Меню

Источник тока источник напряжения схемы замещения

Привести схему замещения и внешнюю характеристику источника напряжения. Объяснить, как по ВАХ источника определить его параметры?

Ответ:Источники, имеющие линейную внешнюю характеристику, в дальнейшем будем называть линеаризованными источниками энергии. Рис. 1.15: Внешняя характеристика (а), последовательная (б) и параллельная (в) схемы замещения линеаризованного источника. Линеаризованные, или реальные, источники энергии можно представить двумя эквивалентными схемами замещения: последовательной, составленной из источника э.д.с. и сопротивления (рис. 1.15,б) и параллельной, составленной из идеализированного источника тока и сопротивления (рис. 1.15, в). Внешняя характеристика отражает зависимость напряжения на зажимах источника от величины нагрузки — тока источника, заданного нагрузкой. Напряжение на зажимах источника меньше ЭДС на величину падения напряжения на внутреннем сопротивлении источника (1): Этому уравнению соответствует внешняя характеристика источника ЭДС (рис. 1). построенная по двум точкам:1)при I=0 E=U; 2)при U=0 E=R0I .

Очевидно, что напряжение на зажимах источника ЭДС тем больше, чем меньше его внутреннее сопротивление. В идеальном источнике ЭДС R0=0, U=E (напряжение не зависит от величины нагрузки). Однако не всегда при анализе и расчете цепи источник электрической энергии удобно представлять в качестве источника ЭДС. Если внутреннее сопротивление источника значительно превышает внешнее сопротивление цепи, что, например, имеет место в электронике, то получим, что ток в цепи I=U/(R+R0) и при R0>>R практически не зависит от сопротивления нагрузки. В этом случае источник энергии представляют в качестве источника тока: . Вольтамперные характеристики реального и идеального источников тока показаны на рис. 3.: . Когда нет четкого разграничения величин R и R0 , в качестве расчетного эквивалента источника энергии можно использовать либо источник ЭДС, либо источник тока.Режимы работы источника:

Источник может работать в следующих режимах: 1. Номинальный режим — это режим работы, на который рассчитан источник заводом-изготовителем. Для данного режима в паспорте источника указывают номинальные ток Iном и номинальное напряжение Uном или мощность Pном.

2. Режим холостого хода. В этом режиме внешняя цепь отключена от источника, ток источника I=0 и, следовательно, напряжение на зажимах источника — напряжение холостого хода Uхх=Е.

3. Режим короткого замыкания. Сопротивление внешней по отношению к источнику цепи равно нулю. Ток источника ограничивается только его внутренним сопротивлением. I=Iкз=U/R. Для уменьшения потерь энергии в источнике ЭДС R должно быть возможно меньшим, а в идеальном источнике R0=0. С учетом этого Iкз >> Iном и является недопустимым для источника.

4. Согласованный режим — это режим, при котором от источника к потребителю передается максимальная мощность. Определить эту мощность можно через параметры источника. Так, мощность, переданная в нагрузку, Р=I 2 R. P=Pmax при R=R. Тогда максимальная мощность, переданная потребителю, Pmax=E2/4R. КПД источника в согласованном режиме не превышает 50%, что исключает его применение в промышленной электротехнике. Согласованный режим используется в слаботочных цепях электронных устройств.

Дата добавления: 2015-01-13 ; просмотров: 54 ; Нарушение авторских прав

Источник

Лекция №2. 1. Схемы замещения электрических цепей

План лекции:

1. Схемы замещения электрических цепей

2. Эквивалентные преобразования пассивных электрических цепей

3. Расчет цепей посредством двух законов Кирхгофа

4. Мощность в цепях постоянного тока

5. Баланс мощностей

1. Схемы замещения электрических цепей

Схемой электрической цепи называется ее графическое изображение с использованием обозначений идеальных элементов. Например:

Если учесть сопротивление утечки реального конденсатора, сопротивление витков реальной индуктивной катушки и внутреннее сопротивление реального источника ЭДС, то можно составить соответствующие схемы замещения этих элементов:

Отсюда следует, что все схемы по сути дела являются лишь более или менее точными схемами замещения реальных электрических цепей.

