Меню

Какие трансформаторы позволяют плавно изменять напряжение выходных зажимах

ТРАНСФОРМАТОРЫ С ПЛАВНЫМ РЕГУЛИРОВАНИЕМ НАПРЯЖЕНИЯ

date image2015-04-17
views image2896

facebook icon vkontakte icon twitter icon odnoklasniki icon

Трансформаторы со скользящими контактами.Для плавного регулирования выходного напряжения трансформатора применяют контактные щетки, скользящие по неизолированной внешней поверхности вторичной обмотки, вследствие чего изменяется число включаемых в работу витков обмотки. Такой метод широко используется в маломощных лабораторных автотрансформаторах — ЛАТРах. С повышением мощности трансформаторов и автотрансформаторов применяют двойные комплекты щеток с включенными между ними резисторами для ограничения тока к. з. при замыкании щетками соседних витков.

Трансформаторы с подвижной вторичной обмоткой. Такие трансформаторы имеют броневой магнитопровод с двумя первичными обмотками и подвижным средним стержнем, на котором размещена вторичная обмотка. При перемещении подвижного стержня плавно изменяется взаимоиндуктивность вторичной обмотки с каждой из первичных обмоток, вследствие чего вторичное напряжение изменяется от +Umax до —Umax.

Трансформаторы, регулируемые подмагничнванием шунтов. Плавное регулирование выходного напряжения трансформатора можно осуществить также путем подмагничивания его магнитопровода постоянным током. Существует большое число конструкций трансформаторов с подмагничнванием. Их основными регулирующими элементами являются подмагничиваемые магнитные шунты, поэтому они называются трансформаторами и автотрансформаторами, регулируемыми подмагничиванием шунтов (ТРПШ и АРПШ).

Рис. 2.61. Электромагнитные схемы однофазных транс­форматоров, регулируемых подмагничиванием шунтов: 1 — главные стержни;2 — первичная обмотка; 3 — обмотка под-магничивания; 4 — магнитные шунты;5 — вторичная обмотка

На рис. 2.61,а изображена схема однофазного четырехстержневого ТРПШ. Магнитная система такого трансформатора состоит из двух главных стержней и двух магнитных шунтов. На главных стержнях размещены первичная и вторичная обмотки, на стержнях магнитных шунтов — обмотка подмагничивания, состоящая из двух катушек. Основной поток Ф замыкается через главные стержни, а поток подмагничивания Фпм — через магнитные шунты. Потоки рассеяния Фσ1 и Фσ2 первичной и вторичной обмоток, сдвинутые по фазе приблизительно на 180°, замыкаются в основном через магнитные шунты. Катушки обмотки подмагничивания соединены последовательно так, что создаваемые ими магнитные потоки складываются, а ЭДС, индуцируемые в них потоками рассеяния Фσ1 и Фσ2, взаимно компенсируются.

Трансформатор работает следующим образом. При отсутствии постоянного тока Iпм в обмотке подмагничивания потоки Фσ1 и Фσ2 имеют максимальную, а основной поток Ф — минимальную величину. При этом вторичное напряжение U2 минимальное. При прохождении по обмотке подмагничивающего тока магнитные шунты насыщаются и их магнитное сопротивление возрастает. Это приводит к уменьшению потоков Фσ1 и Фσ2, увеличению потока Ф и повышению напряжения U2. Регулируя подмагничивающий ток, можно плавно изменять вторичное напряжение U2.

На рис. 2.61,6 показана схема однофазного ТРПШ с составным магнитопроводом. В этом трансформаторе магнитопровод главных стержней и магнитопроводы магнитных шунтов отделены друг от друга изоляционными прокладками. Первичная обмотка охватывает главные стержни и магнитные шунты, а вторичная обмотка — только главные стержни. Обмотка подмагничивания состоит из двух катушек и охватывает магнитные шунты.

При отсутствии постоянного тока в обмотке подмагничивания магнитный поток Ф1трансформатора, создаваемый первичной обмоткой, равномерно распределяется между главными стержнями и магнитными шунтами. При этом во вторичной обмотке индуцируется минимальное напряжение Vmin. При прохождении по обмотке подмагничивания постоянного токаIпм магнитные шунты насыщаются и их магнитное сопротивление возрастает. При этом уменьшаются проходящие по ним магнитные потоки Фш, поток Ф1 вытесняется в главные стержни и проходящий по ним поток Ф2 увеличивается. Это приводит к возрастанию напряжения U2, индуцируемого во вторичной обмотке. Когда магнитные шунты полностью насыщены, магнитный поток Ф2 в главных стержнях максимальный и с трансформатора снимается максимальное напряжение Umах. Таким образом, изменяя ток подмагничивания Iпм, можно плавно регулировать вторичное напряжение трансформатора.

Читайте также:  Устройство контроля напряжения 40а

6. Принцип действия бесколлекторных машин. Принцип действия синхронного генератора и асинхронного двигателя.

Принцип работы БМ основан на том, что контроллер ВД коммутирует обмотки статора так, чтобы вектор магнитного поля статора всегда был ортогонален вектору магнитного поля ротора. С помощью широтно-импульсной модуляции (ШИМ) контроллер управляет током, протекающим через обмотки ВД, т.е. вектором магнитного поля статора, и таким образом регулируется момент, действующий на ротор ВД. Знак у угла между векторами определяет направление момента действующего на ротор.

Градусы при расчете — электрические. Они меньше геометрических градусов в число пар полюсов ротора. Например, в ВД с ротором имеющим 3 пары полюсов оптимальный угол между векторами будет 90°/3 = 30°

Коммутация производится так, что поток возбуждения ротора — Ф поддерживается постоянным относительно потока якоря. В результате взаимодействия потока якоря и возбуждения создаётся вращающий момент M, который стремится развернуть ротор так, чтобы потоки якоря и возбуждения совпали, но при повороте ротора под действием ДПР происходит переключение обмоток и поток якоря поворачивается на следующий шаг.

В этом случае и результирующий вектор тока будет сдвинут и неподвижен относительно потока ротора, что и создаёт момент на валу двигателя.

В двигательном режиме работы МДС статора опережает МДС ротора на угол 90°, который поддерживается с помощью ДПР. В тормозном режиме МДС статора отстаёт от МДС ротора, угол 90° так же поддерживается с помощью ДПР.

Принцип действия синхронного генератора основан на явлении электромагнитной индукции. Ротор с магнитными полюсами создает вращающееся магнитное поле, кото-рое, пересекая обмотку статора, наводит в ней ЭДС. При подключении к генератору нагрузки генератор будет являться источником переменного тока.

Принцип действия асинхронного двигателя основан на использовании вращающегося магнитного поля.

7. Статор бесколлекторных машин. Устройство статора бесколлекторной машины и понятия об обмотках статора.

Источник

Трансформаторы с плавным регулированием напряжения

Для плавного регулирования напряжения возможно применение скользящих по поверхности витков обмотки контактов, аналогично тому, как это сделано в регулировочном автотрансформаторе (см. рис. 3.5). При этом плавность регулировки ограничивается значением напряжения между двумя смежными витками (0,5—1,0 В). По такому принципу выполняют однофазные и трехфазные трансформаторы и автотрансформаторы мощностью до 250 кВ-А. Однако наличие скользящих контактов снижает надежность и ограничивает применение этих трансформаторов.

Более надежны бесконтактные конструкции ре­гулировочных трансформаторов. Рассмотрим некоторые из них.

Трансформатор с подвижным сердечником.Первичная обмотка этого трансформатора. выполнена из двух катушек, уложенных в кольцевых выемках магнитопровода (рис. 5.1, а). Катушки w’ 1 и w’ 2включены так, что создают магнитные потоки, направленные встречно друг другу. Внутри неподвиж­ной части магнитопровода расположен подвижный сердечник ПС со вторичной обмоткой w 2. При среднем положении ПС в обмотке w 2 не наводится ЭДС, так как действие первичных катушек взаимно компенсируется.

Рис. 5.1. Трансформатор с подвижным сердечником

При смещении ПС влево или вправо от среднего положения вторичной обмотки в последней наводится ЭДС . При этом фаза (направление) зависит от того в зоне какой из первичных катушек находится вторичная обмотка: при перемещении этой обмотки из зоны одной первичной катушки в зону другой катушки фаза ЭДС изменится на 180°. Если такой трансформатор включить в сеть аналогично вольтдобавочному трансформатору (см. § 1.15), как это показано на рис. 5.1,6, то, изменяя положение сердечника вторичной обмотки (ПС), можно плавно регулировать вторичное напряжение (продольное регулирование)

Трансформатор, регулируемый подмагничиваннем шунтов.В последнее время получили применение трансформаторы и автотрансформаторы, регулируемые подмагничиванием шунтов и обозначаемые соответственно ТРПШ и АРПШ.

Рассмотрим принцип действия однофазного трансформатора ТРПШ. Магнитопровод трансформатора состоит из четырех стержней (рис. 5.2, а): двух крайних, называемых главными стержнями, и двух средних, называемых шунтами. Первичная обмотка состоит из трех катушек: две катушки ( w’ 1г и w’’ 1г) расположены на главных (крайних) стержнях и одна катушка ( w 2ш) — на шунтах. При этом все три катушки соединены последовательно и согласно. Вторичная обмотка также состоит из трех последовательно соединенных катушек ( w’ 2 Г , w’’ 2 T и w 2ш ), расположенных аналогично первичным, но катушка w 2ш включена встречно относительно катушек w’ 2 r и w’’ 2 r.

Читайте также:  Lm723 блок питания с регулировкой напряжения

Кроме катушек переменного тока ТРПШ имеет две катушки постоянного тока — катушки подмагничивания w п, расположенные на шунтах и соединенные последовательно.

При включении первичной обмотки в сеть переменного тока катушки w’ 1г и w» 1 r создают переменный магнитный поток Ф г, который замыкается по главным стержням и ярмам, сцепляется с катушками w’ 2 r и w’’ 2 r и наводит в них ЭДС и . Катушка w 1ш также создает переменный магнитный поток Ф ш, разделенный на две части, каждая из которых замыкается по одному из шунтов и одному из главных стержней. При этом в одном из стержней (правом) потоки и складываются, а в другом (левом) — вычитаются. Магнитный поток , сцепляясь с катушкой w 2ш, наводит в ней ЭДС E 2ш, но так как w 2ш включена встречно вторичным катушкам главных стержней, то напряжение на выходе трансформатора

Рис. 5.2. Трансформатор, регулируемый подмагничиванием

При прохождении постоянного тока по катушкам подмагничивания w пвозрастает магнитное насыщение шунтов, при этом их магнитное сопротивление увеличивается и магнитный поток Ф ш шунтов уменьшается. В итоге уменьшается ЭДС , что ведет к росту вторичного напряжения (5.1). Следовательно, плавному изменению постоянного тока в цепи подмагничивания соответствует плавное изменение напряжения на выходе ТРПШ (рис. 5.2, б).

Электрическое управление вторичным напряжением трансформатора упрощает дистанционное управление трансформатором или же его автоматизацию. Наряду с однофазными существуют трехфазные ТРПШ и АРПШ.

Источник



Что такое автотрансформатор?

С развитием энергетики и связанных с ней электрических сетей для передачи переменного тока, как источника питания для различных устройств, возникла необходимость в приборах, изменяющих величину напряжения. Такими универсальными электромагнитными устройствами, позволяющими повышать или понижать исходное напряжение до требуемой величины, стали трансформаторы.

Со временем, для обеспечения стабильной работы электроприборов, преимущественно бытового назначения, возникла необходимость плавного регулирования напряжения. Это стало возможным после того, как был изобретён автотрансформатор – устройство, в котором вторичная обмотка является составной частью первичных витков.

Что такое автотрансформатор?

Из школьного курса физики известно, что простейший трансформатор состоит из двух катушек, намотанных на железные сердечники. Магнитным полем переменного тока, запитанного через выводы первичных обмоток, возбуждаются электромагнитные колебания во второй катушке, с аналогичной частотой.

При подключении нагрузки, к выводам рабочей обмотки, она образует вторичную цепь, в которой возникает электрический ток. При этом напряжение в образованной электрической цепи связано прямо пропорциональной зависимостью с количеством витков обмоток. То есть: U 1/U 2 = w 1/w 2 , где U 1, U 2 – напряжения, а w 1, w 2 – количество полных витков в соответствующих катушках.

Немного по-другому устроен автотрансформатор. Он, по сути, состоит из одной обмотки, от которой сделано один или несколько отводов, образующих вторичные витки. При этом все обмотки образуют между собой не только электрическую, но и магнитную связь. Поэтому, при подаче электрической энергии на вход автотрансформатора, возникает магнитный поток, под действием которого происходит индукция ЭДС в обмотке нагрузки. Величина электродвижущей силы связана прямой пропорциональностью с числом витков, образующих нагрузочную обмотку, с которой снимается напряжение.

