Меню

Используя уравнение двигателя постоянного тока определите эдс

Пуск двигателя. Уравнение ЭДС двигателя

date image2015-04-30
views image1562

facebook icon vkontakte icon twitter icon odnoklasniki icon

В момент включения двигателя якорь неподвижен и ток в нем

где RЯ – сопротивление цепи якоря.

Так как сопротивление цепи якоря RЯ мало, то пусковой ток IЯП значительно превышает номинальный ток IНОМ (в 10÷20 раз), поэтому прямой пуск опасен.

В двигателях постоянного тока последовательного и смешанного возбуждения в сопротивление цепи якоря входят сопротивления обмотки возбуждения, поэтому пусковые токи в этих двигателях меньше, чем в двигателях постоянного тока с параллельным возбуждением.

Как только , появится ЭДС>0, которая называется противо-ЭДС: .

Уравнение (4.50) называется уравнением ЭДС двигателя.

Для уменьшения пускового тока в цепь обмотки якоря включают добавочное сопротивление – пусковой реостат Rп и тогда

(4.51)

Рис. 4.30 Пуск двигателя постоянного тока:

а) электрическая схема;

б) пусковые характеристики.

При пуске желательно создавать в двигателе наибольший пусковой момент .

С этой целью обмотка возбуждения включается на полное напряжение сети, чтобы ток I в ней и Ф были максимальны.

При пуске Rп полностью введен; когда n=n1, часть реостата выводится и т. д. (рис. 4.30, б).

Однако такой пуск не целесообразен, энергетически не выгоден, да и вся пусковая аппаратура громоздкая. Такой пуск можно выполнить для небольшого двигателя.

Лучше осуществлять пуск при пониженном напряжении, при дальнейшем увеличении U до Uном .

Источник

Электрические машины постоянного тока

Cтатистика главы

Количество разделов 3
Количество задач 188

Содержание главы

Примеры решений задач

Данные примеры задач, относятся к предмету «Электротехника».

Задача #4821

Генератор постоянного тока П51 с параллельным возбуждением имеет следующие паспортные данные: мощность Pном = 5 кВт, напряжение Uном = 230 В, частота вращения nном = 1450 об/мин, сопротивление цепи якоря Rя = 0,635 Ом, сопротивление обмотки возбуждения Rв = 91 Ом, магнитные и механические потери Pх = 0,052 от номинальной мощности. Определить номинальный ток обмотки якоря, ЭДС обмотки якоря при номинальном режиме, потери электрические, сумму потерь, потребляемую (механическую) мощность, КПД при номинальном режиме работы.

Для определения номинального тока якоря найдем номинальный ток генератора и ток обмотки возбуждения.

Номинальный ток генератора определяем из соотношения

P н о м = U н о м I н о м

I н о м = P н о м U н о м = 5000 230 = 21,74 А

Ток обмотки возбуждения

I в = U н о м R в = 230 91 = 2,52 А

Ток цепи якоря в соответствии с законом Кирхгофа равен сумме токов в цепи нагрузки и обмотки возбуждения:

I я = I н о м + I в = 21,74 + 2,52 = 24,26 А

ЭДС обмотки якоря при номинальном режиме

E = U н о м + I я R я = 230 + 24,26 × 0,635 = 245,4 В

Электрические потери в обмотках:

P я = I я 2 R я = 24,26 2 × 0,635 = 373,7 В т

P в = I в 2 R в = 2,52 2 × 91 = 577,8 В т

Магнитные и механические потери

P м + P м х = 0,052 P н о м = 0,052 × 5000 = 260 В т

Сумма потерь при номинальном режиме

∑ P = P я + P в + P м х = 373,7 + 577,8 + 260 = 1211,5 В т

P 1 = P н о м + ∑ P = 5000 + 1211,5 = 6211,5 В т

КПД при номинальном режиме

η = P н о м P 1 = 5000 6211,5 = 0,805

Ответ: Iя = 24,26 А; E = 245,4 В; Pя = 373,7 Вт; Pв = 577,8 Вт; ∑P = 1211,5 Вт; P1 = 6211,5 Вт; η = 0,805.

Задача #4822

Генератор постоянного тока с параллельным возбуждением имеет следующие паспортные данные: число пар полюсов p = 2, число витков якоря w = 124, число пар параллельных ветвей a = 2, сопротивление обмотки якоря Rя = 0,04 Ом, ток обмотки возбуждения Iя = 2,0 А, частота вращения nном = 2850 об/мин, ЭДС в номинальном режиме Eном = 234,4 В, номинальный ток Iном = 108 А, КПД η = 89 %.

Определить мощности электромагнитную, потребляемую и на выводах генератора, сумму потерь, потери электрические, добавочные, механические и магнитные, напряжение при холостом ходе- генератора.

Для определения электромагнитной мощности найдем постоянные генератора, магнитный поток и электромагнитный тормозной момент.

Определяем электрическую и магнитную постоянные машины:

c E = p N 60 a = p 2 w 60 a = 2 × 2 × 124 60 × 2 = 4,13

c M = c E 9,55 = 4,13 × 9,55 = 39,47

Магнитный поток генератора определяем из формулы для ЭДС обмоток якоря:

Φ = E н о м c E n = 234,43 4,13 × 2850 = 0,02 В б

Ток в цепи якоря

I я = I н о м + I в = 108,7 + 2 = 110,7 А

P э м = E я I я = 234,4 × 110,7 = 25951 В т

Напряжение на зажимах генератора при номинальном режиме

Читайте также:  Стиральная машина бьет током через барабан что делать

U н о м = E я — I я R я = 234,4 — 110,7 × 0,04 = 230 В

Мощность на выходе генератора при номинальном режиме

P н о м = U н о м I н о м = 230 × 108,7 = 25000 В т

Мощность, потребляемая генератором

P 1 = P н о м η = 25000 0,89 = 28090 В т

Сумма потерь при номинальной нагрузке

∑ P = P 1 — P н о м = 28090 — 25000 = 3090 В т

Электрические потери в обмотках якоря и возбуждения

P э = P э я + P э в = I я 2 R я + I в U н о м = 108,7 2 × 0,04 + 2 × 230 = 932 В т

Добавочные потери в соответствии с ГОСТом составляют 1 % от номинальной мощности генератора:

P д = 0,01 P н о м = 0,01 × 25000 = 250 В т

Механические и магнитные потери

P м + P м х = ∑ P — P э + P д = 3090 — 932 + 250 = 2808 В т

Напряжение при холостом ходе генератора

U х = E — I я R я = 234,4 — 2 × 0,04 = 234,32 В

так как нагрузочный ток представляет собой ток обмотки возбуждения.

Ответ: Pэм = 25951 Вт; Pном = 25000 Вт; P1 = 28090 Вт; ∑P = 3090 Вт; Pэ = 932 Вт; Pд = 250 Вт; Pм + Pмх = 2808 Вт; Uх = 234,32 В.

Задача #4823

Двухполюсный генератор постоянного тока с параллельным возбуждением имеет сопротивление цепи якоря Rя = 0,155 Ом, одну пару параллельных ветвей, N = 500 активных проводников, магнитный поток Φ = 1,97 × 10 — 2 Вб, частоту вращения якоря nном = 1450 об/мин. При номинальном токе в цепи нагрузки Iном = 50 А и токе возбуждения I = 1,7 А КПД η = 0,8

Определить напряжение на зажимах генератора при номинальной нагрузке, электромагнитный момент, подводимую к генератору мощность при номинальной нагрузке и сумму потерь.

ЭДС, индуцируемая в обмотке якоря, при номинальной частоте вращения

E = c E Φ n н о м = p N 60 a Φ n н о м = 1 × 500 60 × 1 × 0,0197 × 1450 = 238 В

Ток в цепи якоря

I я = I н о м + I в = 50 + 1,7 = 51,7 А

Напряжение на зажимах генератора при номинальной нагрузке

U = E — I я R я = 238 — 51,7 × 0,14 = 230 В

Электромагнитный тормозной момент

M = c M Φ I я = p N 2 π a Φ I я = 1 × 500 2 × 3,14 × 1 × 0,0197 × 51,7 = 81 Н × м

Полезная мощность, отдаваемая генератором в цепь

P 2 н о м = U н о м I н о м = 230 × 50 = 11500 В т

Мощность, подводимая к генератору для его вращения, при номинальной нагрузке

P 1 н о м = P 2 н о м η = 11500 0,85 = 13529 В т

Сумма потерь при номинальной нагрузке

∑ P = P 1 н о м — P 2 н о м = 13529 — 11500 = 2029 В т

Ответ: U = 230 В; M = 81 Н × м; P1ном = 13529 Вт; ∑P = 2029 Вт.

Задача #4824

Генератор постоянного тока с независимым возбуждением должен использоваться в системе генератор — двигатель для регулирования частоты вращения двигателя постоянного тока П12.

Используя данные предыдущей задачи, выбрать генератор для регулирования частоты вращения двигателя П12. Определить пределы регулирования частоты вращения от максимального до минимального значения при холостом ходе и номинальном вращающем моменте.

Для выбора генератора постоянного тока, используемого в системе генератор — двигатель, необходимо учесть, что номинальная мощность генератора должна быть равна или превышать потребляемую мощность двигателя с учетом возникающих перегрузок.

Потребляемая мощность двигателя П12

P 1 = U н о м I н о м = 220 × 5,9 = 1298 В т ≈ 1,3 к В т

Выбираем генератор мощностью не менее 1,3 кВт, напряжением 230 В, с номинальным током не менее 6 А. Этим данным соответствует генератор типа П22, имеющий следующие паспортные данные: мощность Pном = 1,6 кВт, номинальное напряжение Cном = 230 В, номинальный ток Iном = 7 А, номинальная частота вращения nном = 2850 об/мин, КПД η = 83,5 %, сопротивление обмотки якоря Rя1 = 1,55 Ом. Определяем общее сопротивление цепи якоря двигателя и генератора (обмотки якоря, генератора и двигателя включены последователь):

R о б щ = R я д в + R я г = 2,0 + 1,55 = 3,55 О м

ЭДС генератора в номинальном режиме

E г = U г н о м + I я г R я г = 230 + 7 × 1,55 = 240,85 В

Напряжение на выходе генератора при номинальной нагрузке двигателя

U г = E — I я д в R о б щ = 240,85 — 5,9 × 3,55 = 220,97 В

что соответствует номинальному режиму двигателя.

Читайте также:  Характеристика синхронного генератора от тока возбуждения

Для определения частоты вращения двигателя в различных режимах находим произведение постоянной двигателя на магнитный поток:

c E Φ = E n н о м = U н о м — I н о м R я д в n н о м = 220 — 5,9 × 2,0 3000 = 0,0694 В б

Отсюда максимальная частота вращения двигателя при холостом ходе определяется отношением ЭДС генератора в номинальном режиме к произведению cEΦ:

n х = E г c E Φ = 240,85 0,0694 = 3458 о б м и н

Минимальную частоту вращения двигателя при холостом ходе определяют по минимальному значению ЭДС генератора, при которой двигатель приходит во вращение. Предположим, что пуск двигателя происходит при полуторакратном значении номинального тока. Отсюда минимальную ЭДС генератора, необходимую для вращения якоря двигателя, определяют по следующему уравнению:

E г m i n = 1,5 I я д в R о б щ = 1,5 × 5,9 × 3,55 = 31,4 В

Минимальная частота вращения двигателя:

— при холостом ходе

n m i n = E г m i n c E Φ = 31,4 0,0694 = 452 о б м и н

— при номинальном моменте

n m i n = E г m i n — I я д в R о б щ c E Φ = 31,4 — 5,9 × 3,55 0,0694 = 150 о б м и н

Следовательно, при изменении напряжения на выходе генератора частота вращения двигателя при холостом ходе изменяется в пределах от 3488 до 452 об/мин и при номинальном моменте на валу двигателя — от 3000 до 150 об/мин.

Выходную мощность генератора при номинальной нагрузке двигателя определяют как произведение выходного напряжения на номинальный ток двигателя:

P г в ы х = U г I я д в = 220,97 × 5,9 = 1303 В т

Мощность, потребляемая генератором при номинальном режиме двигателя

P 1 г в ы х = P г в ы х η = 1303 0,82 = 1590 В т

Для определения мощности двигателя, который приводит во вращение генератор, необходимо учесть возможные нагрузки. Предположим, что они не будут превышать 30 % от номинального тока двигателя П12:

P 1 г = P 2 η = U в ы х 1,3 I я д в η = 220,97 × 1,3 × 5,9 0,835 = 2030 В т

Ответ: не указан.

Задача #4825

Генератор независимого возбуждения имеет следующие номинальные параметры: Pном = 10 кВт; Uном = 115 В; nном = 145 об/мин; рабочее сопротивление цепи якоря Rя = 0,052 Ом; сопротивление цепи возбуждения Rв = 120 Ом. Определить потери в генераторе, его КПД и необходимый момент приводного двигателя, если механические и магнитные потери составляют ΔРном = 5%Рном, а ток возбуждения Iвн = 3%Iя ном.

Ток якоря определяется из соотношения

I я = I я н о м = P н о м U н о м = 10000 115 = 87 А

Δ P = Δ P э + Δ P м + Δ P в = 0,05 P н о м + 0,03 I н о м 2 R в + I я 2 R я = 1705 В т

Потребляемая механическая мощность

P 1 = P н о м + Δ P = 10 + 1,7 = 11,7 к В т

η г = P н о м P 1 = 10 11,7 = 0,854

M = 9,55 P 1 n = 9,55 × 11700 1450 = 70,5 Н × м

Ответ: ΔP = 1705 Вт; ηг = 0,854; M = 70,5 Н × м.

Задача #4826

Генератор постоянного тока независимого возбуждения имеет следующие номинальные параметры: Pном = 10 кВт; Uном = 110 В ; Rном = 1450 об/мин; рабочее сопротивление якоря Rя = 0,05 Ом. Определить номинальные токи потребителя и цепи возбуждения, если Iв ном = 5%Iя ном. Чему равны ЭДС в номинальном режиме работы и электромагнитный момент генератора?

Номинальный ток потребителя определяется из соотношения

I н о м = P н о м U н о м = 10000 110 = 91 А

Ток обмотки возбуждения

I в н о м = 4,55 А

ЭДС генератора равна

E = U н о м + I н о м R я = 110 + 91 × 0,05 = 114,55 В

Электромагнитный момент двигателя соответственно равен

M = 9,55 E I н о м n н о м = 68,2 Н × м

Ответ: Iном = 91 А; Iв ном = 4,55 А; E = 114,55 В.

Источник



Основные теоретические положения

Важное свойство ДПТ с независимым возбуждением от постоянных магнитов состоит в том, что результирующий момент сил от всех проводников якоря, называемый электромагнитным моментом двигателя M, пропорционален току якоря Iя, потребляемому двигателем от источника питания:

где k m — коэффициент пропорциональности, называемый постоянной момента двигателя. Его размерность [Нм/А]. По законам электромагнитной индукции в проводнике, движущемся в магнитном поле, возникает электродвижущая сила. Суммарная ЭДС катушек якоря E через коллектор и щетки прикладывается к внешним выводам двигателя. В двигательном режиме работы эта ЭДС направлена против внешнего напряжения U я, подведенного к якорю от источника питания. Поэтому ЭДС двигателя часто называется противоЭДС. Она прямо пропорциональна угловой скорости вращения вала двигателя w дв[рад/с]:

Читайте также:  Сила тока короткого замыкания через катушку

где k ω — коэффициент пропорциональности, называемый постоянной ЭДС двигателя. Его размерность [Вс/рад].

Природа электромагнитных явлений в ДПТ такова, что если используется система единиц СИ, то значения коэффициентов k ω и km численно равны.

Уравнения, описывающие электрические процессы в ДПТ

В электрической якорной цепи двигателя протекает ток I я под действием напряжения постоянного тока Ua источника питания и противоЭДС двигателя.

Эта цепь характеризуется параметрами: активным сопротивлением R я [Ом] и индуктивностью L я [Гн] якорной обмотки. Вращающийся ротор, обладающий моментом инерции Ja [Нм с 2 /рад] , приводится в движение одновременным действием электромагнитного момента двигателя M дв и момента внешних сил M вн, приложенного к валу двигателя.

Исходные дифференциальные уравнения ДПТ составляются на основании законов физики. Для электрической цепи используется второй закон Кирхгофа, согласно которому можно записать уравнение

где член R я I я характеризует падение напряжения на активном сопротивлении якорной цепи в соответствии с законом Ома, а член L я ( dI я/ dt ) отражает наличие ЭДС самоиндукции, возникающей в обмотке при изменении тока якоря. В представленном уравнении не учитывается падение напряжения на щетках, зависящее нелинейно от тока якоря, но имеющее, как правило, относительно небольшое значение по сравнению с напряжением U я .

Дифференциальное уравнение, характеризующее процессы в механической части двигателя, составляется на основании второго закона Ньютона:

где M вн — момент внешних сил, действующий относительно оси вращения вала двигателя. В этом уравнении не учитывается действие сил трения, возникающих при вращении ротора, но оказывающих относительно слабое действие на ускорение вала ДПТ.

Используя вышеприведенные формулы и приводя дифференциальные уравнения к нормальной форме Коши, получим описание ДПТ в форме:

Для исследования процессов с помощью ЭВМ удобно использовать структурное представление математической модели ДПТ. Для этого преобразуем полученную систему линейных дифференциальных уравнений по Лапласу при нулевых начальных условиях. В результате получим систему алгебраических уравнений:

в которых s — переменная Лапласа, а величины I я( s ), w дв( s ), U я( s ), M вн( s ) — изображения по Лапласу переменных I я , w дв, U я, M вн соответственно. После эквивалентных преобразований эти уравнения могут быть представлены в форме:

где Тэ = L я / R я — электромагнитная постоянная времени якорной цепи двигателя.

По уравнениям с помощью системы SIMULINK может быть сформирована структурная схема ДПТ для его математического моделирования (рис.1).

Важным параметром ДПТ, определяющим его динамические свойства, является электромеханическая постоянная времени двигателя:

Зависимость между электромагнитным моментом двигателя и частотой вращения ротора в установившемся режиме при постоянных U я и M вн называется механической характеристикой двигателя. Уравнение механической характеристики имеет вид:

При пуске двигателя, когда скорость равна нулю, развивается пусковой момент

Частота вращения вала двигателя при отсутствии сопротивления называется частотой вращения холостого хода

Источник

Основные уравнения двигателя постоянного тока (ДПТ)

ads

В этой статье описаны основные формулы, величины и их обозначения которые относятся ко всем двигателям постоянного тока.

В результате взаимодействия Iя тока якоря в проводнике L обмотки якоря с внешним магнитным полем возникает электромагнитная сила создающая электромагнитный момент М который приводит якорь во вращение с частотой n.

Противо ЭДС двигателя Eя

При вращении якоря пазовый проводник пресекает линии поля возбуждения с магнитной индукцией B и в соответствии с явлением электромагнитной индукции в проводнике наводится ЭДС Eя направленная навстречу Iя. Поэтому эта ЭДС называется противо ЭДС и она прямо пропорциональна Ф магнитному потоку и частоте вращения n.

Ce — постоянный коэффициент определяемой конструкцией двигателя.

Применив второй закон Кирхгофа получаем уравнение напряжения двигателя.

где ∑R — суммарное сопротивления обмотки якоря включающая сопротивление :

  • обмотки якоря
  • добавочных полюсов
  • обмотки возбуждения (для двигателей с последовательным возбуждением)

Ток якоря Iя

Выразим из формулы 2 ток якоря.

Частота вращения якоря

Из формул 1 и 2 выведем формулу для частоты вращения якоря.

Формула частоты ращения двигателя постоянного тока

Электромагнитная мощность двигателя

Электромагнитный момент

Формула электромагнитного момента ДПТ

где: ω = 2*π*f — угловая скорость вращения якоря, Cм — постоянный коэффициент двигателя (включает в себя конструктивные особенности данного двигателя)

Снимок 11

Момент на валу двигателя, т.е. полезный момент, где М момент холостого хода;

Источник