Меню

Касательные напряжения при кручении условия прочности

ПроСопромат.ру

Технический портал, посвященный Сопромату и истории его создания

Кручение

Внутренний крутящий момент в сечении вала Мк (может быть обозначен буквой Т, Мz) вычисляется с помощью метода сечений, при этом моменты учитываются по одну сторону от сечения.

2014-09-04 18-44-48 Скриншот экрана

где Мi – внешний активный или реактивный крутящий момент; правило знаков для внутренних крутящих моментов устанавливается произвольно.

2014-09-04 19-36-59 Скриншот экрана

Для вала с круглым (в т.ч. в виде кольца) поперечным сечением касательные напряжения определяются по формуле:

2014-09-04 19-02-22 Скриншот экрана

2014-09-04 19-03-54 Скриншот экрана

где — это полярные моменты инерции для сплошного и кольцевого сечений соответственно, ρкоордината произвольной точки сечения, D, d – наружний и внутренний диаметры сечения.

2014-09-04 19-05-50 Скриншот экрана

Максимальные касательные напряжения действуют в точках поверхностного слоя при ρ=ρmax

2014-09-04 19-07-08 Скриншот экрана

Условие прочности по допускаемым напряжениям

2014-09-04 19-09-35 Скриншот экрана

где — 2014-09-04 19-10-35 Скриншот экрана это допускаемое касательное напряжение.

Угол закручивания (рад) на силовом участке вала при постоянных значениях крутящего момента и поперечного момента инерции для данного участка вычисляется следующим образом

2014-09-04 19-11-48 Скриншот экрана

где G – модуль сдвига

Относительный угол закручивания (рад/м) для силового участка

2014-09-04 19-12-48 Скриншот экрана

Условие жесткости при кручении вала с круглым поперечным сечением записывается в виде

2014-09-04 19-13-41 Скриншот экрана

Для вала с прямоугольным поперечным сечением эпюры касательных напряжений имеют вид.

2014-09-04 19-17-57 Скриншот экрана

В характерных точках сечения

2014-09-04 19-19-25 Скриншот экрана

угол закручивания на силовом участке вала

2014-09-04 19-20-23 Скриншот экрана

где α, η, βкоэффициенты, зависящие от отношения a/b (или h/b — отношение большей стороны прямоугольника к меньшей)

2014-09-04 19-22-04 Скриншот экрана

Если вал с эллиптической формой поперечного сечения и полуосями a и b, то его характерные эпюры касательных напряжений будут выглядеть следующим образом.

2014-09-04 19-24-39 Скриншот экрана

Касательные напряжения в характерных точках сечения

2014-09-04 19-25-38 Скриншот экрана

Угол закручивания на силовом участке вала

2014-09-04 19-26-23 Скриншот экрана

Кручение бруса тонкостенного замкнутого круглого сечения

Тонкостенное круглое сечение характеризуется средним радиусом Rср и толщиной стенки трубы δ:2014-09-05 21-31-38 Скриншот экрана

Читайте также:  Если не хватает напряжения стабилизатор поможет

Считается, что касательные напряжения по толщине стенки распределяются равномерно и равны:

2014-09-05 21-32-36 Скриншот экрана

Угол закручивания

2014-09-05 21-33-49 Скриншот экрана

Кручение пустотелых валов круглого сечения

Трубчатое сечение бруса в условиях кручения оказывается наиболее рациональным, так как материал из центральной зоны сечения, слабо напряженной, удален в область наибольших касательных напряжений. Вследствие этого прочностные свойства материала используются значительно полнее, чем в брусьях сплошного круглого сечения, и при всех прочих равных условиях применение трубчатого сечения вместо сплошного позволяет экономить материал.

2014-09-05 21-14-48 Скриншот экрана

Теория расчета бруса сплошного круглого сечения полностью применима и к пустотелым валам. Изменяются лишь геометрические характеристики сечения:

2014-09-05 21-15-38 Скриншот экрана

Кручение бруса прямоугольного сечения

Опыт показывает, что при кручении брусьев некруглого поперечного сечения сами сечения не остаются плоскими, то есть происходит депланация поперечных сечений. Исследовать напряженное и деформированное состояние таких брусьев при кручении методами сопротивления материалов не представляется возможным, так как в основе их лежит гипотеза плоских сечений (гипотеза Бернулли).

Задача о кручении бруса некруглого, в частности, прямоугольного сечения решена с помощью метода теории упругости, и на основе этого решения предложены простые расчетные формулы, имеющие ту же структуру, что и формулы для бруса круглого сечения, а именно:

2014-09-05 21-25-28 Скриншот экрана

Здесь: Wк=α∙hb2момент сопротивления при кручении,

Iк=β∙hb3момент инерции при кручении.

В этих формулах: b – меньшая из сторон прямоугольника,

h – большая сторона,

α, β – коэффициенты, значения которых приводятся в таблице в зависимости от отношения сторон h/b (эта таблица содержится в рубрике «Кручение» или в любом учебнике сопротивления материалов).

Распределение касательных напряжений по прямоугольному сечению тоже отличается от распределения в круглом сечении:

2014-09-05 21-29-03 Скриншот экрана

Значения коэффициента γ Запись опубликована 04.09.2014 автором admin в рубрике Кручение, Сопромат.

Читайте также:  Регулятор напряжения операционный усилитель

Источник



Условие прочности при кручении

Условие прочности при кручении: прочность вала считается обеспеченной, если наибольшие касательные напряжения, возникающие в его опасном поперечном сечении, не превышают допускаемых напряжений на кручение :

изображение Условие прочности кручение формула сопромат

Формула служит для проверочного расчета вала на прочность.

Допускается незначительное (до 5 %) превышение расчетного напряжения изображение Условие прочности кручение формула сопроматнад допускаемым напряжением изображение Условие прочности кручение формула сопромат.

При проектировочном расчете требуемый полярный момент сопротивления определяется по формуле условия прочности при кручении :

изображение Условие прочности кручение формула сопромат.

Для вала постоянного диаметра опасным сечением при кручении является сечение, в котором возникает наибольший крутящий момент. Если сечение вала не постоянно по длине, может оказаться, что наибольшие касательные напряжения возникают не там, где крутящий момент максимален. Следовательно, в этом случае вопрос об опасном сечении должен быть исследован дополнительно.

Допускаемое напряжение изображение Условие прочности кручение формула сопромат:

для пластичных материалов назначается в зависимости от предела текучести (изображение Условие прочности кручение формула сопромат) при кручении (сдвиге):

изображение Условие прочности кручение формула сопромат.

для хрупких материалов назначается в зависимости от предела прочности:

изображение Условие прочности кручение формула сопромат.

Источник