Меню

Измеренное значение тока однофазного замыкания

Замер полного сопротивления цепи «фаза-нуль»

В ПТЭЭП нет прямого указания на периодичность проверки петли «фаза-ноль». В соответствии с прил. 3, п. 28.4, эти работы выполняют как после капитального или текущего ремонта электроустановки, так и при межремонтных, т.е. эксплуатационных испытаниях. На практике, как правило, ответственный за электрохозяйство принимает решение о периодичности эксплуатационных испытаний, исходя из требований по проверки сопротивления изоляции, например, 1 раз в 3 года. С этой периодичностью проводятся весь комплекс межремонтных испытаний: и проверка сопротивления цепи «фаза-ноль», и проверка металлосвязи, и испытания УЗО.

Исключения составляют электроустановки, расположенные во взрывоопасных зонах — для них установлена периодичность не реже, чем 1 раз в 2 года.

На рис. 1 схематично изображен путь, который проходит электрический ток от трансформатора до нагрузки. Каждый участок цепи защищает свой автоматический выключатель: автомат на подстанции защищает питающую сеть на участке до ВРУ; автомат в ВРУ защищает распределительную сеть до групповых щитов; автоматы в групповых щитах защищают групповую сеть до нагрузки. Полное сопротивление цепи «фаза-нуль» складывается из сопротивлений жил кабеля, а также переходных сопротивлений в местах соединений, подключения к коммутационным аппаратам. Поэтому, двигаясь от ТП в сторону конечных потребителей, сопротивление цепей «Ф-0» должно увеличиваться.

На величину сопротивления петли «фаза-нуль» влияют следующие факторы:

  • удаленность точки измерения от ТП;
  • длина и сечение отрезков кабелей, входящих в проверяемую цепь;
  • количество и качество соединений и коммутаций в цепи.

Измерить сопротивление петли, как правило, можно в разных точках, но рекомендуется проводить замер в наиболее удаленной от проверяемого аппарата защиты, поскольку сопротивление в этой точке будет максимальным, а ток КЗ, наоборот, минимальным.

Измерение полного сопротивления цепи «фаза-нуль»

В системе TN время автоматического отключения питания не должно превышать значений, указанных в табл.1.7.1.

Таблица 1.7.1 Наибольшее допустимое время защитного автоматического отключения для системы TN
Номинальное фазное напряжение 127В — Время отключения, 0,8 с
Номинальное фазное напряжение 220В — Время отключения, 0,4 с
Номинальное фазное напряжение 380В — Время отключения, 0,2 с
Номинальное фазное напряжение >380В — Время отключения, 0,1 с

Приведенные значения времени отключения считаются достаточными для обеспечения электробезопасности, в том числе в групповых цепях, питающих передвижные и переносные электроприемники и ручной электроинструмент класса 1.

В цепях, питающих распределительные, групповые, этажные и др. щиты и щитки, время отключения не должно превышать 5 с.

Таким образом для питающей и распределительной сетей время автоматического отключения должно быть не более 5 сек., а в групповых сетях — не более 0,4 сек.

Для обеспечения этих условий наименьший ток КЗ в конце линии, защищенной автоматом с электромагнитным расцепителем, должен составлять не менее 1,1 верхнего значения тока срабатывания расцепителя.

Для модульных автоматов с характеристиками «B», «C» и «D» это будут соответственно: 5,5Iн для «B», 11Iн для «C» и 22Iн для «D». При таких токах автомат гарантированно отключит цепь за 0,02 сек.

Если ток КЗ не превышает 1,1 верхнего значения тока срабатывания выключателя, то необходимо определять время срабатывания расцепителя с использованием время-токовой характеристики.

Важно! Для того, чтобы сравнить измеренное значение Iкз с номинальным значением Iн и проверить кратность, необходимо знать Iн. Но если в щите нет однолинейной схемы или какой-либо другой формы адресации, т.е. если непонятно, с каких автоматов на какие потребители уходят кабельные линии, то проводить замеры бесполезно. Интерпретировать результаты замеров и сделать выводы будет невозможно.

Иногда полученные значения сопротивления и тока КЗ не укладываются в рамки ПУЭ и ПТЭЭП. Причины две:

  • проектировщик получил неправильное расчетное значение сопротивления цепи «фаза-нуль», неправильно рассчитал ток КЗ и, как следствие, ошибся с выбором номинала автомата;
  • за время эксплуатации объекта переходные сопротивления в контактных соединениях возросли и сопротивление петли «Ф-0» увеличилось настолько, что перестало удовлетворять требованиям нормативных документов.

Если в результате электроизмерений выяснилось, что автомат своевременно не обесточит кабельную линию, то начать следует с поиска плохих контактов: почистить и протянуть контакты автоматов и шин, пропаять скрутки (если уж такие имеются), проверить клеммники, убрать пыль и грязь в местах соединений. Если эти меры не помогли уменьшить сопротивление петли, значит, пора задуматься о внесении изменений в проект и установке автомата меньшего номинала или прокладке кабеля большего сечения.

Подробнее о допустимых значениях сопротивления петли вы можете прочитать в этой статье. Там же, в конце статьи, вы найдете калькулятор расчета допустимых значений сопротивлений и токов КЗ для автоматических выключателей.

Источник

Расчет тока короткого замыкания в сети 0,4 кВ

Введение

В соответствии с пунктом 3.1.8. ПУЭ электрические сети должны иметь защиту от токов короткого замыкания, обеспечивающую по возможности наименьшее время отключения при этом указано что защита должна проверяться по отношению наименьшего расчетного тока короткого замыкания (далее — тока КЗ) к номинальному току плавкой вставки предохранителя или расцепителя автоматического выключателя. (Подробнее о выборе защиты от токов короткого замыкания читайте статью: Расчет электрической сети и выбор аппаратов защиты)

В сетях 0,4 кВ с глухозаземленной нейтралью наименьшим током КЗ является ток однофазного короткого замыкания методика расчета которого и приведена в данной статье.

Основные понятия и принцип расчета

Сама формула расчета тока короткого замыкания проста, она выходит из закона ома для полной цепи и имеет следующий вид:

  • Uф — фазное напряжение сети (230 Вольт);
  • Zф-о — полное сопротивление петли (цепи) фаза-нуль в Омах.

Что такое петля фаза-нуль (фаза-ноль)? Это электрическая цепь состоящая из фазного и нулевого проводников, а так же обмотки трансформатора к которым они подключены.

петля фаза-нуль

В свою очередь сопротивление данной электрической цепи и называется сопротивлением петли фаза нуль.

Читайте также:  Для преобразования переменного тока в постоянный используются осветительные приборы

Как известно есть три типа сопротивлений: активное (R), реактивное (X) и полное (Z). Для расчета тока короткого замыкания необходимо использовать полное сопротивление определить которое можно из треугольника сопротивлений:

сопротивление петли фаза-ноль

Примечание: Сумма полных сопротивлений нулевого и фазного проводников называется полным сопротивлением питающей линии.

Рассчитать точное сопротивление петли фаза-нуль довольно сложно, т.к. на ее сопротивление влияет множество различных факторов, начиная с переходных сопротивлений контактных соединений и сопротивлений внутренних элементов аппаратов защиты, заканчивая температурой окружающей среды. Поэтому для практических расчетов используются упрощенные методики расчета токов КЗ одна из которых и приведена ниже.

Справочно: Расчетным путем ток короткого замыкания определяется, как правило, только для новых и реконструируемых электроустановок на этапе проектирования электрической сети и выбора аппаратов ее защиты. В действующих электроустановках наиболее целесообразно определять ток короткого замыкания путем проведения соответствующих измерений (путем непосредственного измерения тока КЗ, либо путем косвенного измерения, т.е. измерения сопротивления петли-фаза-нуль и последующего расчета тока КЗ).

Методика расчета тока кз

1) Определяем полное сопротивление питающей линии до точки короткого замыкания:

  • Rл — Активное сопротивление линии, Ом;
  • Xл — Реактивное сопротивление линии, Ом;

Примечание: Расчет производится для каждого участка линии с различным сечением и/или материалом проводника, с последующим суммированием сопротивлений всех участков (Zпл=Zл1+Zл2+…+Zлn).

Активное сопротивление линии определяется по формуле:

  • Lфо — Сумма длин фазного и нулевого проводника линии, Ом;
  • p — Удельное сопротивление проводника (для алюминия — 0,028, для меди – 0,0175), Ом* мм 2 /м;
  • S — Сечение проводника, мм 2 .

Примечание: формула приведена с учетом, что сечения и материал фазного и нулевого проводников линии одинаковы, в противном случае расчет необходимо выполнять по данной формуле для каждого из проводников индивидуально с последующим суммированием их сопротивлений.

Реактивное сопротивление линии определяется по формуле:

2) Определяем сопротивление питающего трансформатора

Сопротивление трансформатора зависит от множества факторов, таких как мощность, конструкция трансформатора и главным образом схема соединения его обмоток. Для упрощенного расчета сопротивление трансформатора при однофазном кз (Zтр(1)) можно принять из следующей таблицы:

сопротивление питающего трансформатора при однофазном коротком замыкании

3) Рассчитываем ток короткого замыкания

Ток однофазного короткого замыкания определяем по следующей формуле:

  • Uф — Фазное напряжение сети в Вольтах (для сетей 0,4кВ принимается равным 230 Вольт);
  • Zтр(1) — Сопротивление питающего трансформатора при однофазном кз в Омах (из таблицы выше);
  • Z пл — Полное сопротивление питающей линии (цепи фаза-ноль) от питающего трансформатора до точки короткого замыкания в Омах.

    Пример расчета тока кз

    Для примера возьмем следующую упрощенную однолинейную схему:

    пример однолинейной схемы для расчета тока кз

    1. Определяем полное сопротивление питающей линии до точки короткого замыкания

    Как видно из схемы всего имеется три участка сети, расчет сопротивления необходимо производить для каждого в отдельности, после чего сложить рассчитанные сопротивления всех участков.

    Таким образом полное сопротивление питающей линии (цепи фаза-ноль) от питающего трансформатора до точки кз составит:

    1. Определяем сопротивление трансформатора

    Как видно из схемы источником питания является трансформатор на 160 кВА, со схемой соединения обмоток «звезда — звезда с выведенной нейтралью». Определяем сопротивление трансформатора по таблице выше:

    1. Рассчитываем ток короткого замыкания

    Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

    Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

    Источник

    

    Измерение полного сопротивления цепи «фаза-нуль» и тока короткого замыкания

    1. Общие положения

    Данная методика предназначена для производства измерений полного сопротивления цепи фаза-нуль и измерению тока короткого замыкания при испытаниях электроустановок зданий и сооружений с целью оценки срабатывания автоматического отключения питания при повреждении изоляции для предотвращения появления напряжения прикосновения в соответствии с нормами сотрудниками электролаборатории.
    Защитное устройство, предназначенное для автоматического отключения питания цепи или электрооборудования, должно обеспечивать защиту от косвенного прикосновения при замыкании токоведущей части на открытую проводящую часть или защитный проводник цепи или электрооборудования таким образом, что время отключения питания должно обеспечивать электробезопасность человека при одновременном прикосновении к проводящим частям, также в случае возможного повышения значений напряжения прикосновения 50 В переменного тока (действующее значение) и 120 В выпрямленного тока.
    Время отключения, независимо от значения напряжения прикосновения, для распределительных цепей не должно превышать 5 секунд. Наибольшее время отключения для системы TN с номинальным напряжением 220 В не должно превышать 0,4 секунд. Полное сопротивление цепи фаза-нуль должно удовлетворять условию:

    где, Zs — полное сопротивление цепи фаза-нуль;
    Uн — номинальное напряжение между фазой и землей;
    Iк — номинальный ток короткого замыкания, вызывающий срабатывание защитного устройства.
    В полное сопротивление цепи фаза-нуль входят сопротивления: обмотки силового трансформатора, фазного провода, нулевого рабочего провода, контактов автоматов, пускателей и т.д.
    По измеренному полному сопротивлению петли «фаза-нуль» определяется ток однофазного короткого замыкания. С помощью время-токовой характеристики защитного аппарата по полученной расчетом величине этого тока определяется время срабатывания защитного аппарата.
    Ток должен иметь определенную кратность по отношению к номинальному току плавкой вставки предохранителя или электромагнитного расцепителя автоматического выключателя согласно п. 1.7.79. и п. 7.3.139. ПУЭ.

    2. Метод измерений.

    Предлагаемые методы дают только приближенные значения величины полного сопротивления цепи фаза-нуль или токов короткого замыкания, так как они не учитывают векторную природу напряжения, то есть реальные условия, существующие в действительное время замыкания на “землю”. Эта степень приближенности приемлема при условии, что реактивное сопротивление испытываемой цепи незначительно.
    До выполнения измерения сопротивления цепи фаза-нуль рекомендуется провести испытания сопротивлений защитных проводников, их непрерывности, а также сопротивлений изоляции элементов электроустановки здания.

    2.1. Порядок измерения прибором MZC-300, MZC-303E

    2.1.1 Условия выполнения измерений и получения правильных результатов

    Чтобы начать измерение, необходимо соблюдение нескольких условий. Измеритель автоматически блокирует возможность начала измерений (это не касается измерения напряжения сети) в случае обнаружения каких-либо из ниже перечисленных ненормальных условий:

    Ситуация Отображаемые символы и предупреждающие сигналы Пояснения
    Напряжение, приложенное к измерителю, больше 250В. Надпись OFL и длительный звуковой сигнал. Незамедлительно отсоедините измеритель от испытуемой сети!
    Нарушена целостность провода PE/N. Отображается символ _—_ и звучит продолжительный звуковой сигнал. Символ и звуковой сигнал появляются после нажатия клавиши [start]
    Необходимо принять меры предосторожности, так как в испытуемой сети отсутствует защита от сверхтоков!
    Напряжение, приложенное к измерителю, слишком мало для измерения сопротивления – менее 180В. Отображается надпись -U- и звучат два длинных звуковых сигнала. Надпись и звуковые сигналы появляются после нажатия клавиши [start]
    Термическая защита блокирует измерение, что возможно при очень интенсивных измерениях. Отображается символ Т на дисплее и звучат два длинных звуковых сигнала. Символ и звуковые сигналы появляются после нажатия клавиши [start]
    Во время Автокалибровки сумма полного сопротивления цепи и полного сопротивления измеряемого провода очень велика. Вместо результата измерения отображается символ ]-[, прибор дополнительно генерирует два длинных звуковых сигнала.

    Измеритель также сигнализирует о ситуации, в которой результат измерения не может быть признан верным:
    ¦ Если элементы питания разряжены, то на дисплее попеременно с результатом измерения напряжения отображается надпись bAt . Заданное измерение можно произвести, однако полученные результаты не могут быть основанием для правильной оценки электробезопасности испытуемой электроустановки.

    2.1.2 Способы подключения измерителя

    Измерение в рабочей цепи

    Рис.6. Измерение в рабочей цепи (L-N)

    Измерение в защитной цепи

    Рис. 7. Измерение в защитной цепи (L-PE)
    а) сети TN (с занулением)
    б) сети ТТ (с защитным заземлением)

    Тестирование эффективности защиты корпуса электроустановки

    Рис. 8. Тестирование эффективности защиты корпуса электроустановки

    Измеритель подключается к тестируемой цепи или к устройству как показано на Рис.6, 7 и 8.
    Следует обратить внимание на правильный подбор измерительных наконечников, так как точность выполняемых измерений сильно зависит от качества выполненных подключений. Следует обеспечить хорошее соединение и сделать возможным непрерывное протекание большого измерительного тока.
    Недопустимо, например, присоединение зажима «Крокодил» к грязным или ржавым элементам — необходимо их тщательно очистить или использовать для измерений остроконечные зонды.

    2.1.3 Измерение напряжения переменного тока

    Приборами семейства MZC-300 можно измерить напряжение переменного тока в диапазоне 0. 250В. Прибор измеряет напряжение между измерительными гнёздами L и PE/N.
    Входное сопротивление вольтметра не менее 150 кОм. Включение режима вольтметра происходит автоматически после включения питания измерителя, а также примерно через 5 секунд после:
    • Выполнения измерения полного сопротивления, ожидаемого тока короткого замыкания либо сопротивления измерительного провода (во время Автокалибровки);
    • Последнего нажатия какой-либо из клавиш, связанных с выводом на дисплей результатов измерения.

    2.1.4 Измерение параметров петли короткого замыкания

    В приборах семейства MZC-300 используется метод измерения полного сопротивления петли короткого замыкания путём «искусственного короткого замыкания» испытуемой цепи через резистор, ограничивающий величину измерительного тока.
    Измеряется напряжение на гнёздах прибора непосредственно перед протеканием измерительного тока и в процессе протекания измерительного тока с учётом векторной структуры напряжения и тока.
    Далее процессор вычисляет полное сопротивление петли короткого замыкания, выделяет его активную и реактивную компоненты, а также фазовый угол, который возникнет в испытуемой цепи в случае короткого замыкания.
    Ограничивающий резистор имеет величину 10 Ом, а время протекания измерительного тока составляет З0 мс. Измеритель самостоятельно выбирает диапазон измерения полного сопротивления.

    Отображение результата измерения в виде сопротивления или тока
    Результат измерения можно отобразить в виде полного сопротивления петли короткого замыкания или ожидаемого тока короткого замыкания. Нажатие клавиши Z/I во время отображения одной из этих величин переводит прибор на отображение другой. Прибор всегда измеряет полное сопротивление, а отображаемый на дисплее ожидаемый ток короткого замыкания вычисляется по формуле:

    где: Uo =220В — номинальное напряжение исследуемой сети, Zs — измеренное полное сопротивление. Поэтому в сетях с иным номинальным напряжением необходимо при расчёте тока короткого замыкания внести соответствующую поправку. Например, в сети с Uo =230B ожидаемый ток короткого замыкания будет в 230/220=1,045 раза больше, чем отображаемый на приборе.
    В дальнейшем термин «измерение полного сопротивления» будет означать выполнение измерения и отображение результата в виде тока или сопротивления.

    2.1.5 Выполнение измерения и считывание результата

    Процесс измерения может быть начат нажатием клавиши START в момент, когда измеритель отображает на дисплее величину напряжения. Если нет причин для блокировки измерения, прибор выполняет измерение и в зависимости от установок, выполненных Пользователем клавишей Z/I, отображает на дисплее величину полного сопротивления либо ожидаемого тока короткого замыкания.
    Остальные компоненты результата измерения: активное сопротивление, реактивное сопротивление и фазовый угол можно вызвать на дисплей нажатием клавиши SEL.
    После автоматического возврата прибора в режим измерения напряжения результат измерения остаётся доступным. Он может быть снова вызван на дисплей клавишей SEL.
    Полное сопротивление, активное сопротивление и реактивное сопротивление указываются до величины 199,9 Ом. Если в режиме измерения сопротивления, показания будут более 199,9 Ом, на дисплее появится символ превышения диапазона измерения OFL, а режиме тока короткого замыкания измеритель отобразит символ очень малой величины UFL.
    Если в точке измерения предполагаются величины полного сопротивления более 199,9 Ом и такой результат является допустимым для данной электроустановки, то в приборе MZC-ЗОЗЕ можно использовать функцию RCD, которая увеличивает диапазон измерения до 1999 Ом.
    ВНИМАНИЕ:
    Выполнение большого количества измерений за короткий промежуток времени может привести к выделению большого количества тепла на ограничивающем резисторе. В связи с этим корпус прибора может нагреваться. Это нормальное явление.
    Измеритель имеет защиту от перегрева.

