Меню

Катушка переменного тока постоянный магнит

Основные понятия про электромагниты

Существуют определенные природные материалы и объекты, которые сами по себе обладают магнитными свойствами. Их называют естественными магнитами. Примерами естественного магнитного материала могут служить железные руды, насыщенные магнитными свойствами. Примером же естественного магнитного объекта выступает наша с вами планета Земля.

Естественные, они же постоянные, магниты обладают высокой остаточной магнитной индукцией, что позволяет им сохранять магнитные свойства на протяжении длительного времени.

Однако, более широкое распространение в промышленности, медицине и других отраслях нашли электромагниты — электрические аппараты, в которых магнитным полем можно управлять. В электроэнергетике применяются, кроме прочего, в реле, выключателях, генераторах.

При определенных условиях магнитные поля способны создавать поля электрические. Верно и обратное утверждение. В этом и кроется суть электромагнитов.

Классификация электромагнитов

Принято классифицировать электромагниты (ЭМ) по способу питания на электромагниты постоянного и переменного тока. ЭМ постоянного тока в свою очередь классифицируются на постоянного тока нейтральные и поляризованные. Также существуют ЭМ выпрямленного тока.

В нейтральных электромагнитах постоянного тока магнитный поток создается обмоткой постоянного тока. Величина магнитного потока зависит лишь от обмотки, не зависит от направления. Если величина тока равна нулю, то магнитный поток и сила притяжения также опускаются практически до величины нуля.

Поляризованные ЭМ постоянного тока характеризуются наличием двух независимых магнитных потоков — рабочего и поляризующего. Поляризующий поток создается постоянными магнитами или электромагнитами. Рабочий же поток создается под действием намагничивающей силы рабочей обмотки. При отсутствии тока на якорь магнита будет действовать сила притяжения от поляризующего потока. В отличие от нейтральных, в поляризованных электромагнитах их действие зависит не только от величины рабочего потока но и от его направления.

В электромагнитах переменного тока обмотка питается от источника переменного тока. Величина и направление магнитного потока изменяется во времени от нуля до максимума.

Далее другие возможные классификации

  • с последовательными (мало витков большого сечения) и параллельными (много витков малого сечения) обмотками
  • работающие в длительном, кратковременном или прерывистом режимах
  • быстродействующие, замедленно действующие и нормально действующие
  • с внешним притягивающим якорем, со втягивающимся якорем, с внешним поперечно движущимся якорем

Устройство электромагнитов

Несмотря на обширное, судя по описанной выше классификации, количество разнообразных вариантов электромагнитов, существуют определенные однотипные узлы, которые встречаются у всех ЭМ.

  • Катушка с расположенной на ней намагничивающей обмоткой
  • Подвижная часть электромагнита — якорь
  • Неподвижная часть — ярмо и сердечник

Между якорем и неподвижными частями существуют воздушные промежутки. Так вот, воздушные промежутки бывают полезными и паразитными. Полезные промежутки располагаются по возможному пути движения якоря. Паразитные промежутки лежат за пределами движения якоря.

Также существует понятие полюса. Полюсами называют поверхности магнитопровода, которые ограничивают полезный воздушный промежуток.

Конструктивные формы электромагнитов переменного тока не имеют множества вариантов, за счет того, что сердечник набирается из листов электротехнической стали. Это необходимо для борьбы с вихревыми токами.

Как работает электромагнит

Сам цикл работы ЭМ представляет собой следующую последовательность действий. Сначала в обмотку подается ток такой величины, при которой магнитные силы станут больше, чем силы удерживающие якорь в покое.

Далее произойдет отрыв якоря из состояния покоя и движение якоря в конечную точку полезного промежутка. Это первый этап.

На втором этапе якорь ЭМ подтянут и через него протекает ток. Как известно, ток создает термическое воздействие с течением времени. Поэтому время работы не должно превышать допустимое. На этом этапе сила тяги электромагнита максимальная.

Последний, Третий этап — аналогичен первому — ток уменьшается до нуля, магнитные силы становятся меньше сил, возвращающих якорь в состояние покоя, якорь отпадает. Далее электромагнит остывает.

Если характер его работы периодически повторяющийся, то за время до следующего цикла, ему необходимо успеть остыть.

Сравнение ЭМ постоянного и переменного тока

При выборе между электромагнитами на постоянном или переменном токе следует учитывать следующие особенности:

    Сила тяги. При одинаковом сечении полюсов средняя величина силы тяги в ЭМ на переменном токе (“ЭМ

тока”) будет вдвое меньше, чем в аналогичном на постоянном токе. То есть железо более эффективно используется в ЭМ на постоянном токе (“ЭМ = тока”)

  • Вес. Если же заданными константами являются сила тяги и ход якоря, то для получения электромагнита переменного тока потребуется вдвое больше железа и размеров, чем для ЭМ постоянного тока
  • Реактивная мощность. Если необходимо уменьшить потребляемую мощность “ЭМ = тока”, то достаточно увеличить его размеры. В случае же с “ЭМ

    тока” потребляемая при пуске реактивная мощность не может быть уменьшена путем увеличения размеров ЭМ
    Вихревые токи. В случае с “ЭМ

    тока” магнитопроводы выполняют шихтованными и разрезными для уменьшения влияния вихревых токов. Само же наличие потерь на вихревые токи и перемагничивание вызывает увеличение потребления электроэнергии и лишний нагрев. В случае же с “ЭМ = тока” данный пункт отсутствует

  • Быстродействие. Если взять ЭМ постоянного и переменного тока, то вторые будут более быстродействующие. Однако для “ЭМ = тока” внедряют специальные меры, которые могут сделать их более быстродействующими. При этом “ЭМ = тока” будут потреблять меньше энергии
  • Однако, в промышленности, вышеописанные недостатки “ЭМ

    тока” не вызывают особых препятствий на пути их использования.

    Сохраните в закладки или поделитесь с друзьями

    Источник

    Что такое электромагнитная катушка?

    Электромагнитные катушки

    Электромагнитная катушка представляет собой электрический проводник, как правило провод, в форме катушки или другой подобной форме. Большинство этих катушек намотано на сердечник из железного материала.

    Этот простой компонент может использоваться во множестве устройств, во многом благодаря уникальному взаимодействию между магнитными полями и электрическим током.

    В системах обогрева устройство может представлять собой электромагнитную катушку, генерирующую тепло за счет индукции, или простой резистивный нагревательный элемент в форме катушки.

    Назначение электромагнитных катушек

    Чтобы соответствовать широкому спектру применений, существует множество типов электромагнитных катушек, различающихся по сечению, длине, диаметру катушки и материалам, на которые наматывается провод. Все разновидности электрических катушек могут быть адаптированы для удовлетворения конкретных требований.

    Кроме того, помимо передачи тепла, звука или электричества, электрические катушки должны выполнять несколько различных функций. Например, электроника, автомобилестроение, медицина, компьютерная промышленность, бытовая техника и телекоммуникации в значительной степени полагаются на электрические катушки для обеспечения движения, регулирования потока и / или преобразования электрических токов.

    Хотя это может показаться очень разными функциями, основные электромеханические принципы, используемые во всех электрических катушках, в целом одинаковы: проводящий металлический провод наматывается на изолятор, который может быть таким простым материалом, как картон, пластик или даже воздух.

    схема электромагнитной катушки

    Два конца провода обычно превращаются в электрические соединительные клеммы, называемые «ответвителями», которые затем подключаются к электрическому току. Когда ток проходит по спиральным проводам, сама катушка намагничивается (хотя в некоторых случаях она может размагничиваться).

    Сила, создаваемая этим явлением, используется, в частности, такими компаниями, как производители электромагнитных клапанов, производители электродвигателей и поставщики аппаратов МРТ.

    Применение электромагнитных катушек

    Электромагнитные катушки используются в электротехнике в бесчисленных отраслях промышленности и в конкретных приложениях из-за важности взаимодействия между электрическими токами и магнитными полями во многих электрических устройствах.

    Соответственно, электрические катушки встречаются почти во всех отраслях промышленности. В любой отрасли, использующей электричество, вероятно, есть по крайней мере несколько приложений, использующих электрические катушки, хотя они могут быть встроены в готовое оборудование и не являются предметом особой озабоченности компаний в каждой отрасли.

    Отрасли с особыми сферами применения и уникальной потребностью в производстве обмоток электрических катушек или сборки катушек включают, но не ограничиваются:

    • Выработка энергии. Ключевой компонент при производстве любого электрического генератора или электродвигателя.
    • Тяжелая индустрия. