Меню

Как транзистором поднять напряжение

Работа биполярного транзистора. Режим усиления.

Здравствуйте уважаемые читатели сайта sesaga.ru. Продолжаем осваивать биполярный транзистор и сегодня мы рассмотрим его работу в режиме усиления на примере простого усилителя звуковой частоты, собранного на одном транзисторе.

В режиме усиления транзисторы работают в схемах радиовещательных приемников и усилителях звуковой частоты (УЗЧ). При работе используются малые токи в базовой цепи транзистора, управляющие большими токами в коллекторной цепи. Этим и отличается режим усиления от режима переключения, который лишь открывает или закрывает транзистор под действием напряжения Uб на базе.

1. Схема усилителя.

В качестве эксперимента соберем простой усилитель на одном транзисторе и разберем его работу.

В коллекторную цепь транзистора VT1 включим высокоомный электромагнитный телефон BF2, между базой и минусом источника питания GB установим резистор Rб, и развязывающий конденсатор Cсв, включенный в базовую цепь транзистора.

Конечно, сильного усиления от такого усилителя мы не услышим, да и чтобы услышать звук в телефоне BF1 его придется очень близко преподнести к уху. Так как для громкого воспроизведения звука нужен усилитель как минимум с двумя-тремя транзисторами или так называемый двухкаскадный усилитель. Но чтобы понять сам принцип усиления, нам будет достаточно и усилителя, собранного на одном транзисторе или однокаскадном усилителе.

Усилительным каскадом принято называть транзистор с резисторами, конденсаторами и другими элементами схемы, обеспечивающими транзистору условия работы как усилителя.

2. Работа схемы усилителя.

При подаче напряжения питания в схему, на базу транзистора через резистор Rб поступает небольшое отрицательное напряжение 0,1 — 0,2В, называемое напряжением смещения. Это напряжение приоткрывает транзистор, и через эмиттерный и коллекторный переходы начинает течь незначительный ток, который как бы переводит усилитель в дежурный режим, из которого он мгновенно выйдет, как только на входе появится входной сигнал.

Без начального напряжения смещения эмиттерный p-n переход будет закрыт и, подобно диоду, « срезать» положительные полупериоды входного напряжения, отчего усиленный сигнал будет искаженным.

Если на вход усилителя подключить еще один телефон BF1 и использовать его как микрофон, то телефон будет преобразовывать звуковые колебания в переменное напряжение звуковой частоты, которое через конденсатор Ссв будет поступать на базу транзистора.

Здесь, конденсатор Ссв выполняет функцию связующего элемента между телефоном BF1 и базой транзистора. Он прекрасно пропускает напряжение звуковой частоты, но преграждает путь постоянному току из базовой цепи к телефону BF1. А так как телефон имеет свое внутреннее сопротивление (около 1600 Ом), то без этого конденсатора база транзистора через внутреннее сопротивление телефона была бы соединена с эмиттером по постоянному току. И естественно, ни о каком усилении сигнала речи и быть не могло.

Теперь, если начать говорить в телефон BF1, то в цепи эмиттер-база возникнут колебания электрического тока телефона Iтлф, которые и будут управлять большим током в коллекторной цепи транзистора. И уже этот усиленный сигнал, преобразованный телефоном BF2 в звук, мы и будем слышать.

Сам процесс усиления сигнала можно описать следующим образом.
При отсутствии напряжения входного сигнала Uвх, в цепях базы и коллектора текут небольшие токи (прямые участки графиков а, б, в), определяемые напряжением источника питания, напряжением смещения на базе и усилительными свойствами транзистора.

Как только в цепи базы появляется входной сигнал (правая часть графика а), то соответственно ему начинают изменяться и токи в цепях транзистора (правая часть графиков б, в).

Во время отрицательных полупериодов, когда отрицательное входное Uвх и напряжение источника питания GB суммируются на базе — токи цепей увеличиваются.

Во время же положительных полупериодов, кода напряжение входного сигнала Uвх и источника питания GB положительны, отрицательное напряжение на базе уменьшается и, соответственно, токи в обеих цепях также уменьшаются. Вот таким образом и происходит усиление по напряжению и току.

Если же нагрузкой транзистора будет не телефон а резистор, то создающееся на нем напряжение переменной составляющей усиленного сигнала можно будет подать во входную цепь второго транзистора для дополнительного усиления.

Читайте также:  Стабилизатор напряжения для плм своими руками

Один транзистор может усилить сигнал в 30 – 50 раз.

На рисунке ниже показана зависимость тока коллектора от тока базы.

Например. Между точками А и Б ток базы увеличился от 50 до 100 мкА (микроампер), то есть составил 50 мкА, или 0,05 mA. Ток коллектора между этими точками возрос от 3 до 5,5 mA, то есть вырос на 2,5 mA. Отсюда следует, что усиление по току составляет: 2,5 / 0,05 = 50 раз.

Точно также работают транзисторы структуры n-p-n. Но для них полярность включения источника питания, питающей цепи базы и коллектора меняется на противоположную. То есть на базу и коллектор подается положительное, а на эмиттер отрицательное напряжения.

Запомните: для работы транзистора в режиме усиления на его базу, относительно эмиттера, вместе с напряжением входного сигнала обязательно подается постоянное напряжение смещения, открывающее транзистор.

Для германиевых транзисторов отпирающее напряжение составляет не более 0,2 вольта, а для кремниевых не более 0,7 вольта.

Напряжение смещения на базу не подают лишь в том случае, когда эмиттерный переход транзистора используют для детектирования радиочастотного модулированного сигнала.

3. Классификация транзисторов по мощности и по частоте.

В зависимости от максимальной мощности рассеивания биполярные транзисторы делятся на:

1. малой мощности — Pmax ≤ 0,3 Вт;
2. средней мощности — 0,3 большой мощности — Pmax> 1,5 Вт.

В зависимости от значения граничной частоты коэффициента передачи тока на транзисторы:

1. низкой частоты – fгр ≤ 3 МГц;
2. средней частоты – 3 МГц высокой частоты — 30 МГц сверхвысокой частоты (СВЧ-транзисторы) — fгр> 300 МГц.

Ну вот и все.
Теперь у Вас не должно возникнуть вопросов о работе биполярного транзистора в режиме усиления.
Удачи!

1. Борисов В.Г — Юный радиолюбитель. 1985г.
2. Е. Айсберг — Транзистор. Это очень просто! 1964г.

Источник



ВРемонт.su — ремонт фото видео аппаратуры, бытовой техники, обзор и анализ рынка сферы услуг

Home Радиотехника Усилитель напряжения на биполярном транзисторе

Усилитель напряжения на биполярном транзисторе

Простые схемы усилителей напряжения на биполярном транзисторе

Рис. 1. Использование транзистора в усилителе напряжения: (а) простейшая схема, (б) схема со смешением.

Сигналами в электронных схемах обычно являются постоянные или переменные напряжения. Такие устройства, как например микрофон, создают переменное напряжение, которое должно быть усилено прежде, чем им можно будет воспользоваться. Некоторые источники сигналов, такие как фототранзистор и некоторые детекторы, могут быть источниками тока, который, как правило, еще до усиления преобразуется в напряжение.

Поэтому наиболее важны усилители напряжения и, несмотря на то, что биполярный транзистор работает как устройство, усиливающее ток, основное применение он находит в усилителях напряжения. Рассмотрим основные принципы работы усилителя напряжения на биполярном транзисторе.

Резистор нагрузки

На рис. 1.(a) показан очень простой усилитель напряжения; выходное напряжение Vout возникает на выходе в результате протекания коллекторного тока по резистору нагрузки RL. Этот пример иллюстрирует одно из наиболее важных применений резисторов в электронных цепях: преобразование тока в напряжение. Входное напряжение Vin, приложенное к переходу база-эмиттер, приводит к увеличению тока базы, зависящего от сопротивления перехода база-эмиттер. Ток базы вызывает намного больший ток коллектора Ic, создающий падение напряжения IcRL на резисторе RL. Эта разность потенциалов пропорциональна Vin, но намного больше по величине.

Важной деталью таких схем является земляная шина, называемая также землей, «нулем вольт» (0 В) или общей шиной и обозначаемая символом, показанным на рисунке. Земляная шина является общей для входного сигнала, выходного сигнала и источника постоянного напряжения, и обычно является точкой, относительно которой отсчитываются все напряжения в схеме.

Рабочая точка и смещение транзистора в схеме усилителя напряжения

Схема, приведенная на рис. 1.(a), как можно догадаться, является сильно упрощенной схемой усилителя напряжения. Она будет давать отклик только на положительное входное напряжение и, кроме того, только на напряжение, большее чем 0,5 В; последнее значение является той э.д.с., которая необходима для смещения перехода база-эмиттер в прямом направлении. Ясно, что если схема предназначена для усиления малых сигналов без искажения, переход база-эмиттер должен быть смещен в прямом направлении даже в отсутствие сигнала. Обычно напряжение переменного сигнала принимает как положительное, так и отрицательное значение, так что выходное напряжение на коллекторе должно иметь возможность двигаться вверх к напряжению источника питания (при отрицательном входном напряжении) и вниз к потенциалу земляной шины (при положительном входном напряжении). Из этого следует, что при равном нулю входном сигнале (это состояние обычно называется режимом покоя) в транзисторе должен протекать такой ток коллектора, чтобы напряжение на коллекторе находилось посредине между землей и напряжением источника питания, готовое изменяться в любом направлении в соответствии с полярностью входного сигнала.

Читайте также:  Изменение напряжений векторная диаграмма

На рис. 1.(б) показана схема, в которой достигается требуемый результат. Маломощный кремниевый транзистор, такой как ВС 107, будет очень хорошо работать с коллекторным током в режиме покоя 1 мА. В этом случае при правильном выборе рабочей (начальной) точки требуется, чтобы напряжение на коллекторе находилось посредине между 0 В и +9 В, то есть на резисторе RL должно падать 4,5 В. Таким образом, согласно закону Ома, RL = 4,5 В / 1 мА = 4500 Ом. Ближайшее номинальное значение RL равно 4,7 кОм. Для рассматриваемой схемы имеем:

где Vcc — напряжение питания.

Если мы примем для транзистора ВС 107 коэффициент усиления постоянного тока hFE равным 200, то для тока коллектора 1 мА требуется ток базы IB = 1/200 мА = 5 мкА. Сопротивление базового резистора RB, задающего ток базы, снова находится согласно закону Ома:

Напряжением база-эмиттер VBE (приблизительно равным 0,6 В) здесь пренебрегаем по сравнению с намного большим напряжением питания Vcc.

Разделительные конденсаторы С1 и С2 используются для изоляции внешних цепей от постоянных напряжений, имеющихся на базе и коллекторе в режиме покоя. Свойство конденсатора не пропускать постоянное напряжение и в то же время пропускать переменное очень ценно в электронике; оно является результатом стремления конденсатора сохранять свой заряд и поэтому разность потенциалов на его обкладках остается постоянной. Следовательно, увеличение потенциала на одной обкладке вызывает соответствующее увеличение потенциала на другой. Поданный на одну из обкладок, переменный сигнал изменяет ее потенциал много раз в секунду и, таким образом, передается с одной обкладки на другую. В то же время постоянное напряжение дает возможность конденсатору накопить заряд, соответствующий новой разности потенциалов на его обкладках, и поэтому оно не передается. Время, необходимое для установления новой разности потенциалов, зависит от постоянной времени цепи, которая должна быть больше периода передаваемого переменного напряжения самой низкой частоты. Более подробно этот вопрос обсуждается в главе 8. В рассматриваемом простом усилителе напряжения постоянные времени цепей с разделительными конденсаторами емкостью 10 мкФ обеспечивают передачу переменного напряжения без ослабления вплоть до 10 Гц.

Знак плюс на рисунке у одной из обкладок конденсатора является указанием, как подключать электролитические конденсаторы, у которых изолирующий диэлектрический слой представляет собой чрезвычайно тонкую пленку окиси алюминия, полученную электролитическим осаждением. Такие конденсаторы имеют большие емкости при малых размерах и низкой цене, но должны включаться в схему с учетом полярности, за исключением конденсаторов специального типа — неполярных конденсаторов.

Стабилизация рабочей точки транзистора

Серьезный недостаток схемы на рис. 1.(б) состоит в том, что напряжение коллектора в режиме покоя целиком зависит от величины hFE транзистора, в то время как численные значения этого параметра имеют большой разброс у различных экземпляров транзисторов одного типа. Например, при типичном значении hFE для транзистора ВС 107, равном 200, изготовители указывают, что оно может изменяться в пределах от 90 до 450. Изменение hFE сдвигает рабочую точку по постоянному току. Например, если коэффициент hFE равен 100 вместо 200, то при этом потечет ток коллектора, равный 0,5 мА, а не 1 мА, и падение напряжения на RL составит только 2,35 В вместо 4,7 В. Увеличение напряжения на коллекторе в режиме покоя означает, что выходное напряжение в схеме может изменяться в сторону увеличения только на 2 В, а не на 4 В (возможно изменение выходного напряжения в сторону уменьшения до 6 В, но от этого мало пользы, когда положительные приращения ограничены).