    2.1.6 Измерение сопротивления заземления

    Измерители семейства MZC-300 можно использовать для приблизительных измерений сопротивления заземления. В этих целях в качестве дополнительного источника напряжения, позволяющего создать измерительный ток, используется фазный проводник сети, как показано на рисунке 9.

    Способ подключения для измерения сопротивления заземления

    рис. 9. Способ подключения для измерения сопротивления заземления

    Результат измерения есть сумма сопротивлений измеряемого заземлителя, рабочего заземления, источника и фазного проводника. Если полученный результат не превышает допустимой величины для испытуемого заземления, то можно сделать вывод о том, что заземление выполнено правильно и нет необходимости использования более точных методов измерения.

    2.1.7 Безопасные приемы работы.

    Работы по измерению полного сопротивления петли «фаза-нуль» и токов однофазных замыканий выполняется по наряду-допуску или по распоряжению. Вид оформления работ определяет работник, имеющий право выдачи нарядов и распоряжений. К работе допускаются лица из электротехнического персонала не моложе 18 лет, обученные и аттестованные на знание ПТБ, и данной методики, обеспеченные инструментом, индивидуальными защитными средствами, спецодеждой.
    Состав бригады должен быть не менее двух человек:
    — производитель работ с группой по электробезопасности не ниже III;
    — член бригады с группой по электробезопасности не ниже III.
    При подаче напряжения от постороннего источника питания должны быть оформлены и выполнены организационные и технические мероприятия, как в месте подключения, так и на рабочем месте.
    Соединительные провода, питающий кабель, понижающий трансформатор должны иметь двойную изоляцию.
    Запрещается выполнять работы при высокой влажности, а также в огне-, пожаро- и во взрывоопасных средах и помещениях.
    По результатам измерений составляется протокол установленной формы. Лица, допустившие нарушения ПТБ или ПТЭЭП, а также допустившие искажения достоверности и точности измерений, несут ответственность в соответствии с законодательством и положением о передвижной электролаборатории.

    Источник

    Пример расчета тока однофазного КЗ

    В данной статье, я буду рассматривать пример расчета тока однофазного КЗ (ОКЗ) используя в первом варианте справочные таблицы представленные в [Л1], а во втором варианте справочные таблицы из [Л2].

    С методами определения величины тока однофазного КЗ и с приведенными справочными таблицами для всех элементов короткозамкнутой цепи, можно ознакомиться в статье: «Расчет токов однофазного кз при питании от энергосистемы».

    • масляный трансформатор напряжением 6/0,4 кВ, мощностью 1000 кВА со схемой соединения обмоток – Y/Yо.
    • от трансформатора до ВРУ используется кабель марки ААШвУ 3х95 длиной 120 м.
    • от ВРУ до двигателя используется кабель марки ААШвУ 3х95+1х35 длиной 150 м.

    Рис.1 - Расчетная схема сети эл. двигателя

    Рис.1 — Расчетная схема сети эл. двигателя

    1. Расчет тока однофазного КЗ будет выполнятся по формуле приближенного метода при большой мощности питающей энергосистемы (Хс Формула определения тока однофазного кз при большой мощности питающей энергосистемы приближенным методом

    • Uф – фазное напряжение сети, В;
    • Zт – полное сопротивление трансформатора току однофазного замыкания на корпус, Ом;
    • Zпт – полное сопротивление петли фаза-нуль от трансформатора до точки КЗ, Ом.

    2. По таблице 2 [Л1, с 6] определяем сопротивление трансформатора при вторичном напряжении 400/230 В, Zт/3 = 0,027 Ом.

    Таблица 2 - Расчетные сопротивления масляных трансформаторов по ГОСТ 11920-73 и ГОСТ 12022-76 при вторичном напряжении 400/230 В

    3. Определяем полное сопротивление цепи фаза-нуль для участка от тр-ра до точки КЗ по формуле 2-27 [Л2, с 40]:

    Определяем Zпт.уд. вариант 1

    где:

    • Zпт.уд.1 = 0,729 Ом/км – полное удельное сопротивление петли фаза-нуль для кабеля марки ААШвУ 3х95, определяется по таблице 12 [Л1, с 16];
    • l1 = 0,120 км – длина участка №1.
    • Zпт.уд.2 = 0,661 Ом/км – полное удельное сопротивление петли фаза-нуль для кабеля марки ААШвУ 3х95+1х35, определяется по таблице 13 [Л1, с 16];
    • l2 = 0,150 км – длина участка №2.

    Таблицы 11 - 13 - со значениями полного расчетного сопротивления цепи фаза-нуль для 3(4)- жильных кабелей с различной изоляцией и при температуре жилы +65(+80)

    4. Определяем ток однофазного КЗ:

    Определяем Iк тока однофазного КЗ, вариант 1

    Обращаю ваше вниманию, что при определении величины тока однофазного КЗ приближенным методом, сопротивления контактов шин, аппаратов, трансформаторов тока в данном методе не учитываются, поскольку арифметическая сумма Zт/3 и Zпт создает не который запас [Л2, с 40].

    Определим ток однофазного КЗ по справочным таблицам из [Л2].

    1. По таблице 2.4 [Л2, с 29] определяем сопротивление трансформатора Zт/3 = 33,6 мОм.

    Таблица 2.4 - Активные и интуктивные сопротивления 6(10)/0,4 кВ

    2. Определяем полное сопротивление цепи фаза-нуль для участка от тр-ра до точки КЗ по формуле 2-27 [Л2, с 40]:

    Определяем Zпт.уд. вариант 2

    • Zпт.уд.1 = 0,83 мОм/м – полное удельное сопротивление петли фаза-нуль для кабеля марки ААШвУ 3х95, определяется по таблице 2.11 [Л2, с 41];
    • l1 = 120 м – длина участка №1.
    • Zпт.уд.2 = 1,45 мОм/м – полное удельное сопротивление петли фаза-нуль для кабеля марки ААШвУ 3х95+1х35, определяется по таблице 2.10 [Л2, с 41].

    Обращаю ваше внимание, что в данной таблице значение Zпт.уд. приводится для кабелей независимо от материала оболочки кабеля.
    Если же посмотреть [Л1, с 16], то в таблице 13 для 4-жильных кабелей с алюминиевой оболочкой 3х95+1х35, Zпт.уд. = 0,661 мОм/м. Принимаю Zпт.уд.2 = 1,45 мОм/м, для того чтобы было наглядно видно, на сколько будет отличатся значение тока однофазного КЗ от расчета по «Варианту I». На практике же, лучше совмещать справочные таблицы из [Л1 и Л2].

    Таблицы 2.10, 2.11 - Полное удельное сопротивление петли фаза-нуль для кабелей

    3. Определяем ток однофазного КЗ:

    Определяем Iк тока однофазного КЗ, вариант 2

    Как видно из результатов расчета (вариант I: Iк = 1028 А; вариант II: Iк = 627 А), полученные значения тока однофазного КЗ почти в 2 раза отличаются. По каким справочным таблицам выполнять расчет тока однофазного КЗ, уже решайте сами, в любом случае это приближенный метод, поэтому, если нужны точные значения тока однофазного КЗ, следует рассчитывать по формуле представленной в ГОСТ 28249-93.

    1. Рекомендации по расчету сопротивления цепи «фаза-нуль». Главэлектромонтаж. 1986 г.
    2. Беляев А.В. Выбор аппаратуры, защит и кабелей в сети 0,4 кВ. Учебное пособие. 2008 г.

    Источник