Меню

Как изменится эдс самоиндукции при увеличении скорости изменения тока

Учебники

Разделы физики

Журнал «Квант»

Лауреаты премий по физике

Общие

SA. Самоиндукция

Содержание

Индуктивность

Электрический ток, проходящий по контуру, создает вокруг него магнитное поле. Магнитный поток Φ через контур этого проводника (его называют собственным магнитным потоком) пропорционален модулю индукции В магнитного поля внутри контура \(\left( \Phi \sim B \right)\), а индукция магнитного поля в свою очередь пропорциональна силе тока в контуре \(\left( B\sim I \right)\).

Таким образом, собственный магнитный поток прямо пропорционален силе тока в контуре \(\left( \Phi \sim I \right)\). Эту зависимость математически можно представить следующим образом:

где L — коэффициент пропорциональности, который называется индуктивностью контура.

  • Индуктивность контура — скалярная физическая величина, численно равная отношению собственного магнитного потока, пронизывающего контур, к силе тока в нем:

\(

В СИ единицей индуктивности является генри (Гн):

1 Гн = 1 Вб/(1 А).

  • Индуктивность контура равна 1 Гн, если при силе постоянного тока 1 А магнитный поток через контур равен 1 Вб.

Индуктивность контура зависит от размеров и формы контура, от магнитных свойств среды, в которой находится контур, но не зависит от силы тока в проводнике. Так, индуктивность соленоида можно рассчитать по формуле

L = \mu \cdot \mu_0 \cdot N^2 \cdot \dfrac,\)

где μ — магнитная проницаемость сердечника, μ — магнитная постоянная, N — число витков соленоида, S — площадь витка, l — длина соленоида.

При неизменных форме и размерах неподвижного контура собственный магнитный поток через этот контур может изменяться только при изменении силы тока в нем, т.е.

\(\Delta \Phi =L \cdot \Delta I.\) (1)

Явление самоиндукции

Если в контуре проходит постоянный ток, то вокруг контура существует постоянное магнитное поле, и собственный магнитный поток, пронизывающий контур, не изменяется с течением времени.

Если же ток, проходящий в контуре, будет изменяться со временем, то соответственно изменяющийся собственный магнитный поток, и, согласно закону электромагнитной индукции, создает в контуре ЭДС.

  • Возникновение ЭДС индукции в контуре, которое вызвано изменением силы тока в этом контуре, называют явлением самоиндукции. Самоиндукция была открыта американским физиком Дж. Генри в 1832 г.

Появляющуюся при этом ЭДС — ЭДС самоиндукции Esi. ЭДС самоиндукции создает в контуре ток самоиндукции Isi.

Направление тока самоиндукции определяется по правилу Ленца: ток самоиндукции всегда направлен так, что он противодействует изменению основного тока. Если основной ток возрастает, то ток самоиндукции направлен против направления основного тока, если уменьшается, то направления основного тока и тока самоиндукции совпадают.

Используя закон электромагнитной индукции для контура индуктивностью L и уравнение (1), получаем выражение для ЭДС самоиндукции:

\(E_ =-\dfrac<\Delta \Phi ><\Delta t>=-L\cdot \dfrac<\Delta I><\Delta t>.\)

  • ЭДС самоиндукции прямо пропорциональна скорости изменения силы тока в контуре, взятой с противоположным знаком. Эту формулу можно применять только при равномерном изменении силы тока. При увеличении тока (ΔI > 0), ЭДС отрицательная (Esi При уменьшении тока (ΔI 0), т.е. индукционный ток направлен в ту же сторону, что и ток источника.

Из полученной формулы следует, что

\(L=-E_ \cdot \dfrac<\Delta t><\Delta I>.\)

  • Индуктивность – это физическая величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1 А за 1 с.

Явление самоиндукции можно наблюдать на простых опытах. На рисунке 1 показана схема параллельного включения двух одинаковых ламп. Одну из них подключают к источнику через резистор R, а другую — последовательно с катушкой L. При замыкании ключа первая лампа вспыхивает практически сразу, а вторая — с заметным запозданием. Объясняется это тем, что на участке цепи с лампой 1 нет индуктивности, поэтому тока самоиндукции не будет, и сила тока в этой лампе почти мгновенно достигает максимального значения. На участке с лампой 2 при увеличении тока в цепи (от нуля до максимального) появляется ток самоиндукции Isi, который препятствует быстрому увеличению тока в лампе. На рисунке 2 изображен примерный график изменения тока в лампе 2 при замыкании цепи.

Источник

§23. Самоиндукция

Э. д. с. самоиндукции. Э. д. с. eL, индуцирования в проводнике или катушке в результате изменения магнитного потока, созданного током, проходящим по этому же проводнику или катушке, носит название э. д. с. самоиндукции (рис. 60). Эта э. д. с. возникает при всяком изменении тока, например при замыкании и размыкании электрических цепей, при изменении нагрузки электродвигателей и пр. Чем быстрее изменяется ток в проводнике или катушке, тем больше скорость изменения пронизывающего их магнитного потока и тем большая э. д. с. самоиндукции в них индуцируется. Например, э. д. с. самоиндукции eL возникает в проводнике АБ (см. рис. 54) при изменении протекающего по нему тока i1. Следовательно, изменяющееся магнитное поле индуцирует э. д. с. в том же самом проводнике, в котором изменяется ток, создающий это поле.

Направление э. д. с. самоиндукции определяется по правилу Ленца. Э. д. с. самоиндукции имеет всегда такое направление, при котором она препятствует изменению вызвавшего ее тока. Следовательно, при возрастании тока в проводнике (катушке) индуцированная в них э. д. с. самоиндукции будет направлена против тока, т. е. будет препятствовать его возрастанию (рис. 61, а), и наоборот, при уменьшении тока в проводнике (катушке) возникает э. д. с. самоиндукции, совпадающая по направлению с током, т. е. препятствующая его убыванию (рис. 61, б). Если же ток в катушке не изменяется, то э. д. с. самоиндукции не возникает.

Из рассмотренного выше правила для определения направления э. д. с. самоиндукции вытекает, что эта э. д. с. оказывает тормозящее действие на изменение тока в электрических цепях. В этом отношении ее действие аналогично действию силы инерции, которая препятствует изменению положения тела. В электрической цепи (рис. 62, а), состоящей из резистора с сопротивлением R и катушки К, ток i создается совместным действием напряжения U источника и э. д. с. самоиндукции eL индуцируемой в катушке. При подключении рассматриваемой цепи к источнику э. д. с. самоиндукции eL (см. сплошную стрелку) сдерживает нарастание силы тока. Поэтому ток i достигает установившегося значения I=U/R (согласно закону Ома) не мгновенно, а в течение определенного промежутка времени (рис. 62, б). За это время в электрической цепи происходит переходный процесс, при котором изменяются eL и i. Точно

Рис. 60. Возникновение э.д.с. самоиндукции в витке (а) и в катушке (б)Рис. 60. Возникновение э.д.с. самоиндукции в витке (а) и в катушке (б)

Рис. 61. Направление э.д.с. самоиндукции в катушке при увеличении (а) и уменьшении (б) токаРис. 61. Направление э.д.с. самоиндукции в катушке при увеличении (а) и уменьшении (б) тока

Рис. 62. Электрическая цепь с катушкой индуктивности (а) и кривая изменения ней тока при включении и выключении (б)

так же при выключении электрической цепи ток i не уменьшается мгновенно до нуля, а из-за действия э. д. с. eL (см. штриховую стрелку) постепенно уменьшается.

Индуктивность. Способность различных проводников (катушек) индуцировать э. д. с. самоиндукции оценивается индуктивностью L. Она показывает, какая э. д. с. самоиндукции возникает в данном проводнике (катушке) при изменении тока на 1 А в течение 1 с. Индуктивность измеряется в генри (Гн), 1 Гн = 1 Ом*с. На практике индуктивность часто измеряют в тысячных долях генри — миллигенри (мГн) и в миллионных долях генри — микрогенри (мкГн).

Индуктивность катушки зависит от числа витков катушки ? и магнитного сопротивления Rм ее магнитопровода, т. е. от его магнитной проницаемости ?а и геометрических размеров l и s. Если в катушку вставить стальной сердечник, ее индуктивность резко возрастает из-за усиления магнитного поля катушки. В этом случае ток 1 А создает значительно больший магнитный поток, чем в катушке без сердечника.

Читайте также:  Как найти силу тока зная плотность тока

Используя понятие индуктивности L, можно получить для э. д. с. самоиндукции следующую формулу:

eL = – L ?i / ?t (53)

Где ?i – изменение тока в проводнике (катушке) за промежуток времени ?t.

Следовательно, э. д. с. самоиндукции пропорциональна скорости изменения тока.

Включение и отключение цепей постоянного тока с катушкой индуктивности. При подключении к источнику постоянного тока с напряжением U электрической цепи, содержащей R и L, выключателем B1 (рис. 63, а) ток i возрастает до установившегося значения Iуст=U/R не мгновенно, так как э. д. с. самоиндукции eL, возникающая в индуктивности, действует против приложенного напряжения V и препятствует нарастанию тока. Для рассматриваемого процесса характерным является постепенное изменение тока i (рис. 63, б) и напряжений uа и uL по кривым — экспонентам. Изменение i, uа и uL по указанным кривым называется апериодическим.

Рис. 63. Схема подключения цепи R-L к источнику постоянного тока (а) и кривые тока и напряжения при переходном процессе (б)

Рис. 63. Схема подключения цепи R-L к источнику постоянного тока (а) и кривые тока и напряжения при переходном процессе (б)

Скорость нарастания силы тока в цепи и изменения напряжений uа и uL характеризуется постоянной времени цепи

T = L/R (54)

Она измеряется в секундах, зависит только от параметров R и L данной цепи и позволяет без построения графиков оценить длительность процесса изменения тока. Эта длительность теоретически бесконечно велика. Практически же обычно считают, что она составляет (3-4) Т. За это время ток в цепи достигает 95—98 % установившегося значения. Следовательно, чем больше сопротивление и чем меньше индуктивность L, тем быстрее протекает процесс изменения тока в электрических цепях с индуктивностью. Постоянную времени Т при апериодическом процессе можно определить как отрезок АВ, отсекаемый касательной, проведенной из начала координат к рассматриваемой кривой (например, тока i) на линии, соответствующей установившемуся значению данной величины.
Свойством индуктивности замедлять процесс изменения тока пользуются для создания выдержек времени при срабатывании различных аппаратов (например, при управлении работой песочниц для периодической подачи порций песка под колеса локомотива). На использовании этого явления основана также работа электромагнитного реле времени (см. § 94).

Коммутационные перенапряжения. Особенно сильно проявляет себя э. д. с. самоиндукции при размыкании цепей, содержащих катушки с большим числом витков и со стальными сердечниками (например, обмотки генераторов, электродвигателей, трансформаторов и пр.), т. е. цепей, обладающих большой индуктивностью. В этом случае возникающая э. д. с. самоиндукции eL может во много раз превысить напряжение U источника и, суммируясь с ним, послужить причиной возникновения перенапряжений в электрических цепях (рис. 64, а), называемых коммутационными (возникающими при коммутации — переключениях электрических цепей). Они являются опасными для обмоток электродвигателей, генераторов и трансформаторов, так как могут вызвать пробой их изоляции.

Возникновение перенапряжения при размыкании электрических цепей с индуктивностьюРис. 64. Возникновение перенапряжения (о) и образование дуги (б) при размыкании электрических цепей с индуктивностьюРис. 64. Возникновение перенапряжения (о) и образование дуги (б) при размыкании электрических цепей с индуктивностью

Большая э. д. с. самоиндукции способствует также возникновению электрической искры или дуги в электрических аппаратах, осуществляющих коммутацию электрических цепей. Например, в момент размыкания контактов рубильника (рис. 64, б) образующаяся э. д. с. самоиндукции сильно увеличивает разность потенциалов между разомкнутыми контактами рубильника и пробивает воздушный промежуток. Возникающая при этом электрическая дуга поддерживается в, течение некоторого времени э. д. с. самоиндукции, которая, таким образом, затягивает процесс отключения тока в цепи. Это явление весьма нежелательно, так как дуга оплавляет контакты отключающих аппаратов, что приводит к быстрому выходу их из строя. Поэтому во всех аппаратах, служащих для размыкания электрических цепей, предусматриваются специальные дугогасительные устройства, обеспечивающие ускорение гашения дуги.

Кроме того, в силовых цепях, обладающих значительной индуктивностью (например, обмотки возбуждения генераторов), параллельно цепи R-L (т. е. соответствующей обмотке) включают разрядный резистор Rр (рис. 65, а). В этом случае после отключения выключателя В1 цепь R-L не прерывается, а оказывается замкнутой на резистор Rр. Ток в цепи i при этом уменьшается не мгновенно, а постепенно — по экспоненте (рис. 65,6), так как э. д. с. самоиндукции eL, возникающая в индуктивности L, препятствует уменьшению тока. Напряжение up на разрядном резисторе в течение процесса изменения тока также изменяется по экспоненте. Оно равно напряжению, приложенному к цепи R-L, т. е. к зажимам соответ-

Рис. 65. Схема отключения цепи R-L от источника постоянного тока (а) и кривые тока и напряжения при переходном процессе (б)

ствующей обмотки. В начальный момент Up нач = URp/R, т. е. зависит от сопротивления разрядного резистора; при больших значениях Rp это напряжение может оказаться чрезмерно большим и опасным для изоляции электрической установки. Практически для ограничения возникающих перенапряжений сопротивление Rp разрядного резистора берут не более чем в 4—8 раз больше сопротивления R соответствующей обмотки.

Условия возникновения переходных процессов. Рассмотренные выше процессы при включении и выключении цепи R-L называют переходными процессами. Они возникают при включении и выключении источника или отдельных участков цепи, а также при изменении режима работы, например при скачкообразном изменении нагрузки, обрывах и коротких замыканиях. Такие же переходные процессы имеют место при указанных условиях и в цепях, содержащих конденсаторы, обладающие емкостью С. В ряде случаев переходные процессы являются опасными для источников и приемников, так как возникающие токи и напряжения могут во много раз превышать номинальные значения, на которые рассчитаны эти устройства. Однако в некоторых элементах электрооборудования, в частности в устройствах промышленной электроники, переходные процессы являются рабочими режимами.

Физически возникновение переходных процессов объясняется тем, что катушки индуктивности и конденсаторы являются накопителями энергии, а процесс накопления и отдачи энергии в этих элементах не может происходить мгновенно, следовательно, не может мгновенно измениться ток в катушке индуктивности и напряжение на конденсаторе. Время переходного процесса, в течение которого при включениях, выключениях и изменениях режима работы цепи происходит постепенное изменение тока и напряжения, определяется значениями R, L и С цепи и может составить доли и единицы секунд. После окончания переходного процесса ток и напряжение приобретают новые значения, которые называют установившимися.

Источник



САМОИНДУКЦИЯ. ИНДУКТИВНОСТЬ

При изменении тока в проводнике, витке или индуктивной катушке изменяется магнитный поток, создаваемый этим током. Изменение магнитного потока индуцирует в проводнике (витке, индуктивной катушке) ЭДС, действие которой направлено на поддержание предшествующего состояния поля. Такое явление называется самоиндукцией.Направление ЭДС самоиндукции определяется по правилуЛенца.

Электродвижущая сила самоиндукции имеет всегда такое на­правление, при котором она препятствует изменению вызвавшего ее тока.

Следовательно, при возрастании тока в проводнике (индуктивной катушке) индуцированная в ней ЭДС самоиндукции будет направлена против тока, т. е. будет препятствовать его возрастанию (рис. 10, а),и, наоборот, при уменьшении тока в проводнике (индуктивной катушке) возникает ЭДС самоиндукции, совпадающая по направлению с током, т. е. препятствующая его убыванию (рис. 10,6).

Способность различных проводников (индуктивных катушек)

индуцировать ЭДС самоиндукции оценивается индуктивностью L. Единица индуктивности — генри (Гн). Такой индуктивностью обладает проводник, в котором возникает ЭДС самоиндукции, равная 1 В, при изменении тока на 1 А за 1 с:

Знак « — » в формуле отражает правило Ленца.

Читайте также:  Резонанс токов возникает при соединении реактивных элементов

Рис.10, Направление ЭДС самоиндукции в индуктивной катушке:

а — при увеличении тока; б — при уменьшении тока

На практике индуктивность часто измеряют в тысячных долях генри — миллигенри (мГн) и в миллионных долях генри — микрогенри (мкГн).

Значение индуктивности Lзависит от конструкции элементов цепи.

Так, для индуктивной катушки с числом витков w, магнитопроводом длины, сечения S и магнитной проницаемостью индуктивность

Если катушки своими полями не влияют друга на друга, то при последовательном соединениииндуктивных катушек с индуктивностями . общая индуктивность

При параллельном соединение

Запомните

Если ток в индуктивной катушке не изменяется, то ЭДС самоиндукции не возникает.

Явление самоиндукции в тех или иных проводниках характеризуется индуктивностью L. Индуктивность— это размерный коэффициент пропорциональности между скоростью изменения тока во времени и индуцируемой при этом ЭДС.

1. При каких условиях возникает ЭДС самоиндукции?

2. В каких единицах измеряется индуктивность?

3. Как изменится ЭДС самоиндукции, если скорость изменения тока, проходящего через индуктивную катушку, возросла?

ВЗАИМОИНДУКЦИЯ

Если две индуктивные катушки находятся на некотором расстоянии друг от друга (рис..11) и по одной из них (1) проходит изменяющийся ток, то часть магнитного потока, возбуждаемая этим током, пронизывает витки второй индуктивной катушки (2) и в ней

возникает ЭДС, называемая ЭДС взаимоиндукции.

Если два замкнутых контура или две индуктивные катушки 1 и 2 (см. рис. 11) сцеплены с общим магнитным потоком , то такие контуры и индуктивные катушки называют индуктивно- или магнитно-связанными.

Под действием ЭДС взаимоиндукции в замкнутой цепи второй индуктивной катушки

взаимоиндукции. Он вызывает появление магнитного поля, которое пронизывает витки первой индуктивной катушки, в результате чего в ней также возникает ЭДС взаимоиндукции. Такое явление называется взаимоиндукцией

Величина ЭДС взаимоиндукции, возникающей во второй индуктивной катушке, зависит от размеров, расположения индуктивных катушек, магнитной проницаемости их сердечников, а также скорости изменения силы тока — в первой индуктивноикатушке .Эту зависимость можно выразить формулой.

Рис..11. Взаимоиндукция: Э — индуктивно-связанные катушки.

гдеМ — величина, зависящая от размеров индуктивных катушек, их расположения и магнитной проницаемости среды между индуктивными катушками. Она называется взаимной индуктивностью и измеряется в генри (Гн). Знак « — » в этой формуле показывает, что ЭДС взаимоиндукции противодействует причине, вызывающей ее.

Взаимоиндукция дает возможность связывать посредством магнитного поля различные электрические цепи. Явление взаимоиндукции широко используют в трансформаторах, радиотехнических устройствах и устройствах автоматики.

1. Какое явление называется взаимоиндукцией?

2. При каких условиях возникает ЭДС взаимоиндукции?

3. Какие катушки называют магнитносвязанными?

4. В каких единицах измеряется взаимная индуктивность?

ВИХРЕВЫЕ ТОКИ

Изменяющийся магнитный поток способен индуцировать ЭДС не только в проводах или витках индуктивных катушек, но и в массивных стальных сердечниках, кожухах и других металлических деталях электротехнических установок. Эти ЭДС являются причиной

появления индуцированных токов, которые действуют в массивных металлических деталях электротехнических устройств, замыкаясь накоротко в их толще. Такие токи получили название вихревых токов. Природа вихревых токов такая же, как и токов, индуцированных в обычных проводах или индуктивных катушках. Благодаря

очень малому сопротивлению массивных проводников вихревые токи даже при небольшой индуцированной ЭДС достигают очень больших значений, вызывая чрезмерное нагревание этих проводников.

