтно-импульсные преобразователи;
  • триггеры Шмидта;
  • стабилизаторы напряжения.

Выпускается большой ассортимент ИМС, совмещающих в себе все перечисленные функции. Одна и та же микросхема может выпускаться различными производителями под своим наименованием.

Обратите внимание! Проектирование и конструирование импульсных преобразователей напряжения облегчается наличием большого количества типовых схем, которые опробованы в работе, отличаются простотой и надежностью.

Что касается ремонта устройства, то во многих случаях это выполнять нецелесообразно, поскольку затраты по времени и трудоемкость работ не сопоставимы с низкой стоимостью элементов и готовой конструкции.

Таким образом, преобразователь — это важное устройство как в быту, так и в промышленности. Благодаря ему обеспечивается слаженная работа электрооборудования и сетей. Но в его использовании важно учесть условия и правила.

Источник

Схемы повышающих импульсных преобразователей напряжения DC-DC.
Бестрансформаторные преобразователи с диодно-конденсаторными умножителями,
импульсные повышающие преобразователи с индуктивными накопителями энергии.

Казалось бы, всё просто как бублик: слепили из простых и доступных ингредиентов генератор, присовокупили к нему повышающий трансформатор, мостик, всякие там дела. Вот, собственно, и всё — дело сделано, сказка сказана, можно закрывать тему.

— Но мы же не можем прямо тут. У нас же есть какие-то морально-этические принципы.
— Так сегодня ж понедельник!
— Понедельник, конечно, но не до такой же степени. Поэтому говорить будем много, нудно и обстоя- тельно.

А обсудим мы на этой странице повышающие преобразователи напряжения, не омрачённые такими редко любимыми в радиолюбительских кругах моточными изделиями, как силовые (или импульсные) трансформаторы.

Начнём с устройств, выполненных на цепях диодно-конденсаторных умножителей напряжения.


Рис.1

Простой преобразователь напряжения на одной К561ЛН2-микросхеме с минимальным числом навесных элементов можно собрать по схеме, приведённой на Рис.1. Преобразователь содержит задающий генератор, реализованный на первых двух инверторах КМОП микросхемы DD1, и буферного выходного каскада, предназначенного для увеличения выходного тока преобразователя и выполненного на включённых параллельно оставшихся элементов ИМС.
Диоды VD1, VD2, а так же конденсаторы С2, С3 образуют цепь удвоения напряжения.
При указанных на схеме номиналах элементов — генератор импульсов, работает на частоте 10 кГц. При напряжении питания 10В — выходное напряжение составляет 17В при токе нагрузки 5мА, 16В при токе 10мА, 14,5В при токе 15мА.
Значение КПД и величину выходного напряжения преобразователя можно увеличить за счёт использования в выпрямителе-умножителе напряжения германиевых диодов, либо диодов Шоттки.
А для получения отрицательного выходного напряжения — элементы удвоителя напряжения следует включить в соответствии с правой частью рисунка Рис.1.

Для увеличения мощности повышающих преобразователей между генератором и умножителем вводятся дополнительные биполярные или полевые транзисторы с максимальным допустимым током, превышающим ток нагрузки.

Устройство, представленное на Рис.2, образуют задающий генератор, собранный на логических элементах DD1.1 и DD1.2, буферные ступени DD1.3, DD1.4, усилители тока VT1, VT2 и выпрямитель-удвоитель напряжения на диодах VD1, VD2 и конденсаторах С2, СЗ.
При питании преобразователя от источника постоянного тока напряжением 12 В его выходное напряжение при токе нагрузки 30 мА будет около 22 В (напряжение пульсаций — 18 мВ).
При токе нагрузки 100 мА выходное напряжение уменьшается до 21 В, а при 250 мА — до 19,5 В.
Без нагрузки преобразователь потребляет от источника питания ток не более 2 мА.
Транзисторы VT1 и VT2 преобразователя могут быть любыми из указанных на схеме серий, а также ГТ402В или ГТ402Г, ГТ404В или ГТ404Г. С германиевыми транзисторами выходное напряжение преобразователя будет больше примерно на 1 В.

Для получения больших выходных напряжений применяются схемы преобразователей напряжения с многокаскадными умножителями.


Рис.3

На Рис.3 приведена схема экономичного преобразователя напряжения для питания варикапов, опубликованная в журнале Радио №10, 1984, И. Нечаевым.
«Преобразователь не содержит намоточных деталей, экономичен и прост в налаживании. Устройство состоит из генератора прямоугольных импульсов на микросхеме DD1, умножителя напряжения на диодах VD1-VD6 и конденсаторах СЗ-С8, параметрического стабилизатора напряжения на транзисторах VT1-VT3.
В качестве стабилитронов используются эмиттерные переходы транзисторов. Режим стабилизации наступает при токе 5. 10мкА.
Помимо указанных на схеме, в преобразователе можно использовать микросхемы К176ЛЕ5 и К176ЛА9, транзисторы КТ315, КТ316 с любым буквенным индексом, диоды Д9А, Д9В, Д9Ж. Конденсаторы С1-С7 — КЛС или KM, C8 — К50-6 или К50-3, резисторы МЛТ или ВС.
Налаживание преобразователя сводится к подбору транзисторов VT1 — VT3 с требуемым напряжением стабилизации.
При изменении напряжения питания приёмника от 6,5 до 9В потребляемый преобразователем ток увеличивается с 0,8 до 2,2мА, а выходное напряжение — не более чем на 8. 10мВ.
При необходимости выходное напряжение преобразователя можно повысить, увеличив число звеньев умножителя напряжения и число транзисторов в стабилизаторе».

В последнее время для преобразования напряжения всё чаще применяют импульсные преобразователи с использованием индуктивных накопителей энергии. Такие преобразователи отличаются высоким КПД и обладают возможностью получения повышенного, пониженного или инвертированного выходного напряжения.
Как это работает?


Рис.4

На рисунке Рис.4 (слева) изображён импульсный повышающий преобразователь напряжения, способный повышать выходное напряжение от напряжения источника питания до величины в десятки раз превышающей его.

При замыкании ключа, выполненного на транзисторе Т, через цепь: источник питания — индуктивность — замкнутый ключ начинает протекать ток. При этом, в связи с явлением самоиндукции, ток через индуктивность не может измениться моментально, так как в это время идёт постепенный запас энергии (ЭДС) в магнитном поле катушки.

При размыкании ключа — ток начинает течь по другому контуру: источник питания-индуктивность-диод-нагрузка. Поскольку источник питания и катушка в этой цепи соединены последовательно, то их ЭДС складываются. Таким образом происходит повышение напряжения.

Величина выходного напряжения подобных преобразователей малопредсказуема и зависит от нескольких факторов: сопротивления нагрузки, добротности катушки, и энергии, которая успела запастись в ней за время замыкания ключа. Именно поэтому напряжение в цепи без нагрузки может достигать значительных величин, порой приводящих к пробою ключевого транзистора.

Так как же регулировать напряжение на выходе таких преобразователей?
Очень просто — запасать в дросселе ровно столько энергии, сколько необходимо для того, чтобы создать необходимое напряжение на нагрузке. Производится это посредством регулировки длительности импульсов открывающих транзистор (временем в течении которого открыт транзистор).

Уровень выходного напряжения преобразователя описывается формулой Uвых = K×Uвх/(1-D), где
D — это величина, обратная скважности, и равная отношению периода времени, когда ключ открыт, к общему периоду импульсного сигнала, управляющего ключевым транзистором, а
К — коэффициент, прямо пропорциональный сопротивлению нагрузки и обратно пропорциональный сопротивлению открытого ключа, а также сопротивлению потерь катушки индуктивности.
У данного типа преобразователей полярность выходного напряжения, совпадает с полярностью входного.

На рисунке Рис.4 (справа) приведена упрощённая схема инвертирующего преобразователя напряжения, имеющего полезное свойство — работать как в режиме понижения напряжения, так и в режиме повышения.
Полярность его выходного напряжения противоположна полярности входного.

Так же как и в предыдущем случае, во время замыкания ключа Т происходит процесс накопления энергии катушкой индуктивности. Диод Д препятствует попаданию напряжению от источника питания в нагрузку.
Когда ключ закрывается, энергия индуктивности начинает перетекать в нагрузку. При этом ЭДС самоиндукции, направлена таким образом, что на концах катушки формируется полярность, противоположная первичному источнику питания. Т. е. на верхнем конце обмотки катушки формируется отрицательный потенциал, на противоположном конце — положительный.

Уровень выходного напряжения равен: Uвых = K×Uвх×D/(1-D).

С теорией завязываем, резко переходим к схемам электрическим принципиальным повышающих преобразователей напряжения с индуктивными накопителями на борту.


Рис.5

На Рис.5 приведена очень простая и красивая схема преобразователя напряжения 1,5 в 15 вольт, содержащая всего 2 транзистора, выполняющих как функцию генератора сигнала, управляющего ключевым транзистором, так и самого ключевого транзистора.
Вот что пишет автор конструкции, приведённой в зарубежном издании.

«В качестве источника используется элемент питания напряжением 1,5 В, а на выходе схемы получается напряжение 15 В. Схема ещё хороша тем, что очень проста для повторения и не имеет дефицитных деталей.
Рассмотрим принцип работы. Итак, при замыкании тумблера SA1 на резисторе R1 возникает падение напряжения. Как следствие, через базу транзистора VT1 потечёт ток и оба транзистора (VT1, VT2) будут находится в открытом состоянии. В начальный момент времени, на коллекторе VT2 будет практически нулевое напряжение и через него и катушку L1 потечет нарастающий ток. Этот ток будет непрерывно увеличиваться пока транзистор VT2 не перейдет в режим насыщения. Следствием это будет увеличение напряжения на коллекторе транзистора VT2, что неизменно приведет к возрастанию напряжения на резисторе R2. В результате, транзистор VT1 закроется, после чего закроется и второй транзистор VT2.
После того, как ток прекратит движение через катушку L1, на коллекторе транзистора VT2 образуется большое положительного напряжения, которое двигаясь через диод Шоттки VD1, будет заряжать конденсатор C1. Стабилитрон VD2 в схеме преобразователя напряжения играет роль ограничителя зарядного напряжения на конденсаторе C1 и поддерживает его на уровне 15 В.
После того, как магнитное поле катушки L1 исчезает, напряжение на транзистора VT2 падает до уровня источника питания, т. е. до 1,5 Вольт. После чего оба транзистора переходят в открытое состояние, а через катушку L1 снова потечет нарастающий ток.
Частота работы устройства около 10 кГц. При исправных деталях и правильном монтаже, простой преобразователь напряжения начинает работать сразу. Допускается замена деталей очень близких по характеристикам».

Много разнообразных преобразователей напряжения реализуется на базе интегрального таймера NE555.


Рис.6

Схема одного из вариантов такого преобразователя приведена на Рис.6. Для получения высоковольтных импульсов он использует накопительный дроссель.
«На таймере DA1 собран генератор импульсов с частотой повторения около 40 кГц (она определяется сопротивлением резисторов R1, R2 и емкостью конденсатора С1). Эти импульсы поступают на транзистор VT1, работающий в режиме переключения. Когда он открыт, в катушке индуктивности L1 накапливается энергия за счет протекающего через VTI тока. Когда транзистор закрывается, на катушке L1 возникает импульс напряжения, амплитуда которого в несколько раз превышает напряжение питания (в авторской конструкции она была около 80 В). Эти импульсы напряжения выпрямляются диодом VD1, а выпрямленное напряжение фильтруется, а затем стабилизируется стабилитроном VD2.
Транзистор VT1 желательно подобрать из числа предназначенных для использования в переключающих схемах. Он, в частности, должен иметь высокое допустимое напряжение коллектор-эмиттер (не ниже 100 В). Высокое обратное допустимое напряжение должен иметь и диод VD1.
Стабилитрон VD2 — малой мощности на требуемое выходное напряжение (в авторской конструкции — на 30 В). Таймер DA1 имеет аналог отечественного производства — КР1006ВИ1. Подробной информации о катушке индуктивности в первоисточнике нет. Отмечается лишь, что она выполнена на незамкнутом броневом магнитопроводе из материала с высокой начальной магнитной проницаемостью медным проводом диаметром 0,1 мм.
При налаживании конструкции может возникнуть необходимость подобрать резистор R3 по наибольшему выпрямленному напряжению».


Рис.7

«Ещё одна схема очень простого преобразователя постоянного напряжения с минимумом элементов, обеспечивающего несколько миллиампер тока напряжением 400. 425В при потребляемом токе 80. 90 мА от источника 9 В, приведена на Рис.7.
На таймере NE555 выполнен мультивибратор на частоту 14 кГц. КПД устройства сильно зависит от добротности катушки индуктивностью 1 мГн.
Дроссель имеет индуктивность 1000мкГн. Толщина провода не столь важна, поскольку выходной ток схемы ничтожный. Такое устройство может быть пригодно для тех приборов, где нужно получить повышенное напряжение, но размеры ограничены».

Достаточно часто приходится видеть устройства преобразователей на NE555 со встроенной схемой стабилизации выходного напряжения. Однако, кто интересуется, тот знает, что импульсные преобразователи со стабилизацией гораздо лучше работают на недорогих микросхемах серии UC384x, которые представляют из себя широтно-импульсные контроллеры и специально спроектированы для работы в преобразователях постоянного напряжения. Схема такого устройства приведена на Рис.8.


Рис.8

L1 намотана на кольце из порошкового железа d=24мм и содержит 24 витка провода диаметром 1мм. Выходная частота работы микросхемы при указанных номиналах элементов работы — 75-80 кГц.

Устройство было изготовлено и довольно подробно протестировано в сравнении с аналогичным преобразователем на микросхеме NE555 уважаемым Александром Сорокиным на странице форума https://www.drive2.ru/c/470856784697885156/.
Вот что пишет автор:

«Стабилизация выходного напряжения на микросхеме UC3845 работает прекрасно во всем диапазоне нагрузок. Напряжение холостого хода в пределах нормы (19.2 вольта для ноутбука), при 10Вт на выходе напряжение 18,94в, при 85Вт 18,8в т.е. просадка всего 0,1в и это прекрасно».

Ну и конечно не следует обходить вниманием специализированные микросхемы, представляющие собой практически готовые повышающие DC-DC преобразователи. Примером такой ИМС является TL499A (Рис.9).


Рис.9

С помощью этого импульсного источника питания можно получить напряжение от 1,5 до 15V при выходном токе до 50мА, для питания портативной аппаратуры от источника напряжением ЗV (два элемента «АА» или один литиевый элемент).
В основе схемы DC/DC конвертор на микросхеме TL499A. У микросхемы есть два входа, в данном случае используется только один — вывод 3, для подачи входного напряжения с целью его повышения.
Кстати, это напряжение не обязательно должно быть ЗV, может быть и 5V, а может быть и 1,5V (при работе от одного гальванического элемента), потому что минимальное входное напряжение микросхемы 1,1V, а максимальное 10V. При этом выходное напряжение поддерживается стабильным.
Установка и стабилизация выходного напряжения происходит при помощи компаратора (вывод 2), наблюдающего за выходным напряжением, которое поступает на него через делитель на резисторах R2 и R3. Подстроечным резистором R2 выставляется уровень выходного напряжения в диапазоне от 1,5 до 15V.

Источник



Преобразователи напряжения импульсные

Для преобразования электроэнергии, а точнее сказать, напряжения, можно использовать различные устройства, такие как трансформаторы, генераторы, зарядные устройства. Все они являются преобразователями электрической энергии. Так как для питания многих современных устройств нужно не только переменное, но и постоянное напряжение, то для этих целей не всегда есть возможность применять такой источник энергии, как аккумуляторная батарея. Именно она выдаёт идеальное постоянное напряжение путём химической реакции. Раньше для преобразования и понижения напряжения применялись только низкочастотные трансформаторы, работающие в паре с выпрямителем и сглаживающим фильтром. Однако они обладали очень большими габаритами. С ростом и развитием инновационных технологий в быту и на производстве стали появляться электронные устройства, требующие миниатюрных преобразовательных устройств. Так и появились импульсные преобразователи постоянного напряжения. Миниатюрность их требуется больше для переносных мобильных устройств, нежели для стационарных.

Все импульсные преобразователи можно разделить на следующие группы:

  1. Повышающие, понижающие, инвертирующие;
  2. Со стабилизацией и без неё;
  3. С гальванической развязкой и без неё;
  4. Регулируемые и нерегулируемые;
  5. Обладающие различным диапазоном входного и выходного напряжения.

Однако импульсные преобразователи собраны на более сложных схемах, нежели их предшественники классические понижающие выпрямители.

Принцип действия

ИПН 24-12

Классические преобразователи с регулировкой выходного напряжения, как правило, управляют сопротивлением элемента, выполняющего регулировочную роль (транзистор или тиристор), через него постоянно протекает электрический ток, который и заставляет данный элемент нагреваться, при этом теряется значительная часть мощности. Главное преимущество такого устройства это минимум запчастей, простота, и отсутствие помех. Все остальные характеристики больше относятся к недостаткам.

Импульсный преобразователь напряжения использует регулировочный элемент лишь в виде ключа. То есть он работает в двух режимах:

  • Закрыт, и не пропускает электрический ток;
  • Открыт, и имеет минимальное проходное сопротивление.

При этом каждый из режимов обладает низким выделением тепла, что даёт возможность показывать высокий коэффициент полезного действия (КПД). Нагрузка же получает непрерывно электроэнергию за счёт накопления и хранения её в таких электрических резервуарах, как:

  1. Индуктивность (катушках);
  2. Конденсаторах.

Регулировка происходит за счёт изменения времени замкнутого состояния ключевого элемента. Снижение габаритов, а также массы устройств, возможно только за счёт повышения частоты, от 20 кГц до 1 МГц. Импульсные устройства могут формировать на выходе как пониженное напряжение, так и с изменением полярности. За счёт применения в них трансформаторов, работающих на высоких частотах позволяет:

  1. Качественно изолировать вход от выхода;
  2. Получить на выходе устройства несколько выходных напряжений.

Как и любое устройство импульсный преобразователь обладает и недостатками, которыми являются:

  1. Сложность схемы и наличие большего количества запчастей, а значит потенциально существует больше причин поломки;
  2. Являются источниками помех.

Однако постоянное развитие технологий в этом направлении снижают эти недостатки к минимальным значениям.

Классификация и виды импульсных преобразователей

Выпускаемые преобразователи можно разделить на три основные группы по роду тока:

  1. Конверторы. Выполняют преобразование переменного напряжения (АС) в постоянное (DC). Они применяются в основном в промышленности и в быту для изолированного питания устройств потребителей, где используется переменное напряжение 380/220 Вольт с частотой 50 Гц;
  2. Инверторы. Они постоянное напряжение преобразуют в переменное. Применяются в устройствах бесперебойного питания, а также сварочных аппаратах где за счёт такого преобразования есть возможность уменьшения габаритов, а значит и веса устройств.
  3. Конверторы постоянного напряжения. Преобразуют DC в DC. Применяются для питания аккумуляторных батарей и их подзарядки в системах где питание происходит от одного конвертора AC/DC, а каждый уже непосредственный аккумулятор получает за счёт конвертора DC/DC нужное конкретно для него напряжение.

Самые распространённые схемы

Существует несколько классических стандартных схем, которые чаще всего применяются в импульсных преобразователях постоянного напряжения. Они обеспечивают разные величины соотношений между входным и выходным напряжением. Эти схемы раскрывают саму суть преобразователей и их принцип работы.

Понижающий преобразователь напряжения и его схема

Понижающий преобразователь напряжения и его схема

Она используется для питания потребителей, нагрузка которых выражается большими токами и малым напряжением. Это первоочередная схема способная заменить классический низкочастотный преобразователь, в свою очередь, обеспечит увеличение КПД, уменьшит габариты и вес устройства. Транзистор VT выполняет роль электронного ключа, его работа лежит между двумя режимами осечки (полного закрытия) и насыщения (полного открытия). Расчет каждой детали производится непосредственно для конкретного потребителя и источника напряжения. Основным недостатком данной схемы является вероятность пробоя и появление полного большого входного напряжения на потребителе. Это, несомненно, приведёт к неисправности питаемого устройства.

Повышающий преобразователь и схема

Повышающий преобразователь и схема

Она может быть использована для получения напряжения на потребителе или на нагрузке больше чем на источники энергии. Применяется для подсветки дисплеев портативных компьютеров и для других электронных устройств где необходимо из небольшого напряжения сделать большее. Здесь имеет место процесс появления ЭДС самоиндукции, которая появляется после открытия транзистора. Вся накопленная энергия в дросселе попадает в нагрузку. При этом напряжение на выводах дросселя меняет свою полярность.

