Меню

Как импульсное напряжение сделать постоянным

Как из шима получить постоянное напряжение.

Как получить из шима постоянное напряжение, знает каждый начинающий электронщик. Всё просто, надо пропустить шим через фильтр низких частот(в простейшем случае RC цепочка) и на выходе фильтра получим постоянное напряжение, не так ли?

На самом деле, как мне кажется всё гораздо интереснее, при попытке получить из шима постоянное напряжение появляются следующие вопросы:

Как подобрать номиналы элементов фильтра?

Сгладиться ли шим полностью или останутся пульсации?

И как вообще это работает, ведь конденсатор заряжается и разряжается через один и тот же резистор и по идее если коэффециент заполнения будет меньше половины, напряжение на конденсаторе вообще будет равно нулю. Например, у нас коэффециент заполнения равен 30%, тогда 30% периода конденсатор будет заряжаться, а 70% разряжаться, через тот же резистор и в итоге на нём ничего не останется, по крайне мере можно так подумать.

Давайте проверим это на практике, для этого соберём схему, изображённую ниже и подключимся щупами осциллографа в точки 1 и 2, надо отметить что период шима на порядок больше постоянной времени данной цепочки.

Как из шима получить постоянное напряжение.

Как из шима получить постоянное напряжение.

На осциллограмме видно, что действительно так и происходит, как быстро конденсатор зарядился также быстро и разрядился. Как же вообще получают постоянное напряжение из шима?

Единственная идея, которая напрашивается — это изменить номиналы RC фильтра, давайте на порядок увеличим значение резистора, тем самым увеличив постоянную RC цепи(теперь она будет равна периоду шима) или уменьшив частоту среза фильтра.

Как из шима получить постоянное напряжение.

Как из шима получить постоянное напряжение.

Ух ты, что-то начинает проясняться, у нас появилась постоянная составляющая. То есть в наши рассуждения закралась ошибка и заключается она в том, что конденсатор заряжается от 0 до 63% за время равное R*C(T), а разряжается он от 63% до 5% за время больше чем 2T , ниже графики, поясняющие это.

Как из шима получить постоянное напряжение.

На графиках видно, что скорость зарядки и разрядки конденсатора не постоянна и зависит от заряда конденсатора, это свойство и позволяет получать из шима постоянное напряжение.

Теперь, когда мы нашли ошибку в наших размышлениях давайте, проанализируем что происходило, в первом эксперименте. Известно, что полная зарядка или разрядка конденсатора происходит за время равное 5T, а зарядка до 95% и разрядка до 5% примерно за 3T. Так как постоянная времени RC цепочки(которую мы использовали как ФНЧ) была мала, то за один период шима конденсатор успевал, почти полностью зарядиться и разрядиться.

После того как мы увеличили постоянную времени цепочки, скорость его зарядки и разрядки стала разной. Например, конденсатор успел разрядиться до 63% за время х, чтобы полностью разрядиться ему надо время превышающее . Чтобы понять это можно посмотреть на графики выше.

Итак вывод, постоянная времени RC цепочки должна быть равна или больше периода шима, тогда за один период не будет происходить полный заряд-разряд конденсатора. Если же ещё на порядок увеличить постоянную времени RC цепочки, то увеличится время переходного процесса и уменьшаться пульсации. Время переходного процесса — это промежуток времени, за которое напряжение на конденсаторе изменится от 0 до некоторой постоянной величины. Данный вывод приведен для общего понимания.

Теперь примерно, понимая как вообще получают из шима постоянное напряжение, давайте перейдём к реальной задаче.
Необходимо на одном из входов ОУ формировать опорное напряжение с помощью шима и ФНЧ, логическая единица у шима составляет 3 вольта, частота шима 10KHz, допустимый уровень пульсаций 30 милливольт. Считаем, что входы ОУ ток не потребляют, в качестве ФНЧ возьмём фильтр первого порядка, реализованный на RC цепочке.

Читайте также:  Стабилизатор напряжения свет ярче

Самый простой путь — это взять RC цепочку, у которой Т на два порядка больше величины шима и посмотреть какие будут пульсаций и дальше подбирать номиналы фильтра, но это есть не что иное, как метод научного тыка, а хотелось бы всё по-честному рассчитать.

Как из шима получить постоянное напряжение.

Как из шима получить постоянное напряжение.

Известно, что крутизна спада у фильтра первого порядка составляет 20дб/декаду и ослабление сигнала на 40дб, соответствует увеличению частоты на две декады. (20дб/декаду — уменьшение амплитуды в 10 раз(20дб), при увеличении частоты в 10 раз(декада).

Как из шима получить постоянное напряжение.

Зная, что частота среза фильтра должна быть на две декады(в 100 раз) меньше частоты шимы, можно её рассчитать 10KHz/100 = 100Hz.

Номиналы фильтра можно подобрать пользуясь известной формулой.

Как из шима получить постоянное напряжение.

Как из шима получить постоянное напряжение.

Как из шима получить постоянное напряжение.

Как из шима получить постоянное напряжение.

У данного генератора импульсная система питания, которая сильно шумит, это можно видеть во втором канале, но если присмотреться, то видно, что амплитуда пульсаций на осциллограмме примерно 40 милливольт, то есть немного отличается от расчётной, но это нормально так, как шим содержит высшие гармоники, которые вносят свой вклад и спад не везде равен 20дб/декаду, это видно на ЛАЧХ. Несмотря на
некоторые допущения, мне этот расчёт показался очень простым и понятным, ведь мы с помощью простых логических размышлений и школьных формул, решили такую интересную задачу. При решении данной задачи важно понять именно физический смысл, что мы по сути на АЧХ абстрактного фильтра находим точку, которая соответствует нужному подавлению сигнала, вторая координата точки — это частота, она должна быть равна частоте шима. Таким образом мы находим одну из точек АЧХ фильтра, пользуясь этой точкой находим частоту среза, а зная её мы находим номиналы фильтра, вот и всё.

Источник



Преобразователи напряжения импульсные

Для преобразования электроэнергии, а точнее сказать, напряжения, можно использовать различные устройства, такие как трансформаторы, генераторы, зарядные устройства. Все они являются преобразователями электрической энергии. Так как для питания многих современных устройств нужно не только переменное, но и постоянное напряжение, то для этих целей не всегда есть возможность применять такой источник энергии, как аккумуляторная батарея. Именно она выдаёт идеальное постоянное напряжение путём химической реакции. Раньше для преобразования и понижения напряжения применялись только низкочастотные трансформаторы, работающие в паре с выпрямителем и сглаживающим фильтром. Однако они обладали очень большими габаритами. С ростом и развитием инновационных технологий в быту и на производстве стали появляться электронные устройства, требующие миниатюрных преобразовательных устройств. Так и появились импульсные преобразователи постоянного напряжения. Миниатюрность их требуется больше для переносных мобильных устройств, нежели для стационарных.

Все импульсные преобразователи можно разделить на следующие группы:

  1. Повышающие, понижающие, инвертирующие;
  2. Со стабилизацией и без неё;
  3. С гальванической развязкой и без неё;
  4. Регулируемые и нерегулируемые;
  5. Обладающие различным диапазоном входного и выходного напряжения.

Однако импульсные преобразователи собраны на более сложных схемах, нежели их предшественники классические понижающие выпрямители.

Принцип действия

ИПН 24-12

Классические преобразователи с регулировкой выходного напряжения, как правило, управляют сопротивлением элемента, выполняющего регулировочную роль (транзистор или тиристор), через него постоянно протекает электрический ток, который и заставляет данный элемент нагреваться, при этом теряется значительная часть мощности. Главное преимущество такого устройства это минимум запчастей, простота, и отсутствие помех. Все остальные характеристики больше относятся к недостаткам.

Импульсный преобразователь напряжения использует регулировочный элемент лишь в виде ключа. То есть он работает в двух режимах:

  • Закрыт, и не пропускает электрический ток;
  • Открыт, и имеет минимальное проходное сопротивление.
Читайте также:  Источник ток с малым падением напряжения

При этом каждый из режимов обладает низким выделением тепла, что даёт возможность показывать высокий коэффициент полезного действия (КПД). Нагрузка же получает непрерывно электроэнергию за счёт накопления и хранения её в таких электрических резервуарах, как:

  1. Индуктивность (катушках);
  2. Конденсаторах.

Регулировка происходит за счёт изменения времени замкнутого состояния ключевого элемента. Снижение габаритов, а также массы устройств, возможно только за счёт повышения частоты, от 20 кГц до 1 МГц. Импульсные устройства могут формировать на выходе как пониженное напряжение, так и с изменением полярности. За счёт применения в них трансформаторов, работающих на высоких частотах позволяет:

  1. Качественно изолировать вход от выхода;
  2. Получить на выходе устройства несколько выходных напряжений.

Как и любое устройство импульсный преобразователь обладает и недостатками, которыми являются:

  1. Сложность схемы и наличие большего количества запчастей, а значит потенциально существует больше причин поломки;
  2. Являются источниками помех.

Однако постоянное развитие технологий в этом направлении снижают эти недостатки к минимальным значениям.

Классификация и виды импульсных преобразователей

Выпускаемые преобразователи можно разделить на три основные группы по роду тока:

  1. Конверторы. Выполняют преобразование переменного напряжения (АС) в постоянное (DC). Они применяются в основном в промышленности и в быту для изолированного питания устройств потребителей, где используется переменное напряжение 380/220 Вольт с частотой 50 Гц;
  2. Инверторы. Они постоянное напряжение преобразуют в переменное. Применяются в устройствах бесперебойного питания, а также сварочных аппаратах где за счёт такого преобразования есть возможность уменьшения габаритов, а значит и веса устройств.
  3. Конверторы постоянного напряжения. Преобразуют DC в DC. Применяются для питания аккумуляторных батарей и их подзарядки в системах где питание происходит от одного конвертора AC/DC, а каждый уже непосредственный аккумулятор получает за счёт конвертора DC/DC нужное конкретно для него напряжение.

Самые распространённые схемы

Существует несколько классических стандартных схем, которые чаще всего применяются в импульсных преобразователях постоянного напряжения. Они обеспечивают разные величины соотношений между входным и выходным напряжением. Эти схемы раскрывают саму суть преобразователей и их принцип работы.

Понижающий преобразователь напряжения и его схема

Понижающий преобразователь напряжения и его схема

Она используется для питания потребителей, нагрузка которых выражается большими токами и малым напряжением. Это первоочередная схема способная заменить классический низкочастотный преобразователь, в свою очередь, обеспечит увеличение КПД, уменьшит габариты и вес устройства. Транзистор VT выполняет роль электронного ключа, его работа лежит между двумя режимами осечки (полного закрытия) и насыщения (полного открытия). Расчет каждой детали производится непосредственно для конкретного потребителя и источника напряжения. Основным недостатком данной схемы является вероятность пробоя и появление полного большого входного напряжения на потребителе. Это, несомненно, приведёт к неисправности питаемого устройства.

Повышающий преобразователь и схема

Повышающий преобразователь и схема

Она может быть использована для получения напряжения на потребителе или на нагрузке больше чем на источники энергии. Применяется для подсветки дисплеев портативных компьютеров и для других электронных устройств где необходимо из небольшого напряжения сделать большее. Здесь имеет место процесс появления ЭДС самоиндукции, которая появляется после открытия транзистора. Вся накопленная энергия в дросселе попадает в нагрузку. При этом напряжение на выводах дросселя меняет свою полярность.

Инвертирующая схема

Может использоваться для получения напряжения, которое обладает обратной полярностью. При этом по значению U вых может быть меньше или больше U вх. Энергия, которая скапливается в дросселе направляется в нагрузку через сглаживающий конденсатор.

инвертирующая схема

Как видно из этих схем все они не имеют гальванической развязки, то есть непосредственной изоляции вторичного выходного напряжения от входного.

Читайте также:  Как изменяется напряжение при последовательном соединении конденсаторов

Схема 5

Вот одна из таких схем, содержащих трансформатор. Энергия, которая накапливается в магнитном поле первичной обмотки трансформатора, в нагрузку выводится через вторичную обмотку. Трансформатор в этом случае может быть и повышающим и понижающим. Применяется очень часто в сетевых источниках где есть необходимость снижения входного напряжения от нескольких сотен вольт до единиц или десятков.

В момент когда транзистор закрывается трансформатор своей индуктивностью может вызвать на коллекторе высоковольтный скачок или всплеск, что несомненно, очень плохо и может привести к пробою полупроводникового элемента. Для этого и устанавливается RC-цепочка из конденсатора и катушки индуктивности, которая может быть подключена параллельно ключу или первичной обмотке. Такой обратноходовой импульсный преобразователь широко используется во многих сетевых источниках электрического тока с небольшой мощностью порядка 100 Вт.

Схема 6

Еще одна схема с трансформатором и прямым включением диода изображена на схеме ниже.

Используется в источниках питания около 250 Вт. Все эти рассмотренные выше преобразователи называются однотактные, потому что за один период преобразования в нагрузку будет поступать только один импульс. Основное их преимущество — это простота схемы состоящей всего из одного транзистора, работающего в режиме ключа, а недостаток намагничивание сердечника которое не даёт в полном объёме использовать с максимальным КПД этот магнитный материал. Передача энергии потребителю и подготовка трансформатора к следующему циклу размагничивания осуществляется с некоторой паузой которая и снижает их выходную мощность.

Вот несколько практических реализованных в жизни схем, основой которого является импульсный преобразователь. Первая из них имеет регулировочный элемент, выполненный на микросхеме, в свою очередь, обе схемы выполнены на полевых транзисторах. Расчет их выполнен под напряжение для нагрузки от 5 до 12 Вольт.

Схема 7

Методы регулировки

Существуют три вида регулирования в системах импульсных преобразователей:

  1. Широтно-импульсная модуляция (ШИМ) Распространённый метод, который применяется в массовом производстве управляющих микросхем;
  2. Частотно-импульсное регулирование (ЧИМ). Здесь продолжительность когда ключ находится во включенном режиме должна быть согласована с периодом колебаний в контуре, обеспечивающем малые значения тока и напряжения на ключе в момент переключения. Используется там, где реализованы резонансные схемы.
  3. Комбинированный вид. Метод свойственен системам, в которых используется автоколебательный процесс, а частота переключения находится в зависимости и от напряжений на входе, и выходе преобразователя, и от величины тока в цепи потребителя;
  4. Триггерный метод. Используем исключительно в схеме понижающего регулятора, в котором необходимо, чтобы при закрытом состояния ключа, то есть транзистора, величина напряжения в нагрузке увеличивалась.

Критерии выбора

Критерии которым должен отвечать качественный импульсный преобразователь и стабилизатор:

  • Продолжительный режим работы в экстремальных моментах когда ток в нагрузке максимален;
  • Полная автоматизация регулирования напряжения на выходе. Только тогда можно не бояться ни перегрузок, ни даже короткого замыкания;
  • Высокая надёжность устройства, обусловленная высоким показателем КПД и как следствие низким выделением тепла;
  • Минимальные габариты и вес;
  • Наличие гальванической развязки, которая исключает даже теоретически саму возможность попадания опасного напряжения входа, на выходные контакты, а значит на незащищенный потребитель.

Человек не знакомый с электроникой должен помнить при выборе нужного бытового стабилизатора напряжения что он должен соответствовать главным образом мощности тех приборов, к которым он будет подключен. А также падения и всплескам напряжения, которые могут возникнуть в сети. Лучше выбирать стабилизатор или импульсный понижающий преобразователь напряжения немного с запасом по мощности, так как количество используемых потребителей в квартирах и частных домах постоянно растёт.

Источник

Adblock
detector