Способы уменьшения вредного действия вихревых токов.В электрических машинах и аппаратах вихревые токи обычно нежелательны, так как они вызывают нагрев металлических сердечников, создают потери энергии (так называемые потери от вихревых токов), снижают КПД электрических машин и аппаратов и ока;!Ь1вают согласно правилу Ленца размагничивающее действие. Для уменьшения вредного действия вихревых токовприменяют два основных способа.

1. Сердечники электрических машин и аппаратов выполняют из отдельных стальных листов толщиной 0,35— 1,0 мм, изолированных один от другого слоем изоляции (лаковой пленкой, окалиной, образующейся при отжиге листов, и пр.). Благодаря этому преграждается путь распространению вихревых токов.

2. В состав электротехнической стали, из которой изготовляют сердечники электрических машин и аппаратов, вводят 1— 5% кремния, что обеспечивает повышение ее электрического сопртивления. Благодаря этому достигается снижение силы вихревых токов, протекающих по сердечникам электрических машин и аппаратов.

Использование вихревых токов. Вихревые токи используют для плавки металлов, с их помощью нагревают металлические детали при сварке, наплавке и пайке, а также осуществляют поверхностный нагрев, необходимый для закалки металлических изделий.

1. Что является причиной появления вихревых токов?

2. Какие способы уменьшения вредного действия вихревых токов вам

3. Где можно найти полезное применение вихревым токам?

Источник

Цепь переменного тока с индуктивностью

Дата публикации: 30 марта 2015 .
Категория: Статьи.

В статье «ЭДС самоиндукции и индуктивность цепи» говорится, что при включении и при всяком изменении тока в электрической цепи вследствие пересечения проводника своим же собственным магнитным полем в нем возникает индуктированная электродвижущая сила (ЭДС). Эту ЭДС мы назвали ЭДС самоиндукции. ЭДС самоиндукции имеет реактивный характер. Так, например, при увеличении тока в цепи ЭДС самоиндукции будет направлена против ЭДС источника напряжения, и поэтому ток в электрической цепи не может установиться сразу. И, наоборот, при уменьшении тока в цепи индуктируется ЭДС самоиндукции такого направления, что, мешая току исчезать, она поддерживает этот убывающий ток.

Как нам уже известно, ЭДС самоиндукции зависит от скорости изменения тока в цепи и от индуктивности этой цепи (числа витков, наличия стальных сердечников).

В цепи переменного тока ЭДС самоиндукции возникает непрерывно, так как ток в цепи непрерывно изменяется.

На рисунке 1 представлена схема цепи переменного тока, содержащей катушку с индуктивностью L без стального сердечника. Для простоты будем считать сначала, что активное сопротивление катушки очень мало и им можно пренебречь.

Рассмотрим внимательнее изменение переменного тока за время одного периода. На рисунке 2 показана кривая изменения переменного тока. Первая половина периода разбита на мелкие одинаковые части.

Рисунок 2. Определение скорости изменения переменного тока

За промежуток времени 1 величина тока изменилась от нуля до 11’. Прирост величины тока за это время равен а.

За время, обозначенное отрезком 12, мгновенная величина выросла до 22’, причем прирост величины тока равен б.

В течение времени, обозначенного отрезком 23, ток увеличивается до 33’, прирост тока показывает отрезок в и так далее.

Так, с течением времени переменный ток возрастет до максимума (при 90°). Но, как видно из чертежа, прирост тока делается все меньше и меньше, пока, наконец, при максимальном значении тока этот прирост не станет равным нулю.

При дальнейшем изменении тока от максимума до нуля убыль величины тока становится все больше и больше, пока, наконец, около нулевого значения ток, изменяясь с наибольшей скоростью, не исчезнет, но тут же появляется вновь, протекая в обратном направлении.

Рассматривая изменение тока в течение периода, мы видим, что с наибольшей скоростью изменяется ток около своих нулевых значений. Около максимальных значений скорость изменения тока падает, а при максимальном значении тока прирост его равен нулю. Таким образом, переменный ток меняется не только по величине и направлению, но также и по скорости своего изменения. Переменный ток, проходя по виткам катушки, создает переменное магнитное поле. Магнитные линии этого поля, пересекая витки своей же катушки, индуктируют в них ЭДС самоиндукции.

Читайте также:  Как изменить направление индукционного тока в катушке с помощью постоянного магнита

На рисунке 3 кривая i показывает изменение переменного тока в катушке. Как было уже указано, величина ЭДС самоиндукции зависит от скорости изменения тока и от индуктивности катушки. Но так как индуктивность катушки в нашем случае остается без изменения, ЭДС самоиндукции будет зависеть только от скорости изменения тока. Выше было показано, что наибольшая скорость изменения тока имеет место около нулевых значений тока. Следовательно, наибольшее изменение ЭДС самоиндукции имеет те же моменты.

Рисунок 3. ЭДС самоиндукции в катушке, включенной в цепь переменного тока

В момент а ток резко и быстро увеличивается от нуля, а поэтому, как следует из вышеприведенной формулы, ЭДС самоиндукции (кривая eL) имеет отрицательное максимальное значение. Так как ток увеличивается, то ЭДС самоиндукции по правилу Ленца должна препятствовать изменению (здесь увеличению) тока. Поэтому ЭДС самоиндукции при возрастании тока будет иметь направление, обратное току (положение б), что следует также из указанной формулы. Скорость изменения тока по мере приближения его к максимуму уменьшается. Поэтому ЭДС самоиндукции также уменьшается, пока, наконец, при максимуме тока, когда изменения его будут равны нулю, она не станет равной нулю (положение в).

Переменный ток, достигнув максимума, начинает убывать. По правилу Ленца ЭДС самоиндукции будет мешать току убывать и, направленная уже в сторону протекания тока, будет его поддерживать (положение г).

При дальнейшем изменении переменный ток быстро убывает до нуля. Резкое уменьшение тока в катушке повлечет за собой также быстрое уменьшение магнитного поля и в результате пересечения магнитными линиями витков катушки в них будет индуктироваться наибольшая ЭДС самоиндукции (положение д).

Ток в катушке опережает ЭДС самоиндукции по фазе на 90°

Во вторую половину периода изменения тока картина повторяется и снова при возрастании тока ЭДС самоиндукции будет мешать ему, имея направление, обратное току (положение е).

При убывании тока ЭДС самоиндукции, имея направление в сторону тока, будет поддерживать его, не давая ему исчезнуть сразу (положение з).

На рисунке видно, что ЭДС самоиндукции отстает по фазе от тока на 90° или на ¼ периода. Так как магнитный поток совпадает по фазе с током, то можно сказать, что ЭДС, наводимая магнитным потоком, отстает от него по фазе на 90° или на ¼ периода.

Нам уже известно, что две синусоиды, сдвинутые одна относительно другой на 90°, можно изобразить векторами, расположенными под углом 90° (рисунок 4).

Так как ЭДС самоиндукции в цепях переменного тока непрерывно противодействует изменениям тока, то, чтобы дать возможность току протекать по виткам катушки, напряжение сети должно уравновешивать ЭДС самоиндукции. Иными словами, напряжение сети в каждый момент времени должно быть равно и противоположно ЭДС самоиндукции.

Приложенное к катушке напряжение сети опережает ток на 90° и противоположно ЭДС самоиндукции

Вектор напряжения сети, равный и противоположный ЭДС самоиндукции eL, мы обозначим через U (рисунок 5). Только при условии, что к зажимам катушки будет приложено напряжение сети, равное и противоположное ЭДС самоиндукции, и, стало быть, это напряжение сети U уравновесит ЭДС самоиндукции eL, по катушке сможет проходить переменный ток I.

Но в этом случае напряжение сети U будет опережать по фазе ток I на 90°.

Таким образом, в цепях переменного тока ЭДС самоиндукции, возникая непрерывно, вызывает сдвиг фаз между током и напряжением. Возвращаясь к рисунку 3, мы видим, что ток i по катушке будет проходить и тогда, когда напряжение сети (кривая uL) равно нулю (положение в), и даже тогда, когда напряжение сети направлено в сторону, обратную току (положение г и з).

