Меню

Как производится фазировка напряжения

Что такое чередование фаз и как его проверить?

Большинство трехфазных электродвигателей и других устройств учитывают такой параметр, как чередование фаз. На практике, несоответствие данного параметра изначальным настройкам может привести к различным аварийным ситуациям, некорректной работе электрических приборов и к травмированию персонала.

Что такое чередование фаз?

Под чередованием фаз следует понимать последовательность, в которой напряжение нарастает в каждой из них. Во всех трехфазных цепях напряжение представляет собой синусоидальную кривую. В каждой линии напряжение отличается на 120º от остальных.

Как видите, на рисунке 1, там где а) — показаны кривые напряжения во всех фазных проводах, смещенные на 120º. На соседнем рисунке б) изображена векторная диаграмма этих напряжений, На обоих рисунках показана разница между фазным и линейным напряжением.

Если взять за основу, что из нулевой точки на рисунке а) выходит U­ A, то эта фаза является первой, на диаграмме б) наглядно стрелками показано, что очередность нарастания напряжения переходит от U­ A к U­ B, а за ним к U­ C. Это означает, что фазы чередуются в порядке A, B, C. Такой порядок чередования считается прямым.

Прямое и обратное чередование фаз

В трехфазной сети порядок чередования фаз может отличаться в зависимости от способов подключения к силовым трансформаторам на подстанциях, от последовательности включения обмоток генератора, из-за несоответствия выводов кабеля и по прочим причинам.

Обратите внимание, цветовая маркировка определяет последовательность в соответствии их очередностью в алфавите по первым буквам цвета:

  • Желтый – первый;
  • Зеленый – второй;
  • Красный – третий.

На рисунке 2 изображен классический вариант прямой последовательности A – B – C (где A имеет желтый цвет и является первой, B – зеленый и является второй, а C – красный и является третей) и классический вариант обратной последовательности C – B – A. Но, помимо них на практике могут встречаться и другие варианты, прямого: B – C – A, C – A – B, и обратного чередования: A – C – B, B – A – C. Соответственно, в каждом из приведенных примеров чередование фаз будет начинаться с первой.

Зачем нужно учитывать порядок фаз?

Последовательность чередования играет значительную роль в таких ситуациях:

  • При параллельном включении в работу – ряд устройств (трансформаторы, генераторы и прочие электрические машины), могут соединяться в параллельную работу для повышения надежности системы или для обеспечения большего резерва мощности. Но, в случае неправильного подключения из-за соединения разноименных фаз произойдет короткое замыкание.
  • При подключении трехфазного счетчика – так как его работа основана на совпадении фаз с соответствующими выводами прибора, то при нарушении правильности подключения может произойти сбой и самопроизвольное движение в отсутствии какой-либо нагрузки. Из-за чего такое подключение электросчетчика приведет к необходимости оплаты потребителем киловатт, которые он не расходовал.
  • При включении двигателя – следование фаз в сети определяет для электрической машины и направление вращения двигателя. В случае отсутствия правильной фазировки изменится и направление движения элементов, механически соединенных с ротором. Из-за чего может произойти нарушение технологического процесса или возникнуть угроза жизни персонала.

С целью предотвращения негативных последствий от перекоса фаз и других несовпадений, на практике выполняют проверку чередования и устанавливают защиту.

Как выполнить проверку?

Проверка может производиться несколькими способами. Целесообразность выбора того или другого варианта осуществляется в зависимости от параметров электрической сети и задач, которые необходимо решить. Так чередование можно узнать при помощи фазоуказателя, мегаомметра, мультиметра или по расцветке изоляции кабеля. Рассмотрите каждый из вариантов более подробно.

С помощью фазоуказателя

По принципу действия, фазоуказатель можно сравнить с обычным асинхронным двигателем. Рассмотрим в качестве примера наиболее распространенную модель фазоуказателя — ФУ-2 .

Читайте также:  Трансформатор напряжения cpb 362

Как видите на рисунке 3, у указателя последовательности фаз присутствуют три обмотки, которые подсоединяются к одноименным фазам в сети или устройстве. Между обмотками находится вращающийся ротор Р, который приводит в движение диск фазоуказателя Д.

На практике, после подсоединения к зажимам фазоуказателя соответствующих проводов, работник нажимает кнопку К, которая замыкает цепь обмоток. В зависимости от порядка чередования фаз, диск Д начнет вращаться по часовой или против часовой стрелки.

На самом приборе имеется стрелка, показывающая прямое чередование. Если при нажатии кнопки диск вращается в том же направлении, что и показано стрелкой, то эта трехфазная нагрузка имеет прямое чередование. Если диск начнет крутиться в противоположную от стрелки сторону, то чередование фаз обратное. Следует отметить, что этот прибор не способен определить, какая фаза на каком проводе находится, он может определить лишь порядок их чередования.

С помощью мегаомметра

Как один из способов прозвонки жил широко используется прибор для измерения сопротивления – мегаомметр.

Посмотрите на рисунок 4, для реализации такой схемы, вам понадобится отключить кабель от сети и от потребителя. При этом, с одного конца кабеля фазы поочередно соединяются с землей З, как и металлическая оболочка у бронированных кабелей. С другой стороны присоединяется мегаомметр М, один из зажимов которого заземляется, а второй поочередно подводится к каждой из фаз. На той, где мегаомметр покажет нулевое сопротивление, и будет одним проводом.

На концах одноименного провода устанавливается соответствующая маркировка. Недостатком такого способа прозвонки является большой объем трудозатрат. Так как каждая жила заземляется поочередно, после чего выполняется проверка. При этом на обоих концах кабеля должны устанавливаться ответственные сотрудники. Между ними должна обеспечиваться связь, для согласования действий и предупреждения подачи напряжения на работников.

По расцветке изоляции жил

Если в каком-либо устройстве имеется подключение разноцветными жилами, то фазировку оборудования можно выполнять по цветам. Для определения нахождения одноименных напряжений тех или иных фаз необходимо добраться до каждой жилы кабеля. Если на каждом проводе присутствует изоляция разных цветов, то сравнив их с местом присоединения к трансформатору или распедустройству, можно определить, где какая фаза находится.

Недостатком такого метода следует отметить ложную цветовую маркировку, так как производитель кабеля не всегда обеспечивает один и тот же цвет для каждой жилы на всей протяженности провода. Поэтому предварительно его все равно рекомендуется прозванивать и маркировать.

При помощи мультиметра

Для этого метода используется обычный мультиметр. Он наиболее актуален в тех ситуациях, когда необходимо включить в параллельную работу два смежных устройства и их шины расположены поблизости.

Необходимо выполнить сравнение фазных напряжений в соседних линиях, на рисунке 5 приведен пример для фаз А и А1. Коммутационная аппаратура при этом должна быть разомкнута. Перед тем как пользоваться мультиметром, на нем выставляется класс напряжения, для линии, на которой будет производиться замер. Щупы подводятся к выводам фаз, при этом их изоляция должна обеспечивать защиту от напряжения, а на руки надеваются диэлектрические перчатки.

Если при подключении щупов к выводам A — A1 стрелка останется на нулевой отметке, то это значит, что фазы одинаковые. Если стрелка отклонится на величину линейного напряжения, вы меряете разноименные фазы.

Защита от нарушения порядка чередования

Для защиты электрического оборудования от неправильного чередования на практике применяется реле контроля фаз. Это реле настроено на работу двигателя или другого устройства в его прямом включении. Если из-за каких-то неполадок или неправильного подключения чередование нарушается, то трехфазное реле сразу отключит устройство. Его работа основана на анализе трехфазных токов и напряжений и последующем контроле этих параметров.

Читайте также:  Для преобразования напряжения переменного тока используют

Подключение может выполняться через трансформаторы тока или напрямую, в зависимости от модели и класса напряжения в сети. Такая защита нашла широкое применение при подключении счетчиков индукционного типа, электрических машин и другого высокоточного оборудования.

Источник



Наладка оборудования электрических подстанций — Методы фазировки

Содержание материала

10. МЕТОДЫ ФАЗИРОВКИ
Отдельные части распределительных устройств, имеющие самостоятельные источники питания и могущие работать параллельно, после окончания монтажа, перед первым включением па параллельную работу, должны быть сфазированы. Фазировкой называется проверка совпадения фаз двух частей электрической установки, питаемых от одной сети. Так может возникнуть необходимость в фазировке отдельных секций или систем шин распределительных устройств, параллельных воздушных или кабельных линий, силовых и измерительных трансформаторов. Фазировка может производиться как при отсутствии, так и при наличии напряжения. В зависимости от номинального напряжения установки и условий производства работ могут применяться следующие методы фазировки.

ФАЗИРОВКА ПРИ ОТСУТСТВИИ НАПРЯЖЕНИЯ

Фазировку производят при помощи мегомметра, омметра (пробника) или батарейки для карманного фонаря и лампочки путем проверки цепи между одноименными фазами, подлежащими соединению, а также между разноименными фазами (или полюсами для установок постоянного тока) подключаемых установок (рис. 31,а). Между одноименными фазами приборы должны показать наличие металлического соединения, а между разноименными фазами — изоляцию.

ФАЗИРОВКА В УСТАНОВКАХ НАПРЯЖЕНИЕМ ДО 500 В, НАХОДЯЩИХСЯ ПОД НАПРЯЖЕНИЕМ

Схемы фазировки кабелей

Фазировку в этих устройствах производят путем проверки наличия напряжения между фазами двух частей установки (рис. 31,6). Проверку производят при помощи вольтметра или токоискателя с неоновой лампой. Наличие напряжения проверяют как между одноименными, так и между разноименными фазами. Если обозначить фазы одной установки— ж, з, к, а фазы другой Ж\, зл и /сь то при фазировке должны быть произведены следующие измерения: ж—жи ж—з1, ж—ки З — Жи з — Зі, 3 — К1, К — жи К — Зь К — /Сі. При правильной фазировке напряжения меж-

Рис. 31. Схемы фазировки кабелей
я — при отсутствии напряжения; б — при наличии напряжения до 500 в
ду одноименными фазами: Ж —Ж 1, 3 ——3\ и к—K1 должны быть равны нулю, а между разноименными (остальные измерения)—линейному напряжению фазируемой сети.

ФАЗИРОВКА В УСТАНОВКАХ НАПРЯЖЕНИЕМ ВЫШЕ 1000 в

Фазировка в установках напряжением выше 1000 в может производиться при помощи стационарных или переносных измерительных трансформаторов напряжения или специальных указателей напряжения.
При помощи стационарных трансформаторов напряжения можно фазировать установки любого напряжения. Проверка производится по схемам, приведенным на рис. 32. Сначала, при отключенной разъединителем фазируемой линии включают секционный выключатель, в результате чего напряжение подается на секцию I (рис. 32.а), и при помощи вольтметра проверяют фазировку стационарных трансформаторов напряжения на стороне низшего напряжения способом, описанным выше. Затем секционный выключатель отключают, включают разъединитель фазируемой линии (рис. 32 б) и повторяют фазировку. Нулевые показания вольтметра между одноименными фазами низковольтной обмотки трансформаторов напряжения свидетельствуют о совпадении фаз и допустимости включения обеих линий на параллельную работу.
В противном случае отмечают, между какими фазами получены нулевые показания вольтметра, и производят соответствующие пересоединения на фазируемой линии (после снятия напряжения с шин, линии и принятия всех необходимых мер предосторожности в соответствии с требованиями техники безопасности). После переключения фазировку повторяют.

Схемы фазировки линии при помощи стационарных трансформаторов напряжения
Рис. 32. Схемы фазировки линии при помощи стационарных трансформаторов напряжения
1 — фазируемая линия; 2 — секционный выключатель
Фазировку при помощи переносного измерительного трансформатора напряжения производят в установках напряжением не выше 10 кВ.
Схема фазировки кабельной линии при помощи переносного измерительного трансформатора напряжения
Рис. 33. Схема фазировки кабельной линии при помощи переносного измерительного трансформатора напряжения
Трансформатор при помощи изолирующих рукояток подключают поочередно между всеми фазами системы шин и жилами фазируемого кабеля (рис. 33).
Нулевые показания вольтметра, включенного на стороне низшего напряжения, соответствуют одноименным фазам. Последовательность измерений такая же, как и при фазировке под напряжением в установках до 500 в.
Фазировка при помощи специального фазировочного комплекта так же, как и фазировка измерительным переносным трансформатором напряжения, применяется в установках напряжением не выше 10 кВ. Для фазировки нужен специальный комплект, состоящий из двух высоковольтных указателей напряжения, в один из которых вместо конденсатора и неоновой лампы вставлено непроволочное сопротивление типа MJIT-2 величиной 2,5—3,5 Мом для напряжения 6 кВ и 6—7 Мом для напряжения 10 кВ. Металлические кольца указателей соединяют между собой гибким проводом с усиленной изоляцией (типа ПВЛ или ПВГ), выдерживающей испытательное напряжение 20 кВ. Крючком одного из указателей касаются поочередно всех фаз со стороны системы шин, а крючком другого — всех жил фазируемого кабеля (рис. 34).
Схема фазировки кабельной линии при помощи фазировочного комплекта
Рис. 34. Схема фазировки кабельной линии при помощи фазировочного комплекта

Читайте также:  Что сгорает у телевизора после скачка напряжения

Свечение неоновой лампы показывает, что фазы разноименные, а потухание — что они одноименные. Во избежание перегрева сопротивлений продолжительность непрерывного нахождения комплекта указателей под напряжением не должна превышать 10—15 сек.

ФАЗИРОВКА СИЛОВЫХ ТРАНСФОРМАТОРОВ

Схемы фазировки силовых трансформаторов

При фазировке силовых трансформаторов проверяют совпадение вторичных напряжений по величине и фазе при питании их с первичной стороны от одной системы. Фазировку, как правило, производят на стороне низшего напряжения. Обмотки фазируемых трансформаторов должны быть электрически соединены в одной точке для получения при измерениях замкнутого контура. У трансформаторов с заземленными нейтралями таким соединением является общий нулевой провод или соединение через землю.

Рис. 35. Схемы фазировки силовых трансформаторов
а — с заземленными нейтралями; б — с изолированными нейтралями; V — переносный вольтметр; П — временная перемычка
У трансформаторов с изолированной нейтралью, либо при соединении фазируемых обмоток в «треугольник», перед фазировкой необходимо соединить два любых вывода физируемых трансформаторов (рис. 35). После этого измеряют подведенные для фазировки напряжения, которые должны быть симметричны. Производить фазировку при несимметричных напряжениях не разрешается во избежание возможных ошибок.

Фазировка заключается в измерении напряжений между зажимами с одной и другой сторон и определении выводов, между которыми будут получены нулевые значения напряжения.
Измерения напряжения в зависимости от . его величины могут быть произведены методами, описанными выше, за исключением фазировочного комплекта, при котором определяется только наличие или отсутствие напряжения, но не его величина. Приборы, применяемые для фазировки трансформаторов с незаземленными нейтралями, должны быть рассчитаны на двойное линейное напряжение.
По результатам замеров строят векторные диаграммы фазируемых напряжений и определяют возможность параллельной работы трансформаторов. При этом могут встретиться следующие случаи:
а) нейтрали трансформаторов заземлены; измерения между одноименными выводами дали нулевые показания; остальные измерения между разноименными выводами показали линейные значения напряжения — трансформаторы имеют одинаковые группы соединений, параллельная работа возможна при соединении одноименных выводов;
б) нейтрали трансформаторов изолированы; перемычку устанавливали между выводами «і и а2. Результаты измерений: b1 — b2=0; с1— с2—0; b1 — c2=U; С1 — b2 = U; трансформаторы имеют одинаковые группы соединений, параллельная работа возможна при соединении одноименных выводов;
в) при измерениях не получено двух нулевых показаний — трансформаторы имеют различные группы соединений. При этом параллельная работа возможна только после специальной перемаркировки обмоток.
Перед включением на параллельную работу также необходимо проверить соблюдение прочих условий допустимости параллельной работы: равенство в пределах допусков коэффициентов трансформации и напряжений короткого замыкания.

Источник