Представленный на рис.2 контур содержит три участка: участок с постоянным напряжением U = Е, не зависящим от тока источника, и участки с напряжениями RвхI и U на нагрузке Rн.

Направление ЭДС выбрано совпадающим с направлением тока, но оно противоположно напряжению на этом элементе.

Для определения параметров схемы замещения источника электрической энергии с линейной внешней характеристикой нужно провести два опыта — холостого хода (I=0; U=Uх=Е) и короткого замыкания (I=Iк; U=Е-RвнI).

2. Эквивалентные преобразования пассивных электрических цепей

Для упрощения анализа сложных электрических цепей отдельные их участки, не содержащие ЭДС, или пассивные цепи целиком можно заменить одним эквивалентным сопротивлением. Под эквивалентным понимают такое сопротивление, которое, будучи включенным в цепь вместо заменяемой группы сопротивлений, не изменяет распределение токов и напряжений в остальной части цепи.

При последовательном соединении сопротивлений по каждому из них

протекает один тот же ток, следовательно, падение напряжения на эквивалентном сопротивлении должно быть равно сумме падений напряжений на исходных сопротивлениях:

Читайте также:  Измерение малых токов при высоком напряжении

Если группа заменяемых сопротивлений соединена параллельно, то

напряжения на каждом из них и на эквивалентном сопротивлении одинаковы. Условия эквивалентности будут выполнены, если ток через искомое сопротивление будет равен сумме токов через отдельные параллельные сопротивления:

Используя закон Ома для отдельного сопротивления, можем записать:

Поскольку величина, обратная сопротивлению, есть проводимость, то, вводя обозначения для проводимости , получим:

При анализе сложных схем встречаются случаи, когда часть схемы образует так называемый треугольник сопротивлений:

Схема упрощается, если треугольник с сопротивлениями Rав, Rвс, Rса заменить эквивалентной звездой с сопротивлениями Rа, Rв, Rс. Иногда, наоборот, необходимо обратное преобразование звезды в треугольник. Схемы треугольника и звезды считаются эквивалентными, если после преобразования все токи и напряжения в остальных частях схемы (не затронутых преобразованиями) остаются неизменными.

Очевидно, условия эквивалентности должны выполняться и при обрыве проводов, подходящих к узлам «а», «в», «с». Например, при обрыве провода, подходящего к узлу «а», сопротивления между точками «в» и «с» в треугольнике и звезде должны быть одинаковы, т.е.:

Рассуждая аналогичным образом, можно записать:

Решая полученную систему уравнений относительно Rа, Rв и Rс, получим формулы эквивалентного преобразования треугольника в звезду:

Решая систему относительно и получим формулы преобразования звезды в треугольник:

В частном случае, когда сопротивления звезды или треугольника одинаковы, эти формулы упрощаются:

3. Расчет цепей посредством двух законов Кирхгофа

а) произвольно задаются положительными направлениями токов во всех ветвях схемы,

б) для всех узлов схемы кроме одного составляются уравнения по 1-му закону Кирхгофа,

в) для всех независимых контуров составляются уравнения по 2-му закону Кирхгофа (контур будет считаться независимым от остальных, если в него входит хотя бы одна новая ветвь, т.е. не вошедшая в состав других контуров).

Общее число уравнений, составленных по 1 и 2-му законам Кирхгофа должно быть равно числу неизвестных токов. Полученная система линейных уравнений разрешается относительно токов с использованием известных методов решения систем уравнений (например, с помощью определителей)

Если при решении системы уравнений значение какого-либо тока получилось отрицательным, то это означает, что истинное направление тока противоположно выбранному. Данный метод расчета является универсальным, однако расчет вручную возможен лишь для несложных схем (4-5 неизвестных тока). Для более сложных схем требуется применение иных методов или вычислительной техники.

4. Мощность в цепях постоянного тока

Для оценки энергетических условий важно знать сколь быстро совершается работа.