Инвертирующая схема

Может использоваться для получения напряжения, которое обладает обратной полярностью. При этом по значению U вых может быть меньше или больше U вх. Энергия, которая скапливается в дросселе направляется в нагрузку через сглаживающий конденсатор.

инвертирующая схема

Как видно из этих схем все они не имеют гальванической развязки, то есть непосредственной изоляции вторичного выходного напряжения от входного.

Схема 5

Вот одна из таких схем, содержащих трансформатор. Энергия, которая накапливается в магнитном поле первичной обмотки трансформатора, в нагрузку выводится через вторичную обмотку. Трансформатор в этом случае может быть и повышающим и понижающим. Применяется очень часто в сетевых источниках где есть необходимость снижения входного напряжения от нескольких сотен вольт до единиц или десятков.

В момент когда транзистор закрывается трансформатор своей индуктивностью может вызвать на коллекторе высоковольтный скачок или всплеск, что несомненно, очень плохо и может привести к пробою полупроводникового элемента. Для этого и устанавливается RC-цепочка из конденсатора и катушки индуктивности, которая может быть подключена параллельно ключу или первичной обмотке. Такой обратноходовой импульсный преобразователь широко используется во многих сетевых источниках электрического тока с небольшой мощностью порядка 100 Вт.

Схема 6

Еще одна схема с трансформатором и прямым включением диода изображена на схеме ниже.

Используется в источниках питания около 250 Вт. Все эти рассмотренные выше преобразователи называются однотактные, потому что за один период преобразования в нагрузку будет поступать только один импульс. Основное их преимущество — это простота схемы состоящей всего из одного транзистора, работающего в режиме ключа, а недостаток намагничивание сердечника которое не даёт в полном объёме использовать с максимальным КПД этот магнитный материал. Передача энергии потребителю и подготовка трансформатора к следующему циклу размагничивания осуществляется с некоторой паузой которая и снижает их выходную мощность.

Вот несколько практических реализованных в жизни схем, основой которого является импульсный преобразователь. Первая из них имеет регулировочный элемент, выполненный на микросхеме, в свою очередь, обе схемы выполнены на полевых транзисторах. Расчет их выполнен под напряжение для нагрузки от 5 до 12 Вольт.

Схема 7

Методы регулировки

Существуют три вида регулирования в системах импульсных преобразователей:

  1. Широтно-импульсная модуляция (ШИМ) Распространённый метод, который применяется в массовом производстве управляющих микросхем;
  2. Частотно-импульсное регулирование (ЧИМ). Здесь продолжительность когда ключ находится во включенном режиме должна быть согласована с периодом колебаний в контуре, обеспечивающем малые значения тока и напряжения на ключе в момент переключения. Используется там, где реализованы резонансные схемы.
  3. Комбинированный вид. Метод свойственен системам, в которых используется автоколебательный процесс, а частота переключения находится в зависимости и от напряжений на входе, и выходе преобразователя, и от величины тока в цепи потребителя;
  4. Триггерный метод. Используем исключительно в схеме понижающего регулятора, в котором необходимо, чтобы при закрытом состояния ключа, то есть транзистора, величина напряжения в нагрузке увеличивалась.

Критерии выбора

Критерии которым должен отвечать качественный импульсный преобразователь и стабилизатор:

  • Продолжительный режим работы в экстремальных моментах когда ток в нагрузке максимален;
  • Полная автоматизация регулирования напряжения на выходе. Только тогда можно не бояться ни перегрузок, ни даже короткого замыкания;
  • Высокая надёжность устройства, обусловленная высоким показателем КПД и как следствие низким выделением тепла;
  • Минимальные габариты и вес;
  • Наличие гальванической развязки, которая исключает даже теоретически саму возможность попадания опасного напряжения входа, на выходные контакты, а значит на незащищенный потребитель.

Человек не знакомый с электроникой должен помнить при выборе нужного бытового стабилизатора напряжения что он должен соответствовать главным образом мощности тех приборов, к которым он будет подключен. А также падения и всплескам напряжения, которые могут возникнуть в сети. Лучше выбирать стабилизатор или импульсный понижающий преобразователь напряжения немного с запасом по мощности, так как количество используемых потребителей в квартирах и частных домах постоянно растёт.

Источник

Читайте также:  Группа соединения обмоток трансформаторов напряжения