Меню

Как снизить ток светодиодной лампы

Переделал светодиодную лампочку. Теперь она служит в 3 раза дольше и светит ярче в 2 раза

Да будет свет! Расскажу, как сделал светодиодную лампочку, которая служит 3 год и умирать не собирается. При этом светит в два раза ярче. Переделка очень простая. Расписываю в подробностях.

Светодиодные лампочки

Секрет долголетия светодиодных ламп

Заметил такую штуку. Светодиодные лампочки позиционируются на рынке как самые надежные, экономичные и долговечные. Производители обещают, что они будут служить 10 лет. По факту работают они ровно до окончания срока гарантии. Хотя могли бы светить дольше.

Китайцы экономят на всем, чем только можно – компонентах драйвера, светодиодах, материалах платы и корпуса. Как следствие, лампочки перегружаются и перегреваются. Светодиоды эксплуатируются в предельных режимах!

Светодиодная лампочка

Заметил я это, когда очередная лампочка перестала светить через год. Я решил ее разобрать и посмотреть, в чем проблема. Оказалось, что резисторы и конденсаторы подобраны так, чтобы светодиоды работали на всю свою мощь. Неудивительно, что один из них сгорел.

Разборка

Решено было продлить срок службы лампочки самым варварским способом. Начну сначала – с разборки.

  1. Берем острый нож. Надеваем перчатки, чтобы не порезаться.
  2. Кладем лампочку на стол.
  3. Вставляем лезвие ножа в микрощель между рассеивателем и средней частью лампы.
  4. Они соединены чем-то вроде герметика.
  5. Слегка надавливаем сверху на нож и перекатываем лампу.
  6. Пара минут, и герметик срезается, а плафон выходит из защелок средней части.
  7. Под крышкой покажутся последовательно подключенные светодиоды на плате.
  8. Откручиваем 2 винта, отпаиваем. Вырезаем по кругу термоклей.
  9. Достаем плату, поддев ножом.
  10. За ней находится драйвер, который можно вытащить пальцами. Собственно все, лампочка разобрана.

Устроена она очень просто:

Строение светодиодной лампы схема

Восстановление

Сделать самому лампочку меня надоумило вот это видео:

  1. Находим сгоревший светодиод (или несколько).
  2. Обычно они отмечены черной точкой. В моем случае весь светодиод был выгоревший.
  3. Выкрашиваем погорельца ножом или отверткой.
  4. Капаем на оголившийся контакт флюсом и наносим капельку припоя.

Переделка лампочки

Таким образом мы восстанавливаем цепь и лампочка снова начинает работать. Но! Есть одна загвоздка. Напряжение после этого повышается, и светодиоды будут гореть один за другим. Возможно, лампочка проработает еще месяц. А может быть, только один день.

Переделка лампочки 2

Уменьшение тока

Для того чтобы лампочка проработала максимально долго, нужно уменьшить ток. Для этого:

  1. Берем драйвер и определяем тип микросхемы.
  2. Ищем по даташиту описание.
  3. Выпаиваем низкоомный резистор с большим сопротивлением.

После этого ток уменьшится практически в два раза. Да, лампочка перестанет светить так ярко, как раньше. Но дольше служить будет однозначно (может быть, и все 10 лет).

Повышение яркости

На этапе замены резистора можно было бы остановиться – собрать лампу обратно, приклеить (примотать скотчем) рассеиватель… Но мне свет показался недостаточно ярким. Стал вопрос, как это исправить. Я пошел самым простым путем.

Лампочки

Чтобы увеличить яркость лампочки, взял старенький компакт-диск. Немного доработал и получил мощный отражатель.

  1. Расширил центральное отверстие диска. Для этого использовал столярное «перо» на 35. Можно прорезать отверстие любым другим подручным инструментом. Не суть.
  2. Приклеил плату со светодиодами к диску. Взял термоклей. Намазал его на отражающую сторону CD (по кругу отверстия). Прижал плату задней частью.
  3. Собрал лампочку в обратном порядке. Где нужно, контакты подпаиваем. Местами провода не меняем, даже если длина позволяет. Лампочка будет мерцать.
  4. Проклеил шов в месте прилегания корпуса к CD, чтобы конструкция получилась крепкой и не распалась. Рассеиватель выкинул.

Итог. Из нерабочей светодиодной лампочки получился эдакий мини-прожектор. Смотреть на него некомфортно, но зато гараж освещен на все 200%! Конечно, для дома такой вариант не подойдет. Равно как и для улицы (сырых помещений). Там яркостью придется пожертвовать ради эстетики и безопасности.

Предвижу, что многие скажут, а зачем вообще ремонтировать и продлять жизнь светодиодным лампам? Сегодня цена на них ну очень доступная. Выкинуть старую, и купить новую может позволить себе каждый. Но я из принципа решил выжать из нее максимум. Результатом доволен на все сто. В гараже светло как днем. За 3 года ни один светодиод не перегорел. Лампа стала ярче в два раза, и дольше служит уже в три раза (и это не предел)!

Источник

Сделаем “вечным” светодиодный светильник.

Всем привет. В этой статье вы узнаете о методах продлевающим жизнь светодиодным светильникам, лампочкам и всему что связано со светодиодным освещением. Модернизировать будем известным нам по прошлой статье светодиодный светильник Varton 12W.

Уважаемый Remonter, недавно упоминал в статье о светодиодной подсветке телевизоров, о том что многие производители намеренно идут на ухищрения, прибыли ради и ради того чтобы грубо говоря их заводы не закрыли.
В прошлой своей статье о ремонте светиодного светильника я рассказал вам как его починить, а вот как продлить ему жизнь, решил рассказать в этой отдельной статье.

Суть методов состоит в том чтобы ограничить ток подаваемый на светодиоды, путём подбора токового резистора на плате драйвера, который ,,чувствует нагрузку и сигнализирует об этом микросхеме”, а та в всою очередь убавляет или прибавляет ток, подстариваясь под норму. Подстраивая резисторы (прибавляя сопротивление, чтобы сделать тускло) мы настраиваем желаемое свечение. Либо, как второй вариант, включения обычных диодов или токоограничивающих резисторов, в разрыв цепи питания светодиодов.

Дабы всё было понятно в нашем частном случае, срисовал схему блока питания светильника с платы. Даташит на шим-микросхему найти не предоставилось возможным, поэтому пришлось рассчитывать на свою интуицию, опыт, информацию в интернете и советы Remonter-a, администратора нашего сайта.

Схема драйвера светодиодного светильника

Схема проста. Перед диодным мостом установлен терморезистор, ограничивающий обычные завышенные скачкообразные пусковые токи конденсатора, при включении драйвера. Также установлен помехоподавлящий Y-конденсатор, устранящий помехи из схемы в сеть и из сети в схему. За диодным мостом конденсатор, сглаживающий пульсации с диодного моста, за ним резистор слегка ограничивающий напряжение, далее резистивный делитель из трех резисторов, задающий режим работы микросхемы, еще один сглаживающий конденсатор, два паралельно включенных токовых резитора. За микросхемой диод разряжающий на себя остаточный ток дросселя и возвращая ток снова на него, после выключения драйвера, защищающий таким образом схему. За диодом резистор и конденсатор, сглаживающие остаточные пульсации после дросселя. Ну а в конце уже следует и сама нагрузка в виде светодиодов.

Читайте также:  Кпд параллельного возбуждения при постоянном токе возбуждения

Найти токовые резисторы на плате драйвера легко. Как правило они низкоомные и часто стоят по несколько штук в паралель, как раз для токовой настройки. В нашем случае их два, 3,4Ом и 2,5Ом, ,,висящие” между 3-ей и 8-ой ногами микросхемы.

Внешний вид платы и токовые резисторы

Поначалу пробовал вставить в разрыв питания светодиодов, математически рассчитанное на 30-ти процентное понижение тока сопротивление. К своему удивлению, вместо падения тока увидел мерцание светодиодов, с понижением яркости. Смотрите видео мерцания.