Итак отметим, что в цепи переменного тока, когда ЭДС самоиндукции отсутствует, напряжение сети и ток совпадают по фазе. Индуктивная же нагрузка в цепях переменного тока (обмотки электродвигателей и генераторов, обмотки трансформаторов, индуктивные катушки) всегда вызывает сдвиг фаз между током и напряжением.

Можно показать, что скорость изменения тока пропорциональна угловой частоте ω. Следовательно, действующее значение ЭДС самоиндукции eL может быть найдено по формуле:

Как было отмечено выше, напряжение, приложенное к зажимам цепи, содержащей индуктивность, в каждый момент времени должно быть по величине равно ЭДС самоиндукции:

Формула закона Ома для цепи переменного тока, содержащего индуктивность, будет такова:

Величина xL называется индуктивным сопротивлением цепи, или реактивным сопротивлением индуктивности, и измеряется в омах. Таким образом, реактивное индуктивное сопротивление представляет собой своеобразное препятствие, которое оказывает цепь изменениям тока в ней. Оно равно произведению индуктивности на угловую частоту. Формула индуктивного сопротивления имеет вид:

Индуктивное сопротивление проводника зависит от частоты переменного тока и индуктивности проводника. Поэтому индуктивное сопротивление катушки, включаемой в цепь токов различной частоты, будет различным. Например, если имеется катушка индуктивностью 0,05 Гн, то путем расчета индуктивного сопротивления выяснится, что в цепи частотой 50 Гц ее индуктивное сопротивление будет:

а в цепи тока частотой 400 Гц

Та часть напряжения сети, которая идет на преодоление (уравновешивание) ЭДС самоиндукции, называется индуктивным падением напряжения или реактивной слагающей напряжения.

Рассмотрим теперь, какая мощность потребляется от источника переменного напряжения, если к его зажимам подключена индуктивность.

Кривые мгновенных значений напряжения, тока и мощности для цепи, содержащей индуктивность

Рисунок 6. Кривые мгновенных значений напряжения, тока и мощности для цепи, содержащей индуктивность

На рисунке 6 даны кривые мгновенных значений напряжения, тока и мощности для этого случая. Мгновенное значение мощности равно произведению мгновенных значений напряжения и тока:

Из чертежа видно, что если u и i имеют одинаковые знаки, то кривая p положительная и располагается выше оси ωt. Если же u и i имеют разные знаки, то кривая p отрицательна и располагается ниже оси ωt.

В первую четверть периода ток, а в месте с ним и магнитный поток катушки увеличиваются. Катушка забирает из сети мощность. Площадь, заключенная между кривой p и осью ωt, есть работа (энергия) электрического тока. За первую четверть периода энергия, забираемая из сети, идет на создание магнитного поля вокруг витков катушки (мощность положительная). Количество энергии, запасаемое в магнитном поле за время роста тока, можно определить по формуле:

За вторую четверть периода ток убывает. ЭДС самоиндукции, которая в первую четверть периода стремилась помешать возрастанию тока, теперь, когда ток начинает уменьшаться, будет мешать ему уменьшаться. Сама катушка становится как бы генератором электрической энергии. Она возвращает в сеть энергию, запасенную в ее магнитном поле. Мощность отрицательна, и на рисунке 6 кривая p располагается ниже оси ωt.

За вторую половину периода явление повторяется. Таким образом, между источником переменного напряжения и катушкой, содержащей индуктивность, происходит обмен мощностью. В течение первой и третьей четвертей периода мощность поглощается катушкой, в течение второй и четвертой мощность возвращается источнику.

В этом случае, в среднем, расхода мощности не будет, несмотря на то, что на зажимах цепи есть напряжение U и в цепи протекает ток I.

Тот же результат мы получим, если вычислим среднюю или активную мощность по формуле, приведенной выше:

В нашем случае между напряжением и током существует сдвиг фаз, равный 90°, и cos φ = 90° = 0.

Поэтому активная мощность также равна нулю, то есть расхода мощности нет.

Источник: Кузнецов М. И., «Основы электротехники» — 9-е издание, исправленное — Москва: Высшая школа, 1964 — 560 с.

Источник