Читайте также:  Кулер 12 вольт переменное напряжение

Последствия использования транзистора с hFE = 400 еще более серьезны. В этом случае ток коллектора удвоится до 2 мА. Простое вычисление показывает, что все 9 В питания будут падать на резисторе RL. Говорят, что транзистор находится в насыщении. Практически между коллектором и эмиттером остается небольшое напряжение порядка 0,2 В. Любое дальнейшее увеличение тока базы почти ни к чему не приводит; действительно, падение напряжения на RL не может превышать Vcc Поскольку при насыщении транзистора потенциал коллектора фактически равен потенциалу земли, схема теперь не пригодна для линейного усиления: невозможны изменения выходного напряжения в сторону уменьшения.

Возвращаясь к линейному усилителю на рис. 1.(б), можно сказать, что необходимо некоторое усовершенствование схемы, чтобы повысить ее устойчивость к изменениям hFE. Даже если бы у нас была возможность отбирать транзисторы с hFE = 200, а это очень дорого при массовом выпуске схем, hFE увеличивается с ростом температуры, так что схема все равно не была бы надежной. На рис. 2. показано очень простое, но эффективное улучшение. Вместо того, чтобы подключать резистор RB непосредственно к Vcc, мы, уменьшив сопротивление вдвое, подключим его к коллектору (VCE≈Vcc/2). Теперь, благодаря этому, ток базы в режиме покоя зависит от коллекторного напряжения в режиме покоя. Даже при увеличении hFE транзистор не может попасть в насыщение: если коллекторное напряжение падает, то также падает ток базы, «придерживая» коллекторный ток. И наоборот, если hFE уменьшается, коллекторное напряжение в режиме покоя возрастает, увеличивая ток IB.

Ток базы определяется теперь соотношением

Объединяя эти равенства, получим

Если RL и RB имеют значения, указанные на рис. 2, и hFE = 100, то VCE≈6 В; если hFE = 400, то VCE≈3 В. Хотя здесь все еще положение рабочей точки меняется, это не существенно, пока для получения больших сигналов не требуется иметь возможно большие пределы изменения выходного напряжения. Схема, приведенная на рис. 2., будет работать при изменении параметров транзисторов в очень широком диапазоне и является полезным усилителем напряжения общего назначения. Принцип построения схемы с автокомпенсацией изменений hFE является просто примером отрицательной обратной связи, которая представляет собой одно из самых важных понятий в электронике.

Усилитель напряжения на транзисторе со стабилизацией рабочей точки

Усилитель напряжения со стабилизацией рабочей точки

Рис. 2. Усилитель напряжения со стабилизацией рабочей точки.

Для некоторых применений даже относительно небольшие изменения положения рабочей точки, имеющиеся в схеме на рис. 2, недопустимы. Если режим по постоянному току должен практически не зависеть от hFE можно использовать схему стабилизированного усилителя, показанную на рис. 3. Первым характерным признаком этой схемы является наличие резистора R3 в цепи эмиттера, а это означает, что потенциал эмиттера больше не равняется потенциалу земли, а немного выше его и равен IER3 где IE — ток эмиттера. Второе отличие состоит в том, что вместо единственного резистора для задания базового тока определенной величины применен делитель напряжения R1 R2 фиксирующий потенциал базы относительно земли. Ток делителя напряжения на порядок выше тока базы, так что последний слабо влияет на потенциал базы. Так как переход база — эмиттер смещен в прямом направлении, на нем падает небольшое напряжение (у кремниевого транзистора приблизительно 0,6 В), так что потенциал эмиттера ниже потенциала базы на 0,6 В.

Итак, если VB — потенциал базы относительно земли, а VE — потенциал эмиттера относительно земли, то

Стабилизированный усилитель с эмиттерным резистором

Рис. 3. Стабилизированный усилитель с эмиттерным резистором.

Следовательно, ток эмиттера IE определяется выбором величин VB и R3. При сопротивлениях резисторов R1 и R2, указанных на рис. 3., потенциал базы зафиксирован на уровне 1,6 В; поэтому потенциал эмиттера равен приблизительно 1,0 В, обеспечивая требуемый ток эмиттера 1 мА при сопротивлении эмиттерного резистора 1 кОм.

Источник