Меню

Как найти вектора линейных токов

Построение в заданном масштабе векторной диаграммы напряжений, отложив горизонтально вектор тока , страница 7

Начертить схему цепи. Определить фазное напряжение ; фазные и линейные токи; активную мощность всех трех фаз.

Построить в масштабе , векторную диаграмму напряжений и токов; графически (из векторной диаграммы) определить ток в нейтральном (нулевом) проводе .

1. Найду фазное напряжение:

Поскольку задана равномерная однородная нагрузка фаз, то доже при отсутствии нулевого провода фазные напряжения равны.

2. Рассчитаю фазные токи (они же линейные):

3. Определяю активную мощность трех фаз:

4. Строю векторную диаграмму:

Длины векторов фазных напряжений в масштабе будут равны:

Длины векторов фазных токов в масштабе будут равны:

Вначале откладываем векторы фазных напряжений. Вектор откладывается вертикально вверх, вектор отстает от вектора на 120º, а вектор в свою очередь отстает от вектора на 120º. Соединив концы векторов фазных напряжений, получим треугольник линейных напряжений , , . Векторы фазных токов совпадают с векторами соответствующих фазных напряжений, так как нагрузка фаз активная..

5. Нахожу вектор тока в нейтральном (нулевом) проводе. Он согласно первому закину Кирхгофа равен сумме векторов фазных токов, т.е. .Выполню сложение векторов на векторной диаграмме. Величину тока нахожу, измерив длину его вектора и пользуясь масштабом: А.

Ответ: фазное напряжение В; ток фазы А он же линейный А, ток фазы В он же линейный А; ток фазы С он же линейный А; активную мощность всех трех фазах В, ток в нейтральном (нулевом) проводе А.

Контрольная работа №4.

В трехфазную сеть напряжением В включен двигатель, потребляющий мощность кВт. Обмотка двигателя соединена звездой. Линейный ток двигателя А. Начертить схему цепи. Определить фазное напряжение ; полное , активное и индуктивное сопротивления фазы; коэффициент мощности ; полную и реактивную мощности двигателя. Построить в масштабе , векторную диаграмму напряжений и токов.

1. Найду фазное напряжение:

Поскольку задана равномерная однородная нагрузка фаз, то доже при отсутствии нулевого провода фазные напряжения равны.

2. Рассчитаю фазные токи, они равны линейным:

3. Найду полное сопротивление каждой фазы:

4. Определю коэффициент мощности фазы (а так как нагрузка фаз равномерная и однородная, то и всего потребителя)

5. Рассчитаю активное сопротивление фазы:

6. Рассчитаю реактивное сопротивление фазы:

7. Определяю мощности трехфазных потребителей:

8. Строю векторную диаграмму:

Длины векторов фазных напряжений в масштабе будут равны: см.

Длины векторов фазных токов в масштабе будут равны: см.

Вначале откладываем векторы фазных напряжений. Вектор откладывается вертикально вверх, вектор отстает от вектора на 120º, а вектор в свою очередь отстает от вектора на 120º. Соединив концы векторов фазных напряжений, получим треугольник линейных напряжений , , . Поскольку нагрузка фаз активно-индуктивная, то векторы фазных токов , , будут отставать от векторов фазных напряжений , , на угол ( ).

Ответ: фазное напряжение В; фазные токи А; полное сопротивление фазы Ом; активное сопротивление фазы Ом и индуктивное сопротивление фазы Ом; полную мощность ВА, реактивную мощность вар.

В трехфазную сеть напряжением В включен треугольником потребитель мощностью кВт при .

Начертить схему цепи. Определить фазное напряжение ; фазный и линейный ток потребителя; полную и реактивную мощности потребителя.

Построить в масштабе , векторную диаграмму напряжений и токов.

1. При соединении треугольником фазное напряжение равно линейному, то есть:

2. Из формулы мощности нахожу фазный ток потребителя:

3. Рассчитываю линейный ток:

Так как нагрузка равномерная, то

4. Нахожу полную мощность приемника

5. Рассчитываю реактивная мощность приемника:

6. Строю векторную диаграмму.

Длина векторов фазных (линейных) напряжений в масштабе будут равны:

Длина векторов фазных токов в масштабе будут равны:

При построении векторной диаграммы вначале откладываю три вектора линейных (фазных) напряжений со сдвигом относительно друг друга на 120º. Векторы фазных токов отстают от векторов фазных напряжений на угол ( ), нагрузка активно индуктивная. Соединив концы векторов фазных токов, получу треугольник линейных токов; при этом векторы линейных токов являются разностью векторов соответствующих фазных токов:

Ответ: фазное напряжение В; фазный ток потребителя А; линейный ток потребителя А; полная мощность потребителя ВА; и реактивная мощность потребителя вар.

В трехфазную сеть с линейным напряжением В включены треугольником три разные группы ламп. Мощность ламп в фазах составляет: кВт, кВт, кВт.

Начертить схему цепи. Определить фазное напряжение ; фазные токи , , и мощность , потребляемую всеми лампами.

Построить в масштабе , векторную диаграмму напряжений и токов. Пользуясь масштабом, найти по векторной диаграмме значения токов в линейных проводах , , .

1. При соединении треугольником фазное напряжение равно линейному, то есть:

2. Определяю фазные токи:

3. Нахожу активную мощность всех ламп:

4. Строю векторную диаграмму.

Длина векторов фазных (линейных) напряжений в масштабе будут равны:

Длина векторов фазных токов в масштабе будут равны:

При построении векторной диаграммы вначале откладываю три вектора линейных (фазных) напряжений со сдвигом относительно друг друга на 120º. Векторы фазных токов совпадают с векторами фазных напряжений, так как нагрузка фаз – активная. Векторы линейных токов, равные разности векторов составляющих фазных токов получу соединив концы векторов фазных токов:

  • АлтГТУ 419
  • АлтГУ 113
  • АмПГУ 296
  • АГТУ 267
  • БИТТУ 794
  • БГТУ «Военмех» 1191
  • БГМУ 172
  • БГТУ 603
  • БГУ 155
  • БГУИР 391
  • БелГУТ 4908
  • БГЭУ 963
  • БНТУ 1070
  • БТЭУ ПК 689
  • БрГУ 179
  • ВНТУ 120
  • ВГУЭС 426
  • ВлГУ 645
  • ВМедА 611
  • ВолгГТУ 235
  • ВНУ им. Даля 166
  • ВЗФЭИ 245
  • ВятГСХА 101
  • ВятГГУ 139
  • ВятГУ 559
  • ГГДСК 171
  • ГомГМК 501
  • ГГМУ 1966
  • ГГТУ им. Сухого 4467
  • ГГУ им. Скорины 1590
  • ГМА им. Макарова 299
  • ДГПУ 159
  • ДальГАУ 279
  • ДВГГУ 134
  • ДВГМУ 408
  • ДВГТУ 936
  • ДВГУПС 305
  • ДВФУ 949
  • ДонГТУ 498
  • ДИТМ МНТУ 109
  • ИвГМА 488
  • ИГХТУ 131
  • ИжГТУ 145
  • КемГППК 171
  • КемГУ 508
  • КГМТУ 270
  • КировАТ 147
  • КГКСЭП 407
  • КГТА им. Дегтярева 174
  • КнАГТУ 2910
  • КрасГАУ 345
  • КрасГМУ 629
  • КГПУ им. Астафьева 133
  • КГТУ (СФУ) 567
  • КГТЭИ (СФУ) 112
  • КПК №2 177
  • КубГТУ 138
  • КубГУ 109
  • КузГПА 182
  • КузГТУ 789
  • МГТУ им. Носова 369
  • МГЭУ им. Сахарова 232
  • МГЭК 249
  • МГПУ 165
  • МАИ 144
  • МАДИ 151
  • МГИУ 1179
  • МГОУ 121
  • МГСУ 331
  • МГУ 273
  • МГУКИ 101
  • МГУПИ 225
  • МГУПС (МИИТ) 637
  • МГУТУ 122
  • МТУСИ 179
  • ХАИ 656
  • ТПУ 455
  • НИУ МЭИ 640
  • НМСУ «Горный» 1701
  • ХПИ 1534
  • НТУУ «КПИ» 213
  • НУК им. Макарова 543
  • НВ 1001
  • НГАВТ 362
  • НГАУ 411
  • НГАСУ 817
  • НГМУ 665
  • НГПУ 214
  • НГТУ 4610
  • НГУ 1993
  • НГУЭУ 499
  • НИИ 201
  • ОмГТУ 302
  • ОмГУПС 230
  • СПбПК №4 115
  • ПГУПС 2489
  • ПГПУ им. Короленко 296
  • ПНТУ им. Кондратюка 120
  • РАНХиГС 190
  • РОАТ МИИТ 608
  • РТА 245
  • РГГМУ 117
  • РГПУ им. Герцена 123
  • РГППУ 142
  • РГСУ 162
  • «МАТИ» — РГТУ 121
  • РГУНиГ 260
  • РЭУ им. Плеханова 123
  • РГАТУ им. Соловьёва 219
  • РязГМУ 125
  • РГРТУ 666
  • СамГТУ 131
  • СПбГАСУ 315
  • ИНЖЭКОН 328
  • СПбГИПСР 136
  • СПбГЛТУ им. Кирова 227
  • СПбГМТУ 143
  • СПбГПМУ 146
  • СПбГПУ 1599
  • СПбГТИ (ТУ) 293
  • СПбГТУРП 236
  • СПбГУ 578
  • ГУАП 524
  • СПбГУНиПТ 291
  • СПбГУПТД 438
  • СПбГУСЭ 226
  • СПбГУТ 194
  • СПГУТД 151
  • СПбГУЭФ 145
  • СПбГЭТУ «ЛЭТИ» 379
  • ПИМаш 247
  • НИУ ИТМО 531
  • СГТУ им. Гагарина 114
  • СахГУ 278
  • СЗТУ 484
  • СибАГС 249
  • СибГАУ 462
  • СибГИУ 1654
  • СибГТУ 946
  • СГУПС 1473
  • СибГУТИ 2083
  • СибУПК 377
  • СФУ 2424
  • СНАУ 567
  • СумГУ 768
  • ТРТУ 149
  • ТОГУ 551
  • ТГЭУ 325
  • ТГУ (Томск) 276
  • ТГПУ 181
  • ТулГУ 553
  • УкрГАЖТ 234
  • УлГТУ 536
  • УИПКПРО 123
  • УрГПУ 195
  • УГТУ-УПИ 758
  • УГНТУ 570
  • УГТУ 134
  • ХГАЭП 138
  • ХГАФК 110
  • ХНАГХ 407
  • ХНУВД 512
  • ХНУ им. Каразина 305
  • ХНУРЭ 325
  • ХНЭУ 495
  • ЦПУ 157
  • ЧитГУ 220
  • ЮУрГУ 309
Читайте также:  Ток холодной прокрутки гост

Полный список ВУЗов

  • О проекте
  • Реклама на сайте
  • Правообладателям
  • Правила
  • Обратная связь

Чтобы распечатать файл, скачайте его (в формате Word).

Источник

Пример расчёта трёхфазной цепи

ЧАСТЬ 3. Цепи трёхфазного тока

3.1. В результате изучения данного раздела студенты должны:

а. уяснить вопрос о получении трехфазной системы э. д. с;

б. познакомиться с двумя типами соединения в цепях трехфазного тока (звезда и треугольник);

в. знать соотношения между линейными и фазными параметрами (токами и напряжениями) как в случае симметричной, так и нессиметричной нагрузок для обоих типов соединения ;

г. ясно представлять назначение нейтрального провода в четырёхпроводной трёхфазной цепи;

д. уметь рассчитать трёхфазную цепь в симметричном и несимметричном режимах для обоих типов соединения либо графо-аналитическим методом с помощью векторных диаграмм, либо методом комплексных амплитуд;

е. усвоить понятия и способы определения фазных мощностей и мощностей всей трёхфазной нагрузки;

ж. уяснить преимущества трехфазной системы тока по сравнению с однофазной.

3.2.1.Нагрузка симметричная

Задача 3.В трёхфазную трёхпроводную цепь с симметричным линейным напряжением включён трёхфазный электроприёмник, собранный по схеме треугольник (рис.10)

Определить фазные и линейные токи, активную мощность каждой фазы и всей трёхфазной нагрузки. Построить векторную диаграмму напряжений.

  1. При соединении “треугольник” фазное напряжение равно линейному напряжению .

Учитывая, что нагрузка симметричная, находим фазные токи:

  1. Определяем линейные токи:
  1. Активная мощность одной фазы
  1. Активная мощность всей трёхфазной нагрузки:
  1. Строим векторную диаграмму:

а) строим базис – тройку симметричных векторов фазных (они же линейные) напряжений , , . (См рис.11);

б) строим вектора фазных токов и под углом сдвига фаз к соответствующим векторам фазных напряжений в сторону отставания ;

в) на основании уравнений состояния в соответствии с первым

законом Кирхгофа строим вектора линейных токов

Задача 4.Данные и требования такие же, как и в задаче 3. Отличие в типе соединения: вместо треугольника соединение звезда. (рис.12 )

1. При соединении “звезда”

2. Фазные (они же линейные) токи определим на основании закона Ома

3. Фазная активная мощность

4. Активная мощность всей трёхфазной нагрузки

5. Векторная диаграмма

а) строим базисную тройку векторов фазных напряжений ;

б) в сторону опережения по фазе ( нагрузка активно-ёмкостная ) под углом относительно соответствующих фазных напряжений строим вектора фазных (они же линейные) токов

в) на основании второго закона Кирхгофа вектора линейных напряжений найдем исходя из следующих уравнений:

Задача 5.В трехфазную четырехпроводную линию с симметричным линейным напряжением U включен электроприемник, собранный по схеме «звезда» (см. рис. 14). Даны сопротивления фаз

Определить фазные и линейные токи, ток в нейтральном проводе, активную мощность всей цепи и каждой фазы в отдельности.

  1. Благодаря наличию нейтрального провода напряжение на всех фазах симметризовано. Поэтому
  1. Фазные токи (они же линейные)
  1. Фазные активные мощности
  1. Активная мощность всей трехфазной нагрузки
  1. Ток в нейтральном проводе найдем графическим методом с помощью векторной диаграммы (Рис.15.):

a) строим базисную тройку симметричных векторов фазных напряжений ,

под соответствующими углами сдвигов фаз строим вектора фазных (они же линейные)

токов, задавшись при этом определенным масштабом.

— вектор тока совпадает по фазе с вектором т.к. сопротивление фазы А чисто активное. Длина вектора определяется выбранным масштабом.

— вектор отстает по фазе от вектора на угол т.к. фаза В имеет активно-индуктивный характер сопротивления. Длина вектора определяется в соответствии с масштабом и отмеряется линейкой. Угол откладывается по транспортиру.

— вектор опережает на угол

б) строим вектор тока нейтрального провода , для этого складываем (с помощью

(на основании первого закона Кирхгофа)

Замеряем линейкой длину вектора , умножаем её на масштаб и т.о. узнаем величину

Длину вектора (т.е. величину тока в нейтральном проводе) можно вычислить аналитически, используя законы геометрии. В этом случае диаграмма строится качественно (не в масштабе), а длина вектора вычисляется либо по проекциям, либо по теореме косинусов.

ЧАСТЬ 4. ЭЛЕКТРИЧЕСКИЕ МАШИНЫ ПОСТОЯННОГО ТОКА.

4.1. Изучение электрических машин постоянного тока надо начи­нать с их устройства. Разобраться с понятием: «Электрические машины», обратить внимание на то, что «Двигатель постоянного тока» и «Генератор пос­тоянного тока»,— это соответственно двигательный и генераторный режимы работы одной и той же электрической машины (свойство обратимости).

После изучения данного раздела студент должен:

1) знать основные конструктивные элементы машин постоянного тока, понимать их назначение;

Читайте также:  Эквивалентные преобразования источников в цепи постоянного тока

2) знать классифика­цию машин постоянного тока по способу возбуждения магнитного поля;

3) понимать принцип действия генератора и двигателя постоянного тока;

4) иметь представление о том, как можно регулировать скорость и реверсировать двигатель постоянного тока; ориентироваться в пас­портных данных машины и определять по ним основные параметры и характеристики;

5) знать уравнение электрического состояния генератора и двигателя постоянного тока, знать от чего зависят э.д.с. якоря (Е) и электромагнитный момент (М)

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник



Соединение приемников энергии треугольником

Соединение приемников энергии треугольником При соединении приемников энергии треугольником (рис. 6-11) каждая фаза приемника присоединяется к линейным проводам, т. е. включается на линейное напряжение, которое одновременно будет и фазным напряжением приемника:

Таким образом, изменение сопротивления фаз не влияет на фазные напряжения.

Направления линейных токов от генератора к приемнику примем за положительные (рис. 6-11). Направления фазных токов от А’ к В’, от В’ к С‘ и от С’ к А’ также примем за положительные.

Согласно первому правилу Кирхгофа для мгновенных значений токов для узла А’ можно написать:

Аналогично для узла В’:

Рис. 6-11. Соединение приемников треугольником

Следовательно, мгновенное значение любого линейного тока равно алгебраической разности мгновенных значений токов тех фаз, которые соединены с данным проводом.

Векторная диаграмма при соединении приемников треугольником

Рис. 6-12. Векторная диаграмма при соединении приемников треугольником.

Вектор любого линейного тока находится как разность векторов соответствующих фазных токов:

На рис. 6-12 дана векторная диаграмма для трехфазной цепи при соединении приемников энергии треугольником. На этой диаграмме все векторы проведены из одного начала. На рис. 6-13 дана вторая диаграмма для той же цепи, на которой векторы напряжений образуют треугольник, а вектор каждого фазного тока проведен из одного начала с вектором соответствующего фазного напряжения.

Векторная диаграмма при соединении приемников треугольником

Рис. 6-13. Векторная диаграмма при соединении приемников треугольником.

Если при симметричной системе линейных напряжений нагрузка фаз равномерная, т. е.

то действующие значения фазных токов равны между собой и они сдвинуты по фазам на одинаковые углы от соответствующих напряжений (рис. 6-14) и, следовательно, на углы 120° один относительно другого. Следовательно, фазные токи представляют симметричную систему. Симметричную систему будут представлять и линейные токи (рис. 6-14).

Восстановив перпендикуляр из середины вектора линейного тока, например IА, получим прямоугольный треугольник OHM, из которого следует, что

Векторная диаграмма для цепи, соединенной треугольником при равномерной нагрузке фаз

Таким образом, при соединении приемников треугольником при равномерной нагрузке фаз линейные токи больше фазных в √3 раз.

Кроме того, из той же векторной диаграммы следует, что линейные токи отстают от соответствующих фазных токов на углы 30°.

Рис. 6-14. Векторная диаграмма для цепи, соединенной треугольником при равномерной нагрузке фаз.

При соединении приемников треугольником при равно мерной нагрузке фаз расчет трехфазной цепи сводится к расчету одной фазы.

В этом случае фазное напряжение UФ = UЛ Фазный ток IФ = UФ/zФ

во фазного напряжения определяются из выражений

Активная мощность одной фазы

P Ф = U Ф I Ф cosφ Ф Активная мощность трех фаз

P = 3P Ф = 3U Ф I Ф cos φФ = √3 UI cosφ

Реактивная мощность трех фаз

Q = 3U Ф I Ф sinφ Ф = √3 UI sinφ

Полная мощность трехфазной цепи

S = 3U Ф I Ф = √3UI

При неравномерной нагрузке фаз мощность трехфазной цепи о пределяется как сумма мощностей отдельных фаз.

Если приемники энергии соединены звездой и за положительное направление линейных токов вобрано направление от генератора к потребителю, то согласно первому правилу Кирхгофа для нейтральной точки можно написать:

Если приемники энергии соединены треугольником, то сумма линейных токов

iA + iB + iC = iAB iCA+ iBC iAB+ iCA iBC = 0

Следовательно, при любом способе соединения приемников алгебраическая сумма мгновенных значений линейных токов трехфазной трехпроводной цепи равна нулю.

Поэтому, например, намагничивающая сила трех жил трехфазного кабеля равна нулю и, следовательно, не происходит намагничивания стальной брони кабеля, применяемой для защиты от механических повреждений.

ВКЛЮЧЕНИЕ ПРИЕМНИКОВ ЭНЕРГИИ В СЕТЬ ТРЕХФАЗНОГО ТОКА

Электрические лампы изготовляются на номинальные напряжения 127 и 220 в, а трехфазные электродвигатели на номинальные фазные напряжения 127, 220 и 380 в и выше.

Способ включения приемника в сеть трехфазного тока зависит от линейного напряжения сети и от номинального напряжения приемника.

Лампы с номинальным напряжением 127 в включаются треугольником при линейном напряжении сети 127 в и звездой с нейтральным проводом при линейном напряжений сета 220 в. Лампы с номинальным напряжением 220 в включаются треугольником в сеть с линейным напряжением 220 в и звездой с нейтральным проводом в сеть с линейным напряжением 380 в.

Трехфазный электродвигатель включается треугольником в сеть, линейное напряжение которой равно номинальному фазному напряжению электродвигателя. Если линейное напряжение сети превышает в √3 раз номинальное фазное напряжение электродвигателя, то он включается звездой.

Статья на тему Соединение приемников энергии треугольником

Источник

Как найти вектора линейных токов

Трехфазные цепи являются разновидностью цепей синусоидального тока, и, следовательно, все рассмотренные ранее методы расчета и анализа в символической форме в полной мере распространяются на них. Анализ трехфазных систем удобно осуществлять с использованием векторных диаграмм, позволяющих достаточно просто определять фазовые сдвиги между переменными. Однако определенная специфика многофазных цепей вносит характерные особенности в их расчет, что, в первую очередь, касается анализа их работы в симметричных режимах.

Расчет симметричных режимов работы трехфазных систем

Многофазный приемник и вообще многофазная цепь называются симметричными, если в них комплексные сопротивления соответствующих фаз одинаковы, т.е. если . В противном случае они являются несимметричными. Равенство модулей указанных сопротивлений не является достаточным условием симметрии цепи. Так, например трехфазный приемник на рис. 1,а является симметричным, а на рис. 1,б – нет даже при условии: .

Если к симметричной трехфазной цепи приложена симметричная трехфазная система напряжений генератора, то в ней будет иметь место симметричная система токов. Такой режим работы трехфазной цепи называется симметричным. В этом режиме токи и напряжения соответствующих фаз равны по модулю и сдвинуты по фазе друг по отношению к другу на угол . Вследствие указанного расчет таких цепей проводится для одной – базовой – фазы, в качестве которой обычно принимают фазу А. При этом соответствующие величины в других фазах получают формальным добавлением к аргументу переменной фазы А фазового сдвига при сохранении неизменным ее модуля.

Читайте также:  Первая помощь пострадавшим от электрического тока доклад

Так для симметричного режима работы цепи на рис. 2,а при известных линейном напряжении и сопротивлениях фаз можно записать

где определяется характером нагрузки .

Тогда на основании вышесказанного

Комплексы линейных токов можно найти с использованием векторной диаграммы на рис. 2,б, из которой вытекает:

При анализе сложных схем, работающих в симметричном режиме, расчет осуществляется с помощью двух основных приемов:

Все треугольники заменяются эквивалентными звездами. Поскольку треугольники симметричны, то в соответствии с формулами преобразования «треугольник-звезда» .

Так как все исходные и вновь полученные звезды нагрузки симметричны, то потенциалы их нейтральных точек одинаковы. Следовательно, без изменения режима работы цепи их можно (мысленно) соединить нейтральным проводом. После этого из схемы выделяется базовая фаза (обычно фаза А), для которой и осуществляется расчет, по результатам которого определяются соответствующие величины в других фазах.

Пусть, например, при заданном фазном напряжении необходимо определить линейные токи и в схеме на рис. 3, все сопротивления в которой известны.

В соответствии с указанной методикой выделим расчетную фазу А, которая представлена на рис. 4. Здесь , .

Тогда для тока можно записать

Расчет несимметричных режимов работы трехфазных систем

Если хотя бы одно из условий симметрии не выполняется, в трехфазной цепи имеет место несимметричный режим работы. Такие режимы при наличии в цепи только статической нагрузки и пренебрежении падением напряжения в генераторе рассчитываются для всей цепи в целом любым из рассмотренных ранее методов расчета. При этом фазные напряжения генератора заменяются соответствующими источниками ЭДС. Можно отметить, что, поскольку в многофазных цепях, помимо токов, обычно представляют интерес также потенциалы узлов, чаще других для расчета сложных схем применяется метод узловых потенциалов. Для анализа несимметричных режимов работы трехфазных цепей с электрическими машинами в основном применяется метод симметричных составляющих, который будет рассмотрен далее.

При заданных линейных напряжениях наиболее просто рассчитываются трехфазные цепи при соединении в треугольник. Пусть в схеме на рис. 2,а . Тогда при известных комплексах линейных напряжений в соответствии с законом Ома

По найденным фазным токам приемника на основании первого закона Кирхгофа определяются линейные токи:

Обычно на практике известны не комплексы линейных напряжений, а их модули. В этом случае необходимо предварительное определение начальных фаз этих напряжений, что можно осуществить, например, графически. Для этого, приняв , по заданным модулям напряжений, строим треугольник (см. рис.5), из которого (путем замера) определяем значения углов a и b .

Искомые углы a и b могут быть также найдены аналитически на основании теоремы косинусов:

При соединении фаз генератора и нагрузки в звезду и наличии нейтрального провода с нулевым сопротивлением фазные напряжения нагрузки равны соответствующим напряжениям на фазах источника. В этом случае фазные токи легко определяются по закону Ома, т.е. путем деления известных напряжений на фазах потребителя на соответствующие сопротивления. Однако, если сопротивление нейтрального провода велико или он отсутствует, требуется более сложный расчет.

Рассмотрим трехфазную цепь на рис. 6,а. При симметричном питании и несимметричной нагрузке ей в общем случае будет соответствовать векторная диаграмма напряжений (см. рис. 6,б), на которой нейтральные точки источника и приемника занимают разные положения, т.е. .

Разность потенциалов нейтральных точек генератора и нагрузки называется напряжением смещения нейтральной точки (обычно принимается, что ) или просто напряжением смещения нейтрали. Чем оно больше, тем сильнее несимметрия фазных напряжений на нагрузке, что наглядно иллюстрирует векторная диаграмма на рис. 6,б.

Для расчета токов в цепи на рис. 6,а необходимо знать напряжение смещения нейтрали. Если оно известно, то напряжения на фазах нагрузки равны:

Тогда для искомых токов можно записать:

Соотношение для напряжения смещения нейтрали, записанное на основании метода узловых потенциалов, имеет вид

При наличии нейтрального провода с нулевым сопротивлением , и из (1) . В случае отсутствия нейтрального провода . При симметричной нагрузке с учетом того, что , из (1) вытекает .

В качестве примера анализа несимметричного режима работы цепи с использованием соотношения (1) определим, какая из ламп в схеме на рис. 7 с прямым чередованием фаз источника будет гореть ярче, если .

Запишем выражения комплексных сопротивлений фаз нагрузки:

Тогда для напряжения смещения нейтрали будем иметь

Напряжения на фазах нагрузки (здесь и далее индекс N у фазных напряжений источника опускается)

Таким образом, наиболее ярко будет гореть лампочка в фазе С.

В заключение отметим, что если при соединении в звезду задаются линейные напряжения (что обычно имеет место на практике), то с учетом того, что сумма последних равна нулю, их можно однозначно задать с помощью двух источников ЭДС, например, и . Тогда, поскольку при этом , соотношение (1) трансформируется в формулу

  1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
  2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.

Контрольные вопросы и задачи

  1. Какой многофазный приемник является симметричным?
  2. Какой режим работы трехфазной цепи называется симметричным?
  3. В чем заключается специфика расчета симметричных режимов работы трехфазных цепей?
  4. С помощью каких приемов трехфазная симметричная схема сводится к расчетной однофазной?
  5. Что такое напряжение смещения нейтрали, как оно определяется?
  6. Как можно определить комплексы линейных напряжений, если заданы их модули?
  7. Что обеспечивает нейтральный провод с нулевым сопротивлением?
  8. В цепи на рис. 6,а ; ; ; . Линейное напряжение равно 380 В.

Определить ток в нейтральном проводе.

В схеме предыдущей задачи ; . Остальные параметры те же.

Определить ток в нейтральном проводе.

В задаче 8 нейтральный провод оборван.

Определить фазные напряжения на нагрузке.

В задаче 9 нейтральный провод оборван.

Источник