Отношение работы «А» к соответствующему промежутку времени t определяет мощность:

Используя закон Ома, можно получить другие формулы для мощности в электрических цепях:

5. Баланс мощностей

В любой электрической цепи должен соблюдаться энергетический баланс — баланс мощностей: алгебраическая сумма мощностей всех источников равна арифметической сумме мощностей всех приемников энергии.

В левой части равенства слагаемое берется со знаком «+» если Е и I совпадают по направлению и со знаком «-» если не совпадают.

Если направления ЭДС и тока I в источнике противоположны, то физически это означает, что данный источник работает в режиме потребителя.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник



Схемы замещения источников электрической энергии

Разовьем понятие об источниках электрической энергии.

Источник электрической энергии можно представить схемой замещения (эквивалентной схемой), изображенной на рис. 9.

Рис. 9. Схема замещения электрической цепи с источником ЭДС

Это основная, наиболее часто используемая схема замещения источника электрической энергии. Её можно назвать схемой замещения электрической цепи с источником ЭДС. На схеме замещения источник включает в себя ЭДС E и внутреннее сопротивление Ri. Приемник электрической энергии на схеме рис. 9 представлен сопротивлением нагрузки R. ЭДС E и внутреннее сопротивление Ri источника являются константами. Величина сопротивления R приемника может изменяться. (Например, в лабораторных работах для изменения величины R часто используют ползунковый реостат). При изменении сопротивления R будет изменяться и ток I, отдаваемый источником приемнику.

Схема рис. 9 одноконтурная. Применим к ней второй закон Кирхгофа, в соответствии с которым имеем:

Напряжение на зажимах приемника представляет собой падение напряжения на сопротивлении нагрузки U = RI. Выражая напряжение из формулы второго закона Кирхгофа, находим, что напряжение на зажимах приемника равно ЭДС E минус падение напряжения на внутреннем сопротивлении источника RiI

В соответствии с этим выражением можно построить внешнюю характеристику источника (рис. 10, отрезок 1). Внешняя характеристика представляет собой отрезок прямой, расположенный между точками холостого хода и короткого замыкания. Точке холостого хода соответствует ток, равный нулю, и напряжение, равное ЭДС E. Точке короткого замыкания соответствует нулевое напряжение U = 0 и максимально возможный ток I = Ik, называемый током короткого замыкания.

Читайте также:  Какова равна сила тока молнии

Рис. 10. Внешние характеристики источников:

1 – реальный источник; 2 – идеальный источник ЭДС; 3 – идеальный источник тока

Если внутреннее сопротивление источника Ri пренебрежимо мало по сравнению с сопротивлением приемника R (источник работает в режиме, близком к режиму холостого хода, и внутренним сопротивлением источника можно пренебречь, полагая Ri = 0), то источник можно представить более простой схемой замещения (рис. 11), являющейся частным случаем схемы рис. 9.

Рис. 11. Схема замещения электрической цепи с идеальным источником ЭДС

Такой источник можно назвать идеальным источником ЭДС или источником напряжения, поскольку его напряжение постоянно и равно величине ЭДС U = E. Внешняя характеристика источника напряжения представляет собой луч (рис. 10, луч 2), проведенный из точки холостого хода параллельно оси абсцисс.

Отметим особо один очень распространенный и потому весьма важный для практики случай, для которого удобно рассматривать источник электрической энергии как источник напряжения. Дело в том, что большинство современных генераторов, в том числе и судовые генераторы, оборудуются устройствами автоматического регулирования (поддержания) напряжения. Суть их работы сводится к тому, что при изменении тока нагрузки и соответственно падения напряжения на внутреннем сопротивлении источника RiI на ту же величину изменяется ЭДС источника E. Поэтому напряжение на зажимах источника остается практически неизменным. Такому источнику соответствует внешняя характеристика 2 на рис. 10, поэтому при анализе работы приемника такой источник электрической энергии удобно рассматривать как источник напряжения.

Источник электрической энергии можно представить также схемой замещения, содержащей источник тока. Покажем это, сделав переход от схемы с источником ЭДС к схеме с источником тока.

Запишем выражение второго закона Кирхгофа для схемы рис. 9 в следующем виде:

Разделим все члены этого выражения на Ri

Проводимость gi можно назвать внутренней проводимостью источника. Наличие внутренней проводимости обусловлено потерями электрической энергии внутри источника на его нагрев.

Отношение E / Riчисленно равно току короткого замыкания Ik источника (току, который будет протекать через источник, если его выходные зажимы закоротить). С учетом этого можно обозначить

где Ik– ток короткого замыкания источника.

и назовем эту величину внутренним током источника.

В результате от уравнения второго закона Кирхгофа, справедливого для схемы рис. 9, приходим к уравнению первого закона Кирхгофа

которое справедливо для схемы рис. 12.

Схема замещения рис. 12 состоит из источника электрической энергии и её приемника. Источник электрической энергии выделен на схеме пунктиром. Источник электрической энергии состоит из источника тока Ik (изображен окружностью с двумя стрелками) и внутренней проводимости источника gi. Источник тока характеризуется неизменным током Ik, равным току короткого замыкания источника электрической энергии. По ветви с внутренней проводимостью источника gi течет внутренний ток источника Ii. Приемник характеризуется проводимостью g. Через приемник течет ток нагрузки I.

Рис. 12. Схема замещения электрической цепи с источником тока

Ток Ik и внутренняя проводимость gi источника являются константами. Величина проводимости g приемника может изменяться. Ток Ik источника тока делится в узле на токи Ii и I пропорционально проводимостям gi и g соответственно. Поэтому напряжение на нагрузке равно отношению тока Ik к сумме проводимостей gi и g:

Тогда внутренний ток источника можно найти как

Ток нагрузки I определяется аналогично

I = g U.

Схема замещения рис. 12 эквивалентна схеме рис. 9, поэтому для нее также справедлива внешняя характеристика 1 на рис. 10. Источники ЭДС и тока, имеющие идентичные внешние характеристики, называются эквивалентными источниками. Пересчет параметров источника ЭДС на параметры эквивалентного ему источника тока и наоборот можно выполнять по приведенным выше формулам. При использовании в расчетах схем замещения таких источников следует иметь в виду, что в схеме рис. 9 мы оперируем с напряжениями, отраженными на рис. 10 стрелками, расположенными вертикально, а в схеме рис. 12 мы имеем дело с токами, показанными на рис. 10 стрелками, расположенными горизонтально.

Рис. 13. Схема замещения электрической цепи с идеальным источником тока

В частном случае источника электрической энергии, у которого потери энергии внутри источника пренебрежимо малы по сравнению с энергией, отдаваемой приемнику, можно считать, что внутренняя проводимость источника стремится к нулю (gi = 0). Тогда схему замещения источника электрической энергии можно упростить, сведя ее к схеме рис. 13, которую можно назвать схемой замещения с идеальным источником тока. Внешняя характеристика такого источника представляет собой луч (рис. 10, луч 3), проведенный из точки короткого замыкания параллельно оси ординат.

Рассмотренные нами источники ЭДС и тока можно назвать независимыми источниками, поскольку у них ЭДС E и ток Ik не зависят от напряжений и токов на других участках электрической цепи. Вместе с тем, при анализе электронных цепей (например, биполярных и полевых транзисторов) возникает необходимость вводить в рассмотрение так называемые зависимые (управляемые) источники ЭДС или тока, у которых ЭДС E или ток Ik изменяются в функции напряжения или тока одной или нескольких ветвей электрической цепи. Настоящее учебное пособие ориентировано, прежде всего, на анализ схем с независимыми источниками.

Читайте также:  Блок питания с установкой тока

Дата добавления: 2016-06-29 ; просмотров: 15871 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Схемы замещения источников электрической энергии

Свойства источника электрической энергии описываются ВАХ , называемой внешней характеристикой источника. Далее в этом разделе для упрощения анализа и математического описания будут рассматриваться источники постоянного напряжения (тока). Однако все полученные при этом закономерности, понятия и эквивалентные схемы в полной мере распространяются на источники переменного тока. ВАХ источника может быть определена экспериментально на основе схемы, представленной на рис. 4,а. Здесь вольтметр V измеряет напряжение на зажимах 1-2 источника И, а амперметр А – потребляемый от него ток I, величина которого может изменяться с помощью переменного нагрузочного резистора (реостата) RН.

В общем случае ВАХ источника является нелинейной (кривая 1 на рис. 4,б). Она имеет две характерные точки, которые соответствуют:

а – режиму холостого хода ;

б –режиму короткого замыкания .

Для большинства источников режим короткого замыкания (иногда холостого хода) является недопустимым. Токи и напряжения источника обычно могут изменяться в определенных пределах, ограниченных сверху значениями, соответствующими номинальному режиму (режиму, при котором изготовитель гарантирует наилучшие условия его эксплуатации в отношении экономичности и долговечности срока службы). Это позволяет в ряде случаев для упрощения расчетов аппроксимировать нелинейную ВАХ на рабочем участке m-n (см. рис. 4,б) прямой, положение которой определяется рабочими интервалами изменения напряжения и тока. Следует отметить, что многие источники (гальванические элементы, аккумуляторы) имеют линейные ВАХ.

Прямая 2 на рис. 4,б описывается линейным уравнением

где — напряжение на зажимах источника при отключенной нагрузке (разомкнутом ключе К в схеме на рис. 4,а); — внутреннее сопротивление источника.

Уравнение (1) позволяет составить последовательную схему замещения источника (см. рис. 5,а). На этой схеме символом Е обозначен элемент, называемый идеальным источником ЭДС. Напряжение на зажимах этого элемента не зависит от тока источника, следовательно, ему соответствует ВАХ на рис. 5,б. На основании (1) у такого источника . Отметим, что направления ЭДС и напряжения на зажимах источника противоположны.

Если ВАХ источника линейна, то для определения параметров его схемы замещения необходимо провести замеры напряжения и тока для двух любых режимов его работы.

Существует также параллельная схема замещения источника. Для ее описания разделим левую и правую части соотношения (1) на . В результате получим

где ; — внутренняя проводимость источника.

Уравнению (2) соответствует схема замещения источника на рис. 6,а.

На этой схеме символом J обозначен элемент, называемый идеальным источником тока. Ток в ветви с этим элементом равен и не зависит от напряжения на зажимах источника, следовательно, ему соответствует ВАХ на рис. 6,б. На этом основании с учетом (2) у такого источника , т.е. его внутреннее сопротивление .

Отметим, что в расчетном плане при выполнении условия последовательная и параллельная схемы замещения источника являются эквивалентными. Однако в энергетическом отношении они различны, поскольку в режиме холостого хода для последовательной схемы замещения мощность равна нулю, а для параллельной – нет.

Кроме отмеченных режимов функционирования источника, на практике важное значение имеет согласованный режим работы, при котором нагрузкой RН от источника потребляется максимальная мощность

Условие такого режима

В заключение отметим, что в соответствии с ВАХ на рис. 5,б и 6,б идеальные источники ЭДС и тока являются источниками бесконечно большой мощности.

Контрольные вопросы и задачи

  1. Может ли внешняя характеристик источника проходить через начало координат?
  2. Какой режим (холостой ход или короткое замыкание) является аварийным для источника тока?
  3. В чем заключаются эквивалентность и различие последовательной и параллельной схем замещения источника?
  4. Определить индуктивность L и энергию магнитного поля WМ катушки, если при токе в ней I=20А потокосцепление y =2 Вб.

Ответ: L=0,1 Гн; WМ=40 Дж.

  1. Определить емкость С и энергию электрического поля WЭ конденсатора, если при напряжении на его обкладках U=400 В заряд конденсатора q=0,2´ 10-3 Кл.

Ответ: С=0,5 мкФ; WЭ=0,04 Дж.

