Меню

Как рассчитать цепь переменного тока с активным сопротивлением

Полное сопротивление цепи переменного тока

В предыдущих статьях мы узнали, что всякое сопротивление, поглощающее энергию, называется активным, а сопротивление, не поглощающее энергии, безваттным или реактивным. Кроме того, мы установили, что реактивные сопротивления делятся на два вида — индуктивные и емкостные.

Однако существуют цепи, где сопротивление не является чисто активным или чисто реактивным. То есть цепи, где вместе с активным сопротивлением включены в цепь, как емкости, так и индуктивности.

Введем понятие полного сопротивления цепи переменному току — Z, которое соответствует векторной сумме всех сопротивлений цепи (активных, емкостных и индуктивных). Понятие полного сопротивления цепи нам необходимо для более полного понимания закона Ома для переменного тока

На рисунке 1 представлены варианты электрических цепей и их классификация в зависимости от того какие элементы (активные или реактивные) включены в цепь.

cepi-peremennogo-toka

Рисунок 1. Классификация цепей переменного тока.

Полное сопротивление цепи с чисто активными элементами соответствует сумме активных сопротивлений цепи и рассматривалось нами ранее. О чисто емкостном и индуктивном сопротивлении цепи мы тоже с вами говорили, и оно зависит соответственно от общей емкости и индуктивности цепи.

Рассмотрим более сложные варианты цепи, где последовательно с активным сопротивлением в цепь включено индуктивное и реактивное сопротивление.

Полное сопротивление цепи при последовательном соединении активного и реактивного сопротивления.

В любом сечении цепи, изображенной на рисунке 2,а, мгновенные значения тока должны быть одинаковыми, так как в противном случае наблюдались бы скопления и разрежения электронов в каких-либо точках цепи. Иными словами, фазы тока по всей длине цепи должны быть одинаковыми. Кроме того, мы знаем, что фаза напряжения на индуктивном сопротивлении опережает фазу тока на 90°, а фаза напряжения на активном сопротивлении совпадает с фазой тока (рисунок 2,б). Отсюда следует, что радиус-вектор напряжения UL (напряжение на индуктивном сопротивлении) и напряжения UR (напряжение на активном сопротивлении) сдвинуты друг относительно друга на угол в 90°.

polnoe-soprotivlenie-posledovat-rl

Рисунок 2. Полное сопротивление цепи с активным сопротивлением и индуктивностью. а) — схема цепи; б) — сдвиг фаз тока и напряжения; в) — треугольник напряжений; д) — треугольник сопротивлений.

Для получения радиуса-вектора результирующего напряжения на зажимах А и В (рис.2,а) мы произведем геометрическое сложение радиусов-векторов UL и UR. Такое сложение выполнено на рис. 2,в, из которого видно, что результирующий вектор UAB является гипотенузой прямоугольного треугольника.

Из геометрии известно, что квадрат гипотенузы равен сумме квадратов катетов.

polnoe-soprotivlenie-formula-1

По закону Ома напряжение должно равняться силе тока, умноженной на сопротивление.

Так как сила тока во всех точках цепи одинакова, то квадрат полного сопротивления цепи (Z 2 ) будет также равен сумме квадратов активного и индуктивного сопротивлений, т. е.

polnoe-soprotivlenie-formula-2(1)

Извлекая квадратный корень из обеих частей этого равенства, получим,

polnoe-soprotivlenie-formula-3(2)

Таким образом, полное сопротивление цепи, изображенной на рис 2,а, равно корню квадратному из суммы квадратов активного и индуктивного сопротивлений

Полное сопротивление можно находить не только путем вычисления, но и путем построения треугольника сопротивлений, аналогичного треугольнику напряжений (рис 2,д), т. е. полное сопротивление цепи переменному току может быть получено путем измерения гипотенузы, прямоугольного треугольника, катетами которого являются активное и реактивное сопротивления. Разумеется, измерения катетов и гипотенузы должны производиться в одном и том же масштабе. Так, например, если мы условились, что 1 см длины катетов соответствует 1 ом, то число омов полного сопротивления будет равно числу сантиметров, укладывающихся на гипотенузе.

Полное сопротивление цепи, изображенной на рис.2,а, не является ни чисто активным, ни чисто реактивным; оно содержит в себе оба эти вида сопротивлений. Поэтому угол сдвига фаз тока и напряжения в этой цепи будет отличаться и от 0° и от 90°, то есть он будет больше 0°, но меньше 90°. К которому из этих двух значений он будет более близок, будет зависеть от того, какое из этих сопротивлений имеет преобладающее значение в цепи. Если индуктивное сопротивление будет больше активного, то угол сдвига фаз будет более близок к 90°, и наоборот, если преобладающим будет активное сопротивление, то угол сдвига фаз будет более близок к 0°.

В цепи, изображенной на рис 3,а, соединены последовательно активное и емкостное сопротивления. Полное сопротивление такой цепи можно определить при помощи треугольника сопротивлений так же, как мы определяли выше полное сопротивление активно-индуктивной цепи.

polnoe-soprotivlenie-posledovat-rc

Рисунок 3. Полное сопротивление цепи с активным сопротивлением и емкостью. а) — схема цепи; б) — треугольник сопротивлений .

Разница между обоими случаями состоит лишь в том, что треугольник сопротивлений для активно-емкостной цепи будет повернут в другую сторону (рис 3,б) вследствие того, что ток в емкостной цепи не отстает от напряжения, а опережает его.

Читайте также:  В ванной комнате удары током

Для данного случая:

polnoe-soprotivlenie-formula-4(3)

В общем случае, когда цепь содержит все три вида сопротивлений (рис. 4,а), сначала определяется реактивное сопротивление этой цепи, а затем уже полное сопротивление цепи.

polnoe-soprotivlenie-posledovat-rlc

Рисунок 4. Полное сопротивление цепи содержащей R, L и C. а) — схема цепи; б) — треугольник сопротивлений .

Реактивное сопротивление этой цепи состоит из индуктивного и емкостного сопротивлений. Так как эти два вида реактивного сопротивления противоположны друг другу по своему характеру, то общее реактивное сопротивление цепи будет равно их разности, т. е.

polnoe-soprotivlenie-formula-5(4)

Общее реактивное сопротивление цепи может иметь индуктивный или емкостный характер, в зависимости от того, какое из этих двух сопротивлений (XL или XC преобладает).

После того как мы по формуле (4) определили общее реактивное сопротивление цепи, определение полного сопротивления не представит затруднений. Полное сопротивление будет равно корню квадратному из суммы квадратов активного и реактивного сопротивлений, т. е.

polnoe-soprotivlenie-formula-6(5)

polnoe-soprotivlenie-formula-7(6)

Способ построения треугольника сопротивлений для этого случая изображен на рис. 4 б.

Полное сопротивление цепи при параллельном соединении активного и реактивного сопротивления.

Полное сопротивление цепи при параллельном соединении активного и реактивного элемента.

Для того чтобы вычислить полное сопротивление цепи, составленной из активного и индуктивного сопротивлений, соединенных между собой параллельно(рис. 5,а), нужно сначала вычислить проводимость каждой из параллельных ветвей, потом определить полную проводимость всей цепи между точками А и В и затем вычислить полное сопротивление цепи между этими точками.

parallelnoe-soedinenie

Рисунок 5. Полное сопротивление цепи при параллельном соединении активного и реактивных элементов. а) — параллельное соединение R и L; б) — параллельное соединение R и C .

Проводимость активной ветви, как известно, равна 1/R, аналогично проводимость индуктивной ветви равна 1/ωL , а полная проводимость равна 1/Z

Полная проводимость равна корню квадратному из суммы квадратов активной и реактивной проводимости, т. е.

polnoe-soprotivlenie-formula-8(7)

Приводя к общему знаменателю подкоренное выражение, получим:

polnoe-soprotivlenie-formula-9(8)

polnoe-soprotivlenie-formula-10(9)

Формула (9) служит для вычисления полного сопротивления цепи, изображенной на рис. 5а.

Нахождение полного сопротивления для этого случая может быть произведено и геометрическим путем. Для этого нужно построить в соответствующем масштабе треугольник сопротивлений, и затем произведение длин катетов разделить на длину гипотенузы. Полученный результат и будет соответствовать полному сопротивлению.

Аналогично случаю, рассмотренному выше, полное сопротивление при параллельном соединении R и С (рис 5б) будет равно:

polnoe-soprotivlenie-formula-11(10)

Полное сопротивление может быть найдено также и в этом случае путем построения треугольника сопротивлений.

В радиотехнике наиболее часто встречается случай па¬раллельного соединения индуктивности и емкости, например колебательный контур для настройки приемников и передатчиков. Так как катушка индуктивности всегда обладает кроме индуктивного еще и активным сопротивлением, то эквивалентная (равноценная) схема колебательного контура будет содержать в индуктивной ветви активное сопротивление (рис 7).

kolebatelnyj-kontur

Рисунок 6. Эквивалентная схема колебательного контура.

Формула полного сопротивления для этого случая будет:

polnoe-soprotivlenie-formula-12(11)

Так как обычно активное сопротивление катушки (R) бывает очень мало по сравнению с ее индуктивным сопротивлением (ωL), то мы имеем право формулу (11) переписать в следующем виде:

polnoe-soprotivlenie-formula-13(12)

В колебательном контуре обычно подбирают величины L и С таким образом, чтобы индуктивное сопротивление равнялось емкостному, т. е. чтобы соблюдалось условие

polnoe-soprotivlenie-formula-14(13)

При соблюдении этого условия полное сопротивление колебательного контура будет равно:

polnoe-soprotivlenie-formula-15(14)

где L—индуктивность катушки в Гн;

С—емкость конденсатора в Ф;

R—активное сопротивление катушки в Ом.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник

Как рассчитать цепь переменного тока с активным сопротивлением

Рассмотрим цепь (рис. 134), состоящую из сопротивления r. Влиянием индуктивности и емкости для простоты пренебрегаем. К зажимам цепи приложено синусоидальное напряжение

Рис. 134. Цепь, содержащая активное сопротивление
Рис. 134. Цепь, содержащая активное сопротивление

По закону Ома, мгновенное значение тока будет равно:

или, переходя к действующим значениям, получаем

Как следует из последнего выражения, вид закона Ома для цепи переменного тока, содержащей сопротивление r, тот же, что для цепи постоянного тока. Кроме того, из закона Ома видна пропорциональность между мгновенным значением напряжения и мгновенным значением тока. Отсюда следует, что в цепи переменного тока, содержащей сопротивление r, напряжение и ток совпадают по фазе. На рис. 135 даны кривые напряжения и тока и векторная диаграмма для рассматриваемой цепи, причем длины векторов обозначают действующие значения напряжения и тока.

Читайте также:  Датчик постоянного тока своими руками

Рис. 135. Графики и векторная диаграмма для цепи переменного тока, содержащей активное сопротивление
Рис. 135. Графики и векторная диаграмма для цепи переменного тока, содержащей активное сопротивление

Сопротивление проводников переменному току несколько больше их сопротивления постоянному току * (см. § 65). Поэтому сопротивление проводников переменному току называют активным в отличие от сопротивления, которое оказал бы этот проводник при постоянном токе. Обозначается оно также буквой r.

* ( Это объясняется тем, что при переменном токе наблюдается неравномерное распределение тока по сечению проводника, так что плотность тока будет возрастать от оси к поверхности проводника. Это явление называется поверхностным эффектом. Неравномерная плотность тока приводит к увеличению сопротивления проводника. Однако при стандартной частоте 50 гц, небольшом сечении и медных или алюминиевых проводах явление поверхностного эффекта сказывается слабо. При высокой частоте, большем сечении и стальных проводах оно значительно.)

В цепи, представленной на рис. 134, приложенное внешнее напряжение компенсирует падение напряжения в сопротивлении r, которое называется активным падением напряжения и обозначается Uа:

Мгновенное значение мощности в рассматриваемой цепи равно произведению мгновенных значений напряжения и тока:

На рис. 136 дана кривая мгновенной мощности за один период. Из чертежа видно, что мощность не является постоянной величиной, она пульсирует с двойной частотой * .

* ( Пульсацией называется изменение численного значения переменной величины при постоянстве ее знака.)

Рис. 136. Кривая мгновенной мощности цепи с активным сопротивлением
Рис. 136. Кривая мгновенной мощности цепи с активным сопротивлением

Среднее за период значение мощности называется активной мощностью, обозначается буквой Р и измеряется в запах.

Для рассматриваемой цепи с активным сопротивлением

т. е. формула мощности для цепи переменного тока с активным сопротивлением такая же, как формула мощности для цепи постоянного тока.

Активным сопротивлением обладают все проводники. В цепи переменного тока практически только одним активным сопротивлением обладают нити ламп накаливания, спирали электронагревательных приборов и реостатов, дуговые лампы, специальные бифилярные обмотки и прямолинейные проводники небольшой длины.

Источник



Как рассчитать цепь переменного тока с активным сопротивлением

§ 56. Цепь переменного тока с активным и индуктивным сопротивлениями

Любая проволочная катушка, включенная в цепь переменного тока, обладает активным сопротивлением, зависящим от материала, длины и сечения проволоки и индуктивным сопротивлением, которое зависит от индуктивности катушки и частоты переменного тока, протекающего по ней (XL = ωL = 2πf L). Такую катушку можно рассматривать как приемник энергии, в котором активное и индуктивное сопротивления соединены последовательно.
Рассмотрим цепь переменного тока, в которую включена катушка индуктивности (рис. 59, а) с активным r и индуктивным сопротивлением XL. Падение напряжения на активном сопротивлении

Падение напряжения на индуктивном сопротивлении

Построим векторную диаграмму тока и напряжения (рис. 59, б) для рассматриваемой цепи.

Отложим по горизонтали вектор тока 1 в выбранном масштабе. Известно, что ток и напряжение в цепи с активным сопротивлением совпадают по фазе, поэтому вектор падения напряжения на активном сопротивлении откладываем по вектору тока.
В цепи с индуктивностью ток отстает от напряжения на угол φ = 90°. Поэтому вектор падения напряжения на индуктивном сопротивлении откладываем на диаграмме вверх под углом 90° к вектору тока.
Для определения общего напряжения, приложенного к цепи, сложим векторы Суммой этих векторов будет диагональ параллелограмма — вектор Треугольник АОБ, стороны которого выражают соответственно напряжения Ua , UL и общее напряжение U, называется треугольником напряжений. На основании теоремы Пифагора — в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов — следует, что общее напряжение на зажимах цепи

Пример. Падение напряжения на активном сопротивлении Ua = 15 в. Напряжение на индуктивном сопротивлении UL = 26 в. Вычислить общее напряжение, приложенное к цепи.
Решение . Общее напряжение на зажимах цепи переменного тока с последовательно соединенными активным и индуктивным сопротивлениями

Чтобы определить полное сопротивление цепи переменного тока с активным и индуктивным сопротивлениями, следует разделить векторы Ua =I r и UL = IXL, на число I, выражающее силу тока в цепи, и построить треугольник А′О′Б′ (рис. 59, в), стороны которого меньше сторон треугольника напряжений в I раз. Образованный треугольник называется треугольником сопротивлений. Его сторонами являются сопротивления r и ХL и полное сопротивление цепи Z.
Пользуясь теоремой Пифагора, можно написать, что

отсюда полное сопротивление цепи

Пример. Активное сопротивление катушки r = 7 ом, а ее индуктивное сопротивление ХL = 24 ом. Вычислить полное сопротивление катушки.
Решение . Полное сопротивление катушки переменному току

Сила тока в цепи с активным и индуктивным сопротивлениями определяется по закону Ома:

На векторной диаграмме видно, что в цепи переменного тока с активным и индуктивным сопротивлениями ток и напряжение не совпадают по фазе.
Ток отстает от напряжения на угол φ.
Угол сдвига между током и напряжением можно определить, если известен косинус этого угла.
Из треугольника напряжений косинус угла сдвига фаз

Читайте также:  Определение направления индукционного тока в кольце объяснение

Теперь можно, пользуясь таблицей тригонометрических функций, определить угол φ.

Пример. Падение напряжения на активном сопротивлении катушки Ua = 30 в. Общее напряжение на ее зажимах Uв = 60 в. Определить угол сдвига фаз между током и напряжением в цепи.
Решение. На основании данных найдем

По таблице тригонометрических функций угол сдвига фаз при cos φ = 0,5 составляет 60°.
По треугольнику сопротивлений можно также определить угол сдвига фаз между током и напряжением:

Пример. Активное сопротивление катушки составляет 5 ом, а ее полное сопротивление Z = 30 ом. Определить угол сдвига фаз.
Решение .

Источник

Активное сопротивление в цепи переменного тока

ads

Электрические лампы накаливания, печи сопротивления, бытовые нагревательные приборы, реостаты и другие приемники, где электрическая энергия преобразуется в тепловую, на схемах замещения обычно представлены только сопротивлением R.
Для схемы, изображенной на рис. 13.1, а, заданы сопротивление R и напряжение, изменяющееся по закону

u = Umsinωt

Найдём ток и мощность в цепи.

89

Ток в цепи переменного тока с активным сопротивлением.

4

По закону Ома найдем выражение для мгновенного тока:

где Im = Um/R — амплитуда тока

Из уравнений напряжения и тока видно, что начальные фазы обеих кривых одинаковы, т. е. напряжение и ток в цепи с сопротивлением R совпадают по фазе. Это показано на графиках и векторной диаграмме (рис. 13.1, б, б).

5

Действующий ток найдем, разделив амплитуду на √ 2:

Формулы (13.1) выражают закон Ома для цепи переменного тока с сопротивлением R. Внешне они ничем не отличаются от формулы для цепи постоянного тока, если переменные напряжение и ток выражены действующими величинами.

Мгновенная мощность в цепи переменного тока с активным сопротивлением.

При переменных величинах напряжения и тока скорость преобразования электрической энергии в приемнике, т. е. его мощность, тоже изменяется. Мгновенная мощность равна произведению мгновенных величин напряжения и тока: p = Umsinωt * Imsinωt = UmImsin 2 ωt

6

Из тригонометрии найдём

7

Более наглядное представление о характере изменения мощности в цепи дает график в прямоугольной системе координат, который строится после умножения ординат кривых напряжения и тока, соответствующих ряду значений их общего аргумента — времени t. Зависимость мощности от времени — периодическая кривая (рис. 13.2). Если ось времени t поднять по чертежу на величину р = Pm√2 = UmIm√2, то относительно новой оси t’ график мощности является синусоидой с двойной частотой и начальной фазой 90°:

Таким образом, в первоначальной системе координат мгновенная, мощность равна сумме постоянной величины Р = UmIm√2 и перемен- ной р’:

р = Р + р’

Анализируя график мгновенной мощности, нетрудно заметить, что мощность в течение периода остается положительной, хотя ток и напряжение меняют свой знак. Это получается благодаря совпадению по фазе напряжения и тока.

Постоянство знака мощности говорит о том, что направление потока электрической энергии остается в течение периода неизменным, в данном случае от сети (от источника энергии) в приемник с сопротивлением R, где электрическая энергия необратимо преобразуется в другой вид энергии. В этом случае электрическая энергия называется активной.

Если R — сопротивление проводника, то в соответствии с законом Ленца — Джоуля электрическая энергия в нем преобразуется в тепло.

Активная мощность для цепи переменного тока с активным сопротивлением

Скорость преобразования электрической энергии в другой вид энергии за конечный промежуток времени, значительно больший периода изменения тока, характеризуется средней мощностью. Она равна средней мощности за период, которую называют активной.

Активная мощность — среднее арифметическое мгновенной мощности за период.

Для рассматриваемой цепи активную мощность Р нетрудно определить из графика рис. 13.2. Средняя величина мощности равна высоте прямоугольника с основанием Т, равновеликого площади, ограниченной кривой р(t) и осью абсцисс (на рисунке заштриховано).

Равенство площадей РТ = Sp выполняется, если высоту прямоугольника взять равной половине наибольшей мгновенной мощности Pm.

В этом случае часть площади Sp , находящаяся выше прямоугольника, точно укладывается в оставшуюся незаштрихованной его часть:

P = UI

Активная мощность для данной цепи равна произведению действующих величин тока и напряжения:

P = UI = I 2 R

С математической точки зрения активная мощность является постоянной составляющей в уравнении мгновенной мощности p(t) [см. выражение (13.2)].

10

Среднюю мощность за период можно найти интегрированием уравнения (13.2) в пределах периода:

Сопротивление R, определяемое из формулы (13.3) отношением активной мощности цепи к квадрату действующего тока, называется активным электрическим сопротивлением.

Источник