Так как даташита на микросхему не нашёл, предположил что это является особенностью её работы. Поэкспериментировав и поколдовав с осциллограмами в ключевых точках схемы, решил пойти более простым путём подбора токовых сопротивлений. К слову установка диодов в разрыв цепи в моем случае не дала ощутимого эффекта, так как пришлось бы набирать много диодов.

И так, замерил напряжение и ток потребления светодиодов в обычном заводском режиме, прибор показал 240В и 0,143А соответственно (амперметр включаем в разрыв цепи). Выпаял первое токовое сопротивление (2,5Ом), включил и о чудо – яркость светодиодов снизилась. Снова замерил ток и напряжение, показало 95В и 0,058А. Меня это вполне устроило, так как потребление тока уменьшилось почти в два раза.
Потом для полноты эксперимента вернул первый резистор на место, а второй (3,4Ом) выпаял и снова включил светильник. Эффект оказался не столь очевидным, т.е. свечение примерно на 70%, от заводской ,,нормы”.
На первом варианте с резистором в 2,5Ом решил остановиться, потому как это меня вполне устраивало. При 50% понижении потребления тока, визуально свечение упало примерно на 40%.
После часовой прогонки светильника, собрал его.

P.S. Для продления жизни светодиодам и вообще любым полупроводниковым элементам, применяют еще охлаждение, в виде радиаторов, в придачу вентиляторами или без оных. Радиаторы эффективно отводят тепло и таким образом спасают светодиоды от ускоренной температурной деградации (особенно дешёвых). Этот вариант не совсем подходит, если ток потребления светодиодов искусственно завышен производителем. В моём случае это оказалось не совсем уместным вариантом. К тому же я убил трёх зайцев, исправил заводской ,,косяк”, убавил ток на светодиоды ниже им положенной нормы, и избавил светодиоды от ускоренной деградации, уменьшив их нагрев.

Подытожу. Таким вот незамысловатым образом мы с вами можем продлить жизнь светодиодным светильникам, лампочкам, светодиодным лентам, любым активным нагрузкам, нуждающихся в уменьшении ненормально завышенного тока.

Источник

Защита светодиодных ламп от перегорания: схемы, причины, продлеваем жизнь

На рынке светодиодных ламп и светильников представлен широкий спектр продукции в разных ценовых диапазонах. Основное отличие приборов низкого и среднего ценовых сегментов заключается в большей степени не в используемых светодиодах, а в источниках питания для них.

Светодиоды работают от постоянного тока, а не от переменного, который протекает в бытовой электрической сети, а от качества преобразователя в большей степени зависит надежность ламп и режим работы светодиодов. В этой статье мы рассмотрим, как защитить светодиодные лампы и продлить жизнь дешевым моделям.

Всё описанное ниже справедливо и для светильников и для ламп.

Защита светодиодных ламп от перегорания

Два основных вида источников питания для светодиодов: гасящий конденсатор и импульсный драйвер

В самой дешевой светодиодной продукции используется гасящий конденсатор в качестве источника питания. Принцип его работы основан на реактивном сопротивлении конденсатора. Отметим простыми словами, что в цепях переменного тока конденсатор представляет собой аналог резистора. Отсюда следуют такие же недостатки, что и при использовании резистора:

1. Отсутствие стабилизации по напряжению или току.

2. Соответственно при росте входного напряжения увеличивается и напряжение на светодиодах, соответственно растёт и ток.

Эти недостатки связаны между собой. В отечественных электросетях, особенно в отдаленных районах, дачных поселках, деревнях и частном секторе часто наблюдаются скачки напряжения. Если напряжение проседает ниже 220В это не так страшно для ламп собранных по этой схеме, ток через светодиоды будет ниже, соответственно они прослужат дольше.

Схема светодиодной лампы с гасящим конденсатором:

Схема светодиодной лампы с гасящим конденсатором

А вот если напряжение будет выше номинального, например 240В, то светодиодная лампы быстро сгорит, по причине того, что и ток через светодиоды возрастет. Также очень опасны и импульсные скачки напряжения в сети, они возникают вследствие коммутации мощных электроприборов: вы наверняка замечали, что при включении холодильника или пылесоса, например, свет «моргает» — это и есть проявление этих импульсных скачков. Также они возникают во время грозы или аварийных ситуациях на ЛЭП или электростанции. Выглядит импульс следующим образом:

Импульсные драйвера для светодиодов

Импульсные драйвера для светодиодов

В светодиодных лампочках среднего и высокого ценового сегмента используются драйвера импульсного типа со стабилизацией тока.

Светодиоды работают от стабильного тока, напряжение для них не является основополагающей величиной. Поэтому драйвером называют источник тока. Его основными характеристиками является сила выходного тока и мощность.

Стабилизация тока реализуется с помощью цепей обратной связи, если не вдаваться в подробности существует два основных типа драйверов, которые используются в светодиодных лампочках и светильниках:

1. Бестрансформаторный, соответственно без гальванической развязки.

2. Трансформаторный – с гальванической развязкой.

Гальваническая развязка – это система, которая обеспечивает отсутствие прямого электрического контакта между первичной цепью питания и вторичной цепью питания. Она реализуется с помощью явлений электромагнитной индукции, иначе говоря, трансформаторами, а также с помощью оптоэлектронных устройств. В блоках питания для гальванической развязки используется именно трансформатор.

Типовая схема бестрансформаторного 220В драйвера для светодиодов изображена на рисунке ниже.

Типовая схема бестрансформаторного 220В драйвера для светодиодов

Обычно они построены на интегральной микросхеме со встроенными силовым транзистором. Она может быть в разных корпусах, например TO92, он используется также и в качестве корпуса для маломощных транзисторов и других ИМС, например линейных интегральных стабилизаторов, типа L7805. Встречаютcя и экземпляры в «восьминогих» корпусах для поверхностного монтажа, типа SOIC8 и другие.

Для таких драйверов повышения или понижения напряжения в питающей сети не страшны. Но крайне нежелательны импульсные перенапряжения – они могут вывести из строя диодный мост, если драйвер бестрансформаторный, то 220В попадут на выход микросхемы, или же мост пробьёт на КЗ по переменному току.

Читайте также:  Кабель 150 мм2 алюминий ток

В первом случае высокое напряжение «убьёт светодиоды», вернее один из них, как это обычно происходит. Дело в том, что светодиоды в лампах, прожекторах и светильников обычно соединены последовательно, в результате сгорания одного светодиода цепь разрывается, остальные остаются целыми и невредимыми.

Во втором – выгорит предохранитель или дорожка печатной платы.

Типовая схема драйвера для светодиодов с трансформатором изображена ниже. Они устанавливаются в дорогую и качественную продукцию.

Типовая схема драйвера для светодиодов с трансформатором

Защита светодиодных ламп: схемы и способы

Есть разные способы защиты электроприборов, все они справедливы для защиты светодиодных светильников, среди них:

1. Использование стабилизатора напряжения – это самый дорогой способ и для защиты люстры его использовать крайне неудобно. Однако можно запитать весь дом от сетевого стабилизатора напряжения, они бывают различных типов – релейные, электромеханические (сервоприводные), релейные, электронные. Обзор их преимуществ и недостатков может стать темой для отдельной статьи, пишите в комментарии, если вам интересна эта тема.

2. Использование варисторов – это прибор ограничивающие всплески напряжения, может использоваться как для защиты конкретного светильника или другого прибора, так и на вводе в дом.

3. Использование дополнительного гасящего конденсатора последовательном включении. Таким образом, ограничивается ток лампы, конденсатор рассчитывают исходя из мощности лампы. Это скорее не защита, а понижение мощности лампы, в результате при повышенных значениях напряжения в электросети срок её службы не сократится.

Варистор для защиты ламп и другой бытовой техники

Варистор – это прибор ограничивающий напряжение, его действие подобно газовому разряднику. Это полупроводниковый прибор с переменным сопротивлением. Когда на его выводах напряжение достигает уровня напряжения срабатывания варистора, его сопротивление снижается с тысяч мегаом до десятков Ом и через него начинает протекать ток. Его подключают в цепь параллельно. Таким образом, происходит защита электрооборудования.

Варисторы

Внешний вид варисторов

Un — классификационное напряжение. Это такое напряжение, при котором через варистор начинает протекать ток силой в 1 мА;

Um — максимально допустимое действующее переменное напряжение (среднеквадратичное);

Um= — максимально допустимое постоянное напряжение;

Р — номинальная средняя рассеиваемая мощность, это та, которую варистор может рассеивать в течение всего срока службы при сохранении параметров в установленных пределах;

W — максимальная допустимая поглощаемая энергия в джоулях (Дж), при воздействии одиночного импульса.

Ipp — максимальный импульсный ток, для которого время нарастания/длительность импульса: 8/20 мкс;

Со — емкость, измеренная в закрытом состоянии, при работе ее значение зависит от приложенного напряжения, и когда варистор пропускает через себя большой ток, она падает до нуля.

Для увеличения рассеваемой мощности производители увеличивают размер самого варистора, а также делают его выводы более массивными. Они выступают в качестве радиатора для отвода выделенной тепловой энергии.

Для защиты электроприборов в отечественных электросетях переменным напряжением в 220В подбирают варистор больший, чем амплитудное значение напряжения, а примерно равно 310В. То есть можно устанавливать варистор с классификационным напряжением около 380-430В.

Например, подойдет TVR 20 431. Если вы установите варистор с меньшим напряжением, то возможны его «ложные» срабатывания при незначительных превышениях напряжения питающей сети, а если установите с большим – защита не будет эффективной.

Как уже было сказано, варисторы могут устанавливаться непосредственно на вводе в дом, таким образом, вы защитите все электроприборы в доме. Для этого промышленностью выпускаются модульные варисторы, так называемые УЗИП.

Вот схема его подключения для трёхфазной сети, для однофазной – аналогично.

Схема подключения УЗИП

Эти схемы с использованием дифавтомата и защитой от высокого потенциала на одном или двух проводах однофазной цепи не менее интересны.

Схема защиты ламп

Схема защиты ламп

Для защиты одного светильника или лампочки используют такую схему включения, она приведена на примере самодельного светодиодного светильника, но при использовании готового светильника или лампы варистор устанавливается также – параллельно по цепи 220В.

Схема самодельного светодиодного светильника

Вы его можете установить как в корпусе самого осветительного прибора, так и на питающих проводах снаружи. Если он подключается к розетке – варистор можно расположить в розетке. Варистор можно заменить супрессором.

В этом видео ролике автор интересно рассказывает о таком способе защиты.

Готовые решения

Устройство защиты от импульсных перенапряжений для светодиодных светильников – от производителя LittleFuse. Обеспечивают защиту от перенапряжений величиной до 20 кВ. В зависимости от конструкции устанавливается в параллель или последовательно.

 – от производителя LittleFuse. Обеспечивают защиту от перенапряжений величиной до 20 кВ. В

На рынке имеются устройства с разными характеристиками – напряжением срабатывания и пиковый ток.

Устройство защиты светодиодов сохраняет лампы при импульсах напряжения. Подключается параллельно цепи освещения после выключателя. Также предотвращает самопроизвольное мигание светодиодных лампочек при использовании выключателей с подсветкой.

Устройство защиты светодиодов

Суть работы такого устройства заключается в том, что внутри установлен конденсатор. Ток подсветки выключателей течет через него, также он сглаживает всплески напряжений.

Подобное или аналогичное устройство от фирмы Гранит, модель БЗ-300-Л. Индекс «Л» в конце говорит о том, что это блок защиты для светодиодных и энергосберегающих ламп (клл).

Устройство защиты ламп Гранит

Внутри расположено три детали, одну из которых мы рассмотрели выше:

Устройство защиты ламп Гранит

Вот принципиальная схема. Вы можете её повторить.

Принципиальная схема устройства для защиты ламп

Заключение

Полностью исключить вероятность перегорания светодиодных ламп и светильников невозможно. Однако вы можете продлить лампочкам жизнь, минимизировав влияние скачков напряжение. Сделать это можно либо своими руками, либо купив блок защиты светодиодных ламп заводского исполнения.

Источник



Как снизить ток светодиодной лампы

Попадаются светодиодные лампы, которые не могу отремонтировать.
Прошу помощи.

Пример лампы на 15W.
Схема платы:

Напряжение 313В без нагрузки между:
«GND» и «+»,
«+» и «-«,
«+» и «B1».

Вот так подключены светодиоды и драйвер:
Изображение

Напряжение под нагрузкой между двумя средними контактами «+» и «-«: 62В.
Напряжение на каждом диоде: 8,9В.
Ток в цепи светодиодов: 220мА (включены 7 групп, по 3шт. в группе, на одном диоде получим 220/3 = 73,3мА).

Хочу уменьшить ток.
Рядом с микросхемой драйвера стоят резисторы общим сопротивлением 0,7Ом.
Выпаиваю один резистор и сопротивление становится 1,3Ом.
Включаю лампу, успеваю измерить ток: с 220мА он понизился до 155мА.

Читайте также:  Прямой бесконечно длинный проводник с током согнут под прямым углом

Измеряя ток, вижу что не все светодиоды светят одинаково (ВСЕ ДЕЙСТВИЯ ДЕЛАЮ С НОВОЙ ЛАМПОЙ).
Некоторые группы горят нормально, а некоторые еле-еле и подмигивают.
Едва я успел измерить ток, как лампа погасла и около 4 светодиодов почернели.

Подскажите пожалуйста, как в лампах с такой схемотехникой корректно уменьшать ток?

JLCPCB, всего $2 за прототип печатной платы! Цвет — любой!

Зарегистрируйтесь и получите два купона по 5$ каждый:https://jlcpcb.com/cwc

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет

Взаимоисключающие параграфы.
Ищите, где коротнули во время выпайки/измерения.

Я ремонтирую/дорабатываю подобным же образом — удалением резистора с бо́льшим сопротивлением из параллельной пары. И никаких проблем.

Компания «Компэл» и Analog Devices приглашают всех желающих 27/04/2021 принять участие в вебинаре, посвященном решениям Analog Devices для гальванической изоляции. В программе вебинара: технологии гальванической изоляции iCoupler, цифровые изоляторы, технология isoPower, гальванически изолированные интерфейсы (RS-485, CAN, USB, I2C, LVDS) и другое. Вебинар будет интересен разработчикам промышленной автоматики и медицинской техники.

Ничего не выпаивал.
Перерезал дорожку между группами светодиодов и туда амперметром становился.
Если смотреть на фото то перерезал слева от контакта B1, там ничего рядом нет, чтобы закоротить.

Одел затемнённые очки для газосварщиков, встал щупами в разрыв цепи, увидел, что ток понизился.
Потом, на светодиоды смотрю, а они горят с разной яркостью.
Секунд 5 ещё прошло и всё потухло.
Очки снимаю, а там четыре почерневших.

Попадалась ещё одна лампа с выходом драйвера 310В, там 12 диодов были включены последовательно.
В таких вариантах заменять сгоревшие светодиоды перемычкой у меня не получилось – горят другие моментально.
Даже измерить ток на светодиоде не перерезая дорожку нельзя.
Только начнёш мерять ток, светодиод гаснет и на остальные идёт повышенное напряжение и горят другие диоды.

С лампами, где драйвер на выходе делает около 110В проблем нет. Можно и коротить диоды и уменьшать ток без проблем.

А с этими, где 310В без нагрузки, не могу разобраться.

Широкий ассортимент винтовых клеммников Degson включает в себя различные вариации с шагом выводов от 2,54 до 15 мм, с числом ярусов от одного до трёх и углами подключения проводника 45°, 90°, 180°. К тому же Degson предлагает довольно большой выбор клеммных винтовых колодок кастомизированных цветов.

Источник

Ремонт светодиодной лампы. Уменьшаем нагрев

Светодиодная лампочка E14

Сегодня мы займемся ремонтом китайской светодиодной лампочки. Явная причина поломки – перегрев, радиатор у этих лампочек греется довольно сильно.

Под крышкой установлена подложка с 15-ю последовательно включенными светодиодами 2835. Нужно осмотреть светодиоды на наличие черных точек. И сразу в глаза бросается один светодиод. Светодиод рядом, скорее всего рабочий, но у него тоже заметны черные точки – это говорит о том, что он уже начал деградировать, и в ближайшее время он тоже может сгореть. Раз уже лампочку разобрали, то и его тоже будем менять сразу.

Подложка для светодиодов 2835

Подложка с 15-ю последовательно включенными светодиодами 2835

Для того, чтобы поменять светодиоды – придется снять подложку с радиатора (она приклеена на теплопроводящий клей) и прогреть ее феном для пайки.

Выпаиваем не рабочие светодиоды, и на их место устанавливаем новые, обязательно обращая внимание на ключ в виде среза, он должен быть с той же стороны, полярность светодиодов путать нельзя.

После того как светодиоды припаяны, нужно убрать остатки клея с радиатора и нанести новый теплопроводный клей.

Лампа собрана, и осталось только ее проверить. Через 5 минут работы лампочки, температура подложки выросла до 100 °C! Нужно уменьшать ток на светодиодах. Отпаиваем провода, и откручиваем радиатор от цоколя лампы, там находится драйвер.

Ток уменьшить я решил в 2 раза. Сильно переживать о том, что лампочка будет после этого тускло светить не стоит, т. к. для того что бы светодиоды светили в 2 раза меньше – ток нужно будет уменьшить в 5 раз!

Сам драйвер построен на микросхеме CS6583BO.

Драйвер светодиодной лампочки на микросхеме CS6583BO

Драйвер светодиодной лампочки на микросхеме CS6583BO

Нужно найти токозадающий (токоизмерительный) резистор на плате драйвера (он один в DIP корпусе) и увеличить его сопротивление в 2 раза. В datasheet, в типовой схеме, он обозначен как Rcs.

Токозадающий (токоизмерительный) резистор светодиодного драйвера CS6583BO

Токозадающий (токоизмерительный) резистор светодиодного драйвера CS6583BO

В моем случае он оказался 0,69 Ом. Значит мне нужно вместо него поставить 1,4 Ом, но такого у меня нет, а ближайший номинал, который у меня есть – это 1,5 Ома. Его я и буду ставить, а это означает, что и ток уменьшится чуть больше чем в 2 раза.

К стали, визуально, после замены резистора, я разницы в яркости не заметил.

По документации на светодиоды 2835, их максимальный ток должен составлять максимум 150 мА, но в этих лампочках драйвер выдает 230 мА. Завышенный ток питания светодиодов как раз и является причиной их перегрева и сгорания. После замены резистора, ток на светодиодах получился 130 мА, а температура радиатора не превысила 70 °C.

Более подробный процесс ремонта и сравнение лампочек до и после переделки можно посмотреть в видео.

Мой экземпляр лампочки E14 12 Вт 115 мм.

Ремонт светодиодной лампы. Уменьшаем нагрев: 4 комментария

Здравствуйте! Не встречал ещё не одной нормальной дешёвой китайской светодиодной лампы, как автомобильной так и осветительной.У всех завышен рабочий ток. Для нормальной работы, температура светодиодов не должна превышать 60 градусов, а радиатор должен быть площадью не менее 25 см2 на ватт.

у меня автомобильные светодиодные лампы не перегорают 4 года.Могу Вам подсказать что для этого нужно сделать .По мощности эти лампы потребляют в 45-70раз !! Меньше чем обычные лампы накала .

IEK 12 Вт 4000к заявленные ,
ваттметр показал , что она на 9 Вт,
перепаял smd резистор 2R87 (на мультиметре 3,4 Ом) на 6R8 (7,4 Ом),
в итоге с температурой упала и яркость и потребление стало 5 Вт ))

по одной лампе если судить, то резистор не нужно так резко в 2 раза увеличивать, яркость падает значительно

Источник