  1. У генератора постоянного тока при токе в нагрузке I1=50А напряжение на зажимах U1=210 В, а при токе, равном I2=100А, оно снижается до U2=190 В. Определить параметры последовательной схемы замещения источника и ток короткого замыкания.
  1. Вывести соотношения (3) и (4) и определить максимальную мощность, отдаваемую нагрузке, по условиям предыдущей задачи.

Источник

Источник тока источник напряжения схемы замещения

Схемы замещения источников электрической энергии

date image2015-04-23
views image2129

facebook icon vkontakte icon twitter icon odnoklasniki icon

Свойства источников описываются ВАХ – зависимостью напряжения от тока, которая является их основной внешней характеристикой. Для упрощения анализа и математического описания будем рассматривать источники постоянного тока или напряжения, но при этом все полученные закономерности, соотношения и эквивалентные схемы будут так же справедливы для источников переменного тока. ВАХ можно получить при использовании данной схемы, где Rн – переменный нагрузочный резистор (реостат), предназначенный для изменения потребляемого тока.

В общем случае ВАХ источника имеет вид кривой 1, но для упрощения расчетов эту кривую аппроксимируют прямой 2 на участке (m,n), который определяется рабочими интервалами изменения напряжения и тока.

Идеальная ВАХ имеет две характерные точки: а и d, которым соответствуют:

1) а – режим холостого хода, при котором напряжение = E = = const и ток = 0;

2) d — режим короткого замыкания, при котором ток = = const и соответственно напряжение = 0.

Для большинства источников режим КЗ (или иногда ХХ) является недопустимым, поскольку токи и напряжения могут изменяться лишь в определенных пределах, соответствующих т.н. номинальному режиму, гарантирующему оптимальные условия эксплуатации.

Составим уравнение для идеальной линейной ВАХ (уравнение прямой 2: у = kx+b):

, где — внутреннее сопротивление источника, тогда:

Уравнение (9) позволяет составить последовательную схему замещения источника:

Здесь через Е обозначен элемент, называемый идеальным источником напряжения (ИИН) или ЭДС. Его напряжение имеет постоянное максимальное значение, не зависит от протекающего тока и противоположно по направлению ЭДС. ВАХ для такого источника или последовательной схемы замещения приведена на рис. 5,б.

Тогда: = = = 0 и, следовательно, i Þ ¥.

Таким образом, внутреннее сопротивление идеального источника напряжения (ИИН) равно нулю, и поскольку ИИН допускает бесконечно большой ток при постоянном напряжении, то его мощность также будет бесконечно большой.

Читайте также:  Сформулируйте закон ома для цепи переменного тока с активным сопротивлением

Аналогично можно получить параллельную схему замещения источника; для этого обе части (9) разделим на : = — ;

где Gвн – внутренняя проводимость источника.

Уравнению (10) будет соответствовать параллельная схема замещения источника:

Здесь J обозначает идеальный источник тока (ИИТ). Его ток имеет постоянное максимальное значение и не зависит от приложенного напряжения. ВАХ для такого источника или параллельной схемы замещения приведена на рис. 6,б.

Поскольку здесь J = I = Iкз = const ¹ f(u), то внутреннее сопротивление такого источника: = = .

Таким образом, внутреннее сопротивление идеального источника тока (ИИТ) стремится к бесконечности, и поскольку он допускает бесконечно большое напряжение при постоянном токе, то его мгновенная мощность также будет бесконечно большой:

= const → ®¥, ®¥, что, безусловно, является идеализацией. Реальные источники обладают конечным ненулевым сопротивлением.

Источник



Схемы замещения источников электрической энергии

Свойства источника электрической энергии описываются ВАХ , называемой внешней характеристикой источника. Далее в этом разделе для упрощения анализа и математического описания будут рассматриваться источники постоянного напряжения (тока). Однако все полученные при этом закономерности, понятия и эквивалентные схемы в полной мере распространяются на источники переменного тока. ВАХ источника может быть определена экспериментально на основе схемы, представленной на рис. 4,а. Здесь вольтметр V измеряет напряжение на зажимах 1-2 источника И, а амперметр А – потребляемый от него ток I, величина которого может изменяться с помощью переменного нагрузочного резистора (реостата) RН.

В общем случае ВАХ источника является нелинейной (кривая 1 на рис. 4,б). Она имеет две характерные точки, которые соответствуют:

а – режиму холостого хода ;

б –режиму короткого замыкания .

Для большинства источников режим короткого замыкания (иногда холостого хода) является недопустимым. Токи и напряжения источника обычно могут изменяться в определенных пределах, ограниченных сверху значениями, соответствующими номинальному режиму (режиму, при котором изготовитель гарантирует наилучшие условия его эксплуатации в отношении экономичности и долговечности срока службы). Это позволяет в ряде случаев для упрощения расчетов аппроксимировать нелинейную ВАХ на рабочем участке m-n (см. рис. 4,б) прямой, положение которой определяется рабочими интервалами изменения напряжения и тока. Следует отметить, что многие источники (гальванические элементы, аккумуляторы) имеют линейные ВАХ.

Читайте также:  Течет ток рамка магнитный момент если то

Прямая 2 на рис. 4,б описывается линейным уравнением

где — напряжение на зажимах источника при отключенной нагрузке (разомкнутом ключе К в схеме на рис. 4,а); — внутреннее сопротивление источника.

Уравнение (1) позволяет составить последовательную схему замещения источника (см. рис. 5,а). На этой схеме символом Е обозначен элемент, называемый идеальным источником ЭДС. Напряжение на зажимах этого элемента не зависит от тока источника, следовательно, ему соответствует ВАХ на рис. 5,б. На основании (1) у такого источника . Отметим, что направления ЭДС и напряжения на зажимах источника противоположны.

Если ВАХ источника линейна, то для определения параметров его схемы замещения необходимо провести замеры напряжения и тока для двух любых режимов его работы.

Существует также параллельная схема замещения источника. Для ее описания разделим левую и правую части соотношения (1) на . В результате получим

где ; — внутренняя проводимость источника.

Уравнению (2) соответствует схема замещения источника на рис. 6,а.

На этой схеме символом J обозначен элемент, называемый идеальным источником тока. Ток в ветви с этим элементом равен и не зависит от напряжения на зажимах источника, следовательно, ему соответствует ВАХ на рис. 6,б. На этом основании с учетом (2) у такого источника , т.е. его внутреннее сопротивление .

Отметим, что в расчетном плане при выполнении условия последовательная и параллельная схемы замещения источника являются эквивалентными. Однако в энергетическом отношении они различны, поскольку в режиме холостого хода для последовательной схемы замещения мощность равна нулю, а для параллельной – нет.

Кроме отмеченных режимов функционирования источника, на практике важное значение имеет согласованный режим работы, при котором нагрузкой RН от источника потребляется максимальная мощность

Условие такого режима

В заключение отметим, что в соответствии с ВАХ на рис. 5,б и 6,б идеальные источники ЭДС и тока являются источниками бесконечно большой мощности.

Читайте также:  Измерение малых токов при высоком напряжении

Контрольные вопросы и задачи

  1. Может ли внешняя характеристик источника проходить через начало координат?
  2. Какой режим (холостой ход или короткое замыкание) является аварийным для источника тока?
  3. В чем заключаются эквивалентность и различие последовательной и параллельной схем замещения источника?
  4. Определить индуктивность L и энергию магнитного поля WМ катушки, если при токе в ней I=20А потокосцепление y =2 Вб.

Ответ: L=0,1 Гн; WМ=40 Дж.

  1. Определить емкость С и энергию электрического поля WЭ конденсатора, если при напряжении на его обкладках U=400 В заряд конденсатора q=0,2´ 10-3 Кл.

Ответ: С=0,5 мкФ; WЭ=0,04 Дж.

  1. У генератора постоянного тока при токе в нагрузке I1=50А напряжение на зажимах U1=210 В, а при токе, равном I2=100А, оно снижается до U2=190 В. Определить параметры последовательной схемы замещения источника и ток короткого замыкания.
  1. Вывести соотношения (3) и (4) и определить максимальную мощность, отдаваемую нагрузке, по условиям предыдущей задачи.

Источник