Таким образом, формула, приведённая выше, справедлива и для автотрансформатора.

Читайте также:  Минимальное напряжение питания светодиода

Из основной обмотки можно отводить большое количество выводов, что позволяет создавать комбинации для снятия различных по величине напряжений. Это очень удобно на практике, так как понижение напряжения часто требуется для питания нескольких блоков электроприборов, использующих различные напряжения.

Отличие автотрансформатора от обычного трансформатора

Как видно из описания автотрансформатора, главное его отличие от обычного трансформатора – отсутствие второй катушки с сердечником. Роль вторичных обмоток выполняют отдельные группы витков, имеющих гальваническую связь. Эти группы не требуют отдельной электрической изоляции.

У такого устройства есть определённые преимущества:

  • сокращён расход цветных металлов, используемых на изготовление такого оборудования;
  • передача энергии осуществляется путём воздействия электромагнитного поля входного тока, и благодаря электрической связи между обмотками. Следовательно, потеря энергии оказывается ниже, поэтому у автотрансформаторов наблюдаются более высокие КПД;
  • малый вес и компактные габариты.

Несмотря на конструкционные различия, принцип работы этих двух типов изделий остаётся неизменным. Выбор типа трансформатора зависит, прежде всего, от целей и задач, которые приходится решать в электротехнике.

Типы автотрансформаторов

В зависимости от того в каких сетях (однофазных или трёхфазных) требуется изменить напряжение, используют соответствующий тип автотрансформаторов. Они бывают однофазными либо трёхфазными. Для трансформации тока с трёх фаз можно установить три автотрансформатора, предназначенных для работы в однофазных сетях, соединив их выводы треугольником или звёздочкой.

Существуют типы лабораторных автотрансформаторов, позволяющих плавно изменять значения по выходному напряжению. Такой эффект достигается путём перемещения ползунка по поверхности открытой части однослойной обмотки, наподобие принципа работы реостата. Витки проволоки наносятся вокруг кольцеобразного ферромагнитного сердечника, по окружности которого и перемещается контактный ползунок.

Автотрансформаторы подобного типа массово применялись на просторах СССР в эпоху массового распространения ламповых телевизоров. Тогда напряжение сетей было нестабильно, что вызывало искажения изображений. Пользователям этой несовершенной техники приходилось время от времени подстраивать напряжение до уровня 220 В.

До появления стабилизаторов напряжения, единственной возможностью достичь оптимальных параметров питания для бытовой техники того времени, было применение ЛАТР. Данный тип автотрансформаторов используется и сегодня в различных лабораториях и учебных заведениях. С их помощью осуществляется наладка электротехнического оборудования, тестируется аппаратура с высокой чувствительностью и выполняются другие задачи.

В специальном оборудовании, где нагрузки незначительны, применяются модели автотрансформаторов ДАТР.

Существуют также автотрансформаторы:

  • малой мощности, для работы в цепях до 1 кВ;
  • среднемощные агрегаты (больше 1 кВ);
  • высоковольтные автотрансформаторы.

Следует заметить, что с целью безопасности ограничено использование автотрансформаторов в качестве силовых трансформаторов, для снижения до 380 В напряжений, превышающих 6 кВ. Это связано с наличием гальванической связи между обмотками, что не безопасно для конечного потребителя. При авариях не исключено, что высокое напряжение попадёт на запитанное оборудование, что чревато непредсказуемыми последствиями. В этом кроется основной недостаток автотрансформаторов.

Обозначение на схемах

Отличить автотрансформатор на схеме от изображения обычного трансформатора очень легко. Признаком является наличие единственной обмотки связанной с одним сердечником, обозначенным жирной линией на схемах. По одну или по обе стороны этой лини схематически изображены обмотки, но в автотрансформаторе все они соединены друг с другом. Если на схеме витки изображены автономно, то речь идёт об обычном трансформаторе (см. рисунок 1).

Устройство и конструктивные особенности

Как было отмечено выше, автотрансформатор состоит из одной катушки. Её наматывают на обычный или на тороидальный сердечник.

Источник