Меню

Как рассчитать ударное значение тока

Определение ударного тока КЗ.

Ударный ток короткого замыкания — наибольшее возможное мгновенное значение тока короткого замыкания.

Возможны два подхода в нахождении условий возникновения максимального значения ударного тока КЗ: умозрительный и строгий.

В практических расчетах максимальное мгновенное значение полного тока КЗ или ударного тока КЗ находят при наибольшей апериодической составляющей. Это умозрительный подход.

Условиями его определения является отсутствие предшествующего тока и максимальное значение апериодической составляющей в момент включения.

С учетом этих условий выражение для ударного тока КЗ выглядит так

где — ударный коэффициент;

— действующее значение периодической составляющей тока в первый период КЗ. — Постоянная времени затухания апериодической составляющей тока короткого замыкания — электромагнитная постоянная времени, характеризующая скорость затухания апериодической составляющей тока короткого замыкания.

Ударный коэффициент тока короткого замыкания — отношение ударного тока короткого замыкания к амплитуде периодической составляющей тока короткого замыкания рабочей частоты в начальный момент времени.

Это определение ударного тока не является строгим, так как полный ток зависит от времени и угла включения. Строгое условие максимального мгновенного значения тока говорит о том, что напряжение в момент включения должно проходить через ноль.

При оба подхода совпадают.

В практике расчетов применяется первый подход. Ударный коэффициент чаще всего 1,8. в этом случае принимается , Примерные значения постоянных времени и ударных коэффициентов на шинах оборудования

Наименование оборудования Постоянная времени Та, с Ударный коэффициент Ку
Турбогенератор 0.1 – 0.3 1.95
Блок генератор-трансформатор 0.04 1.8
ВЛЭП 0.01 1.3
КЛЭП 0.001

Пределы изменения ударного коэффициента в индуктивно-активных цепях: .

При КЗ на выводах батарей статических конденсаторов ударный коэффициент может быть больше 2.

В сетях низкого напряжения 0.4 – 0.66 кВ

Дата добавления: 2015-01-18 ; просмотров: 512 ; Нарушение авторских прав

Источник

Способы определения ударного коэффициента и ударного тока короткого замыкания

date image2020-04-07
views image401

facebook icon vkontakte icon twitter icon odnoklasniki icon

Способ расчета ударного тока КЗ зависит от требуемой точности расчета и конфигурации исходной схемы.

При расчете ударного тока КЗ с целью проверки проводников и электрических аппаратов по условиям КЗ допустимо считать, что амплитуда периодической составляющей тока КЗ в момент наступления ударного тока равна амплитуде этой составляющей в начальный момент КЗ.

В практических расчетах ударный ток находят при наибольшей апериодической составляющей. Наибольшее начальное значение апериодической составляющей при холостом ходе в предшествующем режиме и когда вектор напряжения проходит через нуль.

С учетом этих условий выражение для ударного тока КЗ можно записать

где КУД – ударный коэффициент, характеризующий превышение ударного тока над амплитудой периодической составляющей тока КЗ, зависит от Та (рис. 2.26).

Ударный коэффициент рекомендуется определять по формуле:

Ударный коэффициент зависит от постоянной времени затухания апериодической составляющей . При КУД →1, а при КУД →2, т.е. значение ударного коэффициента изменяется в пределах 1

где КУД – ударный коэффициент, зависящий от Та (рис. 2.26).

Значение отношения х/r элементов систем электроснабжения и постоянных времени типичных радиальных ветвей даны в таблицах 2.5 и 2.6.

Средние значения отношения х»/r для элементов системы электроснабжения

Элемент х»/r
Подстанция энергосистемы, с которой ГПП связана, на напряжение:35 кВ 110 – 150 кВ 220 – 330 кВ 6,3 6,3 – 10 10 – 13
Электростанция, состоящая из блоков турбогенератор — трансформатор, при мощности генератора: 100 – 200 МВт: 300 МВт 500 МВт 80 100 110
Заводская ТЭЦ, связанная с предприятием на генераторном напряжении, с турбогенераторами мощностью 12 – 60 МВт 50 – 80
Воздушные линии электропередачи напряжением:35 кВ 110 кВ 150 кВ 220 кВ 330 кВ 0,6 – 1 1,3 – 2,6 3 – 3,5 3,6 – 4 4 – 4,5
Кабельные линии электропередачи напряжением 1/6 – 10/35 кВ, выполняемые трехжильным кабелем сечением алюминиевой жилы: 25 мм 2 35 мм 2 50 мм 2 70 мм 2 95 мм 2 120 мм 2 150 мм 2 185 мм 2 0,06/0,06/0,1 0,08/0,09/0,13 0,11/0,13/0,20 0,16/0,18/0,27 0,21/0,24/0,36 0,27/0,31/0,46 0,35/0,40/0,60 0,44/0,50/0,75
Силовые трансформаторы двухобмоточные 6 – 10/0,4 – 0,69 кВ номинальной мощностью 25 – 2500 кВ·А 2,8/5
Силовые трансформаторы двухобмоточные с высшим напряжением 35 кВ номинальной мощностью 1000 – 10000 кВ·А 5,4-11,5
Силовые трансформаторы двухобмоточные с высшим напряжением 110 кВ номинальной мощностью 10000 кВ·А: 16000 кВ·А 17,5 18,5
Силовые трансформаторы двухобмоточные с высшим напряжением 110 кВ: с расщепленной обмоткой НН, номинальной мощностью 25000 – 80000 кВ·А при параллельном соединении обмоток НН 40 – 65 26 – 45
Токоограничивающий реактор при номинальном токе до 630 А 1000 А и выше 15 – 70 40 – 80
Читайте также:  Предохранитель по току многоразовый


Средние значения отношения xРЕЗ /rРЕЗ и постоянной времени TА ударного коэффициента КУД для характерных радиальных ветвей системы электроснабжения напряжением выше 1 кВ

Если исходная расчетная схема является многоконтурной, но все источники энергии связаны с расчетной точкой КЗ общим сопротивлением, то при приближенных расчетах ударного тока КЗ рекомендуется использовать формулу (2.53) , а ударный коэффициент определить по формуле:

где Та.эк – эквивалентная времени затухания апериодической составляющей тока КЗ рассчитывается по формуле:

где Xрез(R=0) — результирующее индуктивное сопротивление схемы, найденное при отсутствии всех активных сопротивлений (Rрез = 0);

Rрез(Х=0) — результирующее активное сопротивление схемы при отсутствии всех индуктивных сопротивлений (Xрез = 0), найденных относительно точки КЗ.

В тех случаях, когда исходная расчетная схема является многоконтурной, но точка КЗ делит ее на несколько независимых частей, то ударный ток допустимо принимать равным сумме ударных токов от соответствующих частей схемы, т.е.

где IП0i – начальное действующее значение периодической составляющей тока КЗ от i – й части схемы;

КУДi – ударный коэффициент тока КЗ от от i – й части схемы.

В приближенных расчетах эквивалентную постоянную времени не определяют, а принимают усредненные значения ударного коэффициента для ветви с гидрогенераторами – KУД.Г = 1,9; для ветви с турбогенераторами – KУД.Т = 1,8: для ветви с системой – KУД.С =1,4.

Ударный ток КЗ для сложной схемы определяют по формуле

iУД = (IП0.Г ·KУД.Г +IП0.Т ·KУД.Т +IПС ·KУД.С). (2.57)

Рис. 2.26. Зависимость КУД от постоянной времени ТА

(или от отношения ) при Iпt=Iп0

Источник



Расчет ударного тока КЗ в сети свыше 1 кВ

В данной статье речь пойдет о вычислении ударного тока к.з. в сети свыше 1 кв, согласно РД 153-34.0-20.527-98.

При выборе аппаратов и проводников учитывают ударный ток к.з. наступающий через 0,01 с с момента возникновения короткого замыкания.

Ударным током (iуд.) принято называть наибольшее возможное мгновенное значение тока к.з (см. рис.5 [Л1, с.11]).

Ударный ток кз

Расчет ударного тока к.з. для схемы с последовательным включением элементов

Для схем с последовательным включением элементов ударный ток к.з. определяется по выражению 5.16 [Л3, с.48]:

Ударный ток кз для схем с последовательным включением элементов

  • Iп.о – начальное значение апериодической слагающей трехфазного тока к.з.
  • Kуд – ударный коэффициент для времени t = 0,01 с, определяется по одной из следующих выражений 5.17 – 5.19 [Л3, с.48]:

Расчет ударного коэффициента для схем с последовательным включением элементов

Если же Xэк/Rэк > 5, допускается определять ударный коэффициент по выражению 5.20 [Л3, с.48]:

Расчет ударного коэффициента

Та – постоянная времени затухания апериодической составляющей тока к.з, определяется по выражению 65 [Л1, с.9 и 74] и по выражению 5.11 [Л3, с.46]:

Та – постоянная времени затухания апериодической составляющей тока к.з

  • Хэк и Rэк – соответственно суммарное индуктивное и активное сопротивления схемы от источника питания до места к.з.
  • ω = 2πf = 2*3,14*50 = 314 – угловая частота (f = 50 Гц – частота сети).

Для ориентировочных расчетов значение Та можно определять по таблице 3.8 [Л2, с.150].

Таблица 3.8 - Значения постоянной времени затухания апериодической состовляющей тока кз и ударного коэффициента

Расчет ударного тока к.з. для схемы с разветвленным включением элементов

Для схем с разветвленным включением элементов, ударный ток к.з. определяется по такой же формуле 5.16 как и при схеме с последовательном включении элементов:

Ударный ток кз для схем с разветвленным включением элементов

Ударный коэффициент определяется по следующим выражениеям 5.17а – 5.18а [Л3, с.46]:

Расчет ударного коэффициента для схем с разветвленным включением элементов

При Xэк/Rэк > 5, ударный коэффициент определяется по аналогичной формуле как и при схеме с последовательным включением элементов:

Расчет ударного коэффициента

где: Та.эк – эквивалентная постоянная времени затухания апериодической составляющей тока к.з, определяется по выражению 67 [Л1, с.9 и 74] и по выражению 5.13 [Л3, с.47]:

Та.эк – эквивалентная постоянная времени затухания апериодической составляющей тока к.з

Хэк и Rэк – соответственно суммраное индуктивное и активное сопротивления, полученные из схемы замещения, составленной из индуктивных и активных сопротивлений, поочередным исключением из нее сначала всех активных, а затем всех индуктивных сопротивлений.

Для схемы последовательного включения так и для схемы разветвленного включения согласно п.5.3.3 [Л3, с. 45].

Определение апериодической составляющей тока к.з согласно пункта 5.3.3 РД 153-34.0-20.527-98

При определении Та (Та.эк) необходимо учитывать, что синхронные машины вводяться в расчетную схему индуктивным сопротивлением обратной последовательности – Х2(ном) и сопротивлением обмотки статора при нормальной рабочей температуре – Rа.

Для асинхронных двигателей учитывается индуктивное сопротивлением обратной последовательности – Х2(ном) равное сверхпереходному индуктивному сопротивлению Х”.

Сверхпереходное сопротивление электродвигателя и сверхпереходное ЭДС междуфазное в относительных единицах, можно определить по таблице 5.2 [Л4, с.14]:

Читайте также:  Ток минус кот равно 297

Таблица 5.2 - Сверхпереходное сопротивление электродвигателя и сверхпереходное ЭДС междуфазное в относительных единицах

Соотношения x/r для различных элементов сети приведены ниже [Л1, с.75].

Соотношения x/r для различных элементов сети

Расчет ударного тока к.з. с учетом влияния синхронных и асинхронных электродвигателей

Согласно п.5.6.3 [Л3, с.54] ударный ток к.з. от синхронных и асинхронных электродвигателей определяется по выражению 5.16 [Л3, с.48]:

Ударный ток кз с учетом влияния синхронных и асинхронных электродвигателей

где: Kуд – ударный коэффициент цепи двигателя, определяется согласно гл. 5.6 [Л3, с.54] и таблиц 2.74 — 2.75 [Л5].

Значения ударных коэффициентов асинхронных и синхронных двигателей

Также для ориентировочных расчетов ударный коэффициент для двигателей, связанных непосредственно с местом кз через линейные реакторы или кабельные линии можно определить согласно таблицы 6.3 (стр.213) типовой работы №192713.0000036.02955.000АЭ.01 «Релейная защита элементов сети собственных нужд 6,3 и 0,4 кВ электростанций с турбогенераторами» Атомэнергопроект.

Данные двигатели объединяются в один эквивалентный двигатель суммарной мощности ΣРном.дв., со средними расчетными параметрами, значения которых приведены в таблице 6.3.

Ударный ток кз с учетом влияния синхронных и асинхронных электродвигателей

  1. Беляев А.В. Как рассчитать ток короткого замыкания. Учебное пособие. 1983 г.
  2. Электрооборудование станций и подстанций. Второе издание. Л.Д. Рожкова, В.С. Козулин. 1980 г.
  3. Руководящие указания по расчету токов короткого замыкания и выбору электрооборудования — РД 153-34.0-20.527-98.
  4. Расчеты токов короткого замыкания для релейной защиты. Учебное пособие. Часть первая. И.Л.Небрат 1996 г.
  5. Справочная книга электрика. Григорьева В.И. 2004г.

Поделиться в социальных сетях

Если вы нашли ответ на свой вопрос и у вас есть желание отблагодарить автора статьи за его труд, можете воспользоваться платформой для перевода средств «WebMoney Funding» .

Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.

Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.

Пример расчета тока самозапуска нагрузки

Рассмотрим пример расчета тока самозапуска нагрузки приведенное к стороне ВН для подстанции ПС 110/6 кВ.

Расчет уставок дифференциальной защиты трансформатора на терминале RET 670

Требуется выполнить расчет уставок дифференциальной защиты на терминале RET 670 (фирмы «ABB») для защиты.

Выбор коэффициентов надежности, согласования, коэффициентов возврата реле

В этой статье пойдет речь об коэффициентах, которые используются в расчетных формулах при расчете.

Пример расчета уставок кабельной линии 10 кВ с ответвлениями

В данной статье будет рассматриваться пример расчета уставок токовых защит для кабельной линии 10 кВ с.

Расчет тока однофазного замыкания на землю в сети с изолированной нейтралью

В данном примере рассмотрим расчет тока однофазного замыкания на землю (ОЗЗ) для подстанции 10 кВ (Схема.

Отправляя сообщение, Вы разрешаете сбор и обработку персональных данных.
Политика конфиденциальности.

Источник

Ударный ток короткого замыкания

Проверка электронной аппаратуры и всех видов шин может производится разными способами. Например, чтобы выявить степень электродинамической устойчивости, применяется ударный ток короткого замыкания (iуд), значение которого определяется путем расчетов. По своей сути, данная величина является максимальным мгновенным значением полного тока КЗ. Рассчитать указанную характеристику можно на стадии между отсутствием тока в предыдущем режиме и максимальным показателем апериодической компоненты.

  1. Составные части короткого замыкания
  2. Расчеты ударного тока КЗ
  3. Использование ударного коэффициента
  4. Максимальная действующая величина полного тока

Составные части короткого замыкания

Прежде чем рассуждать об ударном токе, необходимо рассмотреть из каких частей вообще состоит полный ток короткого замыкания. Известно, что его основными составляющими являются свободная апериодическая часть и вынужденная периодическая компонента. Своей максимальной отметки ток КЗ достигает при наивысших значениях обеих составных частей.

Ударный ток короткого замыкания

Апериодический ток в самом начале появления становится максимальным в момент нулевого значения тока в предыдущем режиме, представляющем собой холостой ход. Непосредственно при наступлении КЗ, вынужденный ток с периодической составляющей проходит свою максимальную отметку. Данное условие становится показателем, используемым в расчетах. Полный ток КЗ с максимальным мгновенным значением и есть ударный ток короткого замыкания.

На практике этот показатель рассчитывается при максимальной величине апериодической части. С этой целью выбирается режим, предшествующий аварии, называемый холостым ходом. Данной состояние сети считается одним из наиболее сложных по сравнению с индуктивным или активно-индуктивным доаварийным током, при которых показатель апериодической части будет ниже.

Условия, при которых образуется апериодическая составляющая, приведены на рисунке. Они полностью зависят от предыдущего состояния тока до аварийного режима. Красный вектор соответствует доаварийному току, синий – периодическому току КЗ. Вектор зеленого цвета показывает разницу между ними, выдающую величину апериодического тока в начальной стадии.

Расчеты ударного тока КЗ

Предварительные расчеты показывают, что апериодическая компонента примет максимальное первоначальное значение в том случае, когда фазное напряжение в момент включения при коротком замыкании будет равным нулю. В некоторых случаях угол напряжения может превышать нулевую отметку.

В это же время фаза периодической части будет равна 90 градусам, и ток начнет терять свое максимальное амплитудное значение. Следовательно, возникает отставание тока от напряжения как раз на эти 900. Причиной такого состояния выступают активные сопротивления короткозамкнутой цепи с очень малыми значениями.

Читайте также:  Практическое измерение мощности в цепях переменного тока

При достижении фазой напряжения 90 градусов, ток периодической компоненты выйдет из нулевой отметки, что приведет к выполнению закона коммутации. В данном случае апериодического тока не будет, поэтому не возникнет и ударный ток.

На приведенном рисунке хорошо видно возникновение ударного тока короткого замыкания, отмеченного зеленой кривой. Она еще не дошла до точки затухания, а синяя кривая, соответствующая периодическому току, проходит через нее и точку своего амплитудного значения. При этом обе кривые в этот момент принимают общий знак с положительным показателем. Подобная ситуация возникает на второй половине периода от начала замыкания, то есть, примерно через 0,01 с.

Рассчитать ударный ток можно при помощи следующей формулы:

В которой Ку является ударным коэффициентом, а Inmax – амплитудным значением периодического тока короткого замыкания. Изменения Ку происходят в пределах меньше 1 и больше 2, тогда как электромагнитная постоянная времени Та может изменяться от 0 до бесконечности, характеризующая скорость затухания апериодической компоненты. По мере уменьшения Та, ускоряется затухание свободной составляющей, одновременно наступает снижение ударного коэффициента.

В сетях высокого напряжения она полностью исчезает уже через 0,1-0,3 секунды, а при низком напряжении затухание также происходит очень быстро из-за наличия высокого активного сетевого сопротивления.

Использование ударного коэффициента

Ударный коэффициент в режиме короткого замыкания играет важную роль, поэтому его следует рассмотреть более подробно. Этот показатель, применяемый в расчетах, можно выразить короткой формулой: Ку = iy/inm. Здесь iy является ударным током КЗ, а inm представляет собой амплитуду периодической составной части.

Данный коэффициент применяется при расчетах ударного тока. Если в формуле амплитуду inm заменить на действующий ток, получится следующее выражение: Ку = iy√2inm. Следовательно, формула для вычисления ударного тока приобретет следующий вид: iy = Ку√2inm. На практике значение ударного коэффициента КЗ принимается за 1,8 в электроустановках более 1 кВ; величина 1,3 берется при возникновении КЗ за участком кабельной линии большой протяженности.

Этот же показатель используется для вторичной стороны понижающего трансформатора с мощностью, не превышающей 1000 кВА и сетей с напряжением до 1 кВ. Для ускорения расчетов существует таблица, содержащая коэффициенты для аварийных ситуаций, встречающихся чаще всего.

Оборудование и установки Постоянная времени Та Ударный коэффициент Ку
Турбогенераторы 0,1-0,3 1,95
Блок, состоящий из генератора и трансформатора 0,04 1,8
Высоковольтная ЛЭП 0,01 1,3
Короткая низковольтная ЛЭП 0,001

Теоретически, при отсутствии в цепи активных сопротивлений и постоянной времени, равной бесконечности, затухание периодической компоненты вообще бы не наступило, и она сохранила бы свое начальное значение на весь период КЗ до момента отключения аварийного участка. При этом, ударный коэффициент достиг бы своего максимума и составил Ку = 2.

Если короткое замыкание наступило в местах, удаленных от источника питания на значительные расстояния, токи, появляющиеся в этой точке, будут небольшими, сравнительно с номинальным током этого источника питания. В процессе КЗ изменения номинала будут практически незаметными, а напряжение на клеммах следует принять за постоянную величину.

Таким образом, периодическая компонента будет оставаться постоянной по своей амплитуде на протяжении всего времени КЗ. Изменения самого тока КЗ будут происходить лишь когда апериодическая составляющая будет постепенно затухать.

Максимальная действующая величина полного тока

Поскольку ударный ток является разновидностью полного тока, его следует рассмотреть подробнее. Действующее значение данного параметра определяется в любой из временных промежутков. Оно выглядит в виде среднеквадратичного значения на протяжении одного периода, с учетом рассматриваемого момента времени. В виде формулы — это выражение представлено следующим образом:

Если же характеристики тока не синусоидальные – его действующее значение выбирается в виде квадратного корня, извлекаемого из суммы квадратов всех составных частей.

Следовательно, ударный ток с действующим значением будет рассчитываться в таком порядке:

На практике, чтобы правильно рассчитать ударный ток короткого замыкания, выстраиваются две замещающие схемы, состоящие из чисто активных и реактивных сопротивлений.

Апериодическая составляющая тока короткого замыкания

Как рассчитать ток короткого замыкания

Ток короткого замыкания однофазных и трехфазных сетей

Мощность короткого замыкания

Что такое ток короткого замыкания

Что такое короткое замыкание (КЗ): в чем причина, виды, защита, определение для чайников

Источник