Меню

Как определяют напряжения при косом изгибе

Определение напряжений при косом изгибе

Если разложить внешние силы по главным осям инерции Ох и Оу, то получим две системы сил P1x, P2x, …, Pnx и P1y, P2y. Pny, каждая из.которых вызывает прямой изгиб с изгибающими моментами соответственно My и Мx (рис.7.6). Применяя принцип независимости действия сил, нормальные напряжения (рис.7.7) определим как алгебраическую сумму напряжений от Mx и Мy:

Чтобы не связывать себя формальными правилами знаков, слагаемые будем определять по модулю, а знаки ставить по смыслу.

Таким образом, расчет на косой изгиб с применением принципа независимости действия сил сводится к расчету на два прямых изгиба с последующим алгебраическим суммированием напряжений.

Рис.7.6. Расчетная модель косого изгиба бруса

Рис.7.7. Связь нормального напряжения с внутренними изгибающими моментами

В случае поперечных сечений, имеющих две оси симметрии и выступающие угловые точки (рис.7.8) с равными по модулю и максимальными одноименными координатами и напряжения в этих точках будут равны

Слагаемые в этом выражении рекомендуется определять по модулю, а знаки ставить по смыслу. Например, на рис.7.9 верхний ряд знаков «+» и «—» соответствует напряжениям от Мx, а нижний ряд — от My, и напряжения в этих точках будут равны

Рис.7.8. Симметричные варианты сечений

Рис.7.9. Расстановка знаков от действия моментов

Условие прочности для балок из пластичного материала с указанным типом сечений запишется в виде

Касательные напряжения от поперечных сил, если нельзя воспользоваться формулой Журавского, допустимо не учитывать.

При проведении расчетов на прочность условие прочности составля­ется для опасной точки поперечного сечения, т.е. для точки, в которой нормальные напряжения достигают максимальных значений. Самой нагруженной точкой в сечении произвольной формы является точка, наиболее удаленная от нейтральной линии, разделяющей растянутую и сжатую зоны сечения.

В связи с этим, большое значение приобретают вопросы, связанные с определением положения нейтральной линии.

Положив , получим уравнение нейтральной линии.

Так как напряжения в точках поперечного сечения будут пропорциональными расстояниям от нейтральной линии, то max будут возникать в наиболее удаленных от нее точках.

Силовая плоскость – это плоскость действия результирующего момента Мрез (рис.7.10), — угол наклона силовой плоскости к вертикали.

Рис.7.10

Свойства нейтральной линии

1. Если , то , то есть силовая плоскость и нейтральная линия не являются перпендикулярными.

2. Если , то из (1) следует, что , то есть нейтральная линия и силовая плоскость перпендикулярны. В этом случае стержень испытывает плоский изгиб (примерами таких стержней являются стержни с сечением – круг, кольцо, квадрат).

Читайте также:  Схема ty035a03 регулятор напряжения

3. Знак «минус» в формуле (1) указывает, что силовая плоскость и нейтральная линия при косом изгибе проходят через противоположные квадранты.

Для определения опасных точек сечения следует построить касательные к контуру сечения, параллельные нейтральной линии. Точки касания и будут являться опасными (точки и на рис.7.11).

Рис.7.11.Положение нейтральной линии при косом изгибе

Для некоторых сечений (прямоугольник, двутавр, швеллер и т.п.) наиболее напряженные точки расположены в углах этих сечений, т.е. их можно найти без определения положения нейтральной линии (рис.7.12).

Рис.7.12.Положение нейтральной линии и опасных точек

сечения при косом изгибе для прямоугольника

Условия прочности составляют в зависимости от свойств того материала, из которого изготовлен элемент конструкции (брус).

Для хрупкого материала используют два условия прочности — для опасной точки, где имеет место растяжение (для нашего случая т. на рис.7.11), и для точки, где имеет место сжатие (т. )

Необходимость использования двух условий прочности для хрупкого материала объясняется разными механическими свойствами материала при растяжении и сжатии. Хрупкий материал плохо сопротивляется растяжению и хорошо — сжатию.

Для пластичного материала, который одинаково сопротивляется и растяжению и сжатию, используют одно условие прочности для точки поперечного сечения, где имеют место максимальные по абсолютной величине нормальные напряжения

где и — координаты данной точки.

При расчетах на прочность касательными напряжениями от поперечных сил пренебрегают, т.к. их влияние незначительно.

Источник



Определение напряжений при косом изгибе

Используя принцип независимости действия сил (принцип суперпозиции) найдем напряжения при косом изгибе. Рассмотрим точку A с координатами (y, z) в сечении изгибаемой балки и определим в ней напряжения от каждого из внутренних усилий, возникающих при косом изгибе:

нормальные напряжения от изгибающего момента Mz

нормальные напряжения от изгибающего момента My

касательные напряжения от поперечной силы Qy

касательные напряжения от поперечной силы Qz

Полные напряжения и при косом изгибе найдем путем геометрического суммирования составляющих:

Последнюю формулу удобно представить в виде

где – угол наклона силовой плоскости P при косом изгибе (а при сложном изгибе – угол наклона плоскости действия полного изгибающего момента M в данном сечении).

7.3 Определение положения нейтральной оси и максимальных
нормальных напряжений при косом изгибе. Условие прочности

Читайте также:  Желто зеленый провод под напряжением

Нейтральная ось – линия, во всех точках которой нормальные напряжения равны нулю. При этом в точках сечения, наиболее удаленных от нейтральной оси нормальные напряжения принимают свои экстремальные значения – минимум и максимум.

Заметим, что при плоском изгибе нейтральная ось совпадала с одной из главных осей сечения (Oy или Oz), при косом же изгибе это не так. Выведем формулу для определения положения нейтральной оси при косом изгибе.

Так как =0, то можем записать:

Отсюда найдем уравнение нейтральной оси:

Более удобно записать это уравнение через угол наклона нейтральной линии к оси Oz:

Знак «минус» в этой формуле показывает, что углы и откладываются от разноименных осей, но в одном направлении.

Как видим, в случае, когда Jz Jy, углы и не равны друг другу, а, значит, и плоскость кривизны (плоскость максимальных прогибов) бруса не будет совпадать с плоскостью действия сил. Поэтому такой изгиб и назван «косым».

Определим максимальные нормальные напряжения при косом изгибе и запишем условие прочности.

Как известно, нормальные напряжения достигают своих экстремальных значений в точках, наиболее удаленных от нейтральной оси (координаты таких точек обозначим ymax и zmax):

Для прямоугольного сечения – это точки A и B. При M>0 (см. рис.7.8).

Для материалов, одинаково сопротивляющихся растяжению (сжатию), максимальные напряжения определяются так:

где и – моменты сопротивления сечения относительно осей z и y.

В случае косого изгиба, как правило, проверка прочности осуществляется только по нор-мальным напряжениям (действие касательных невелико). Поэтому условие прочности записывается в виде:

При косом изгибе (впрочем, как и при остальных видах нагружения) имеем три задачи расчета на прочность:

— подбор сечения (определить Wz (размеры сечения) при заданном отношении Wz/Wy);

— проверка по несущей способности (определить M).

7.4. Изгиб с кручением. Определение внутренних усилий и
напряжений

Ранее нами был рассмотрен расчет на прочность валов при чистом кручении. Однако круглые валы редко работают на чистое кручение. Как правило, при работе вал изгибается собственным весом, весом шкивов, давлением на зубья шестерен, натяжением ремней и т. д. В таком случае вал будет находиться в условиях сложного сопротивления и испытывать совместное действие кручения и изгиба.

Изгиб с кручением – частный случай сложного сопротивления, который может рассматриваться как сочетание чистого кручения и поперечного изгиба.

Читайте также:  Виды измерительных трансформаторов напряжения

Определение внутренних усилий и напряжений при кручении с изгибом.Для определения внутренних усилий воспользуемся методом сечений:

Обычно две составляющие попе-речной силы (Qy, Qz) и изгибающего момента (My, Mz) приводят к их полным результирующим

Заметим, что часто поперечной силой пренебрегают (для достаточно длинных валов) и рассматривают кручение с изгибом как совместное действие крутящего (Mx, Mкр, T) и изгибающего (Mи) моментов.

Опасное сечение вала будем искать, как и прежде, по эпюрам внутренних усилий. При построении эпюр внутренних усилий при кручении с изгибом необходимо иметь ввиду следующие правила:

— эпюры крутящего момента Mx, а также эпюры составляющих поперечной силы Qy, Qz и изгибающего момента My, Mz строятся с использованием метода сечений;

— результирующая поперечная сила Q может не лежать в плоскости действия результирующего изгибающего момента Mи, а потому между ними уже не будет соблюдаться зависимость Журавского (dM/dx=Q), а, следовательно, и правила проверки эпюр, введенные для плоского изгиба;

— эпюра полного изгибающего момента будет прямой только на тех участках, где My и Mz ограничены прямыми с общей нулевой точкой, на участках, где такая общая точка отсутствует эпюра Mи будет описываться вогнутой кривой и строится по точкам (связано с тем, что вектор Mи в разных сечениях имеет различное направление).

Опасное сечение при кручении с изгибом устанавливается из совместного анализа эпюр крутящего Mx и полного изгибающего Mи моментов. Опасным будет считаться то сечение, где оба момента достигают своей максимальной величины. Если моменты достигают максимума в разных сечениях, необходимо проверить все сечения, в которых эти внутренние усилия достаточно велики.

Для определения максимальных напря-жений используем принцип независимости дей-ствия сил и найдем напряжения отдельно от кручения и отдельно от изгиба:

напряжения при кручении

напряжения при изгибе

где Jос – осевой момент инерции для круглого сечения (Jос = Jz = Jy).

Вводя обозначение , можем записать

, (7.20)

где Wос – осевой момент сопро-тивления для круглого сечения (Wос=Jос/ max, max=d/2).

Опасными точками в сечении будут являться точки наиболее удаленные от нейтральной оси (для круглого сечения – линии, перпендикулярной плоскости действия результирующего изгибающего момента). При этом в токах сечения будет возникать плоское напряженное состояние, а потому расчет на прочность необходимо проводить с привлечением известных теорий прочности.

Дата добавления: 2016-09-26 ; просмотров: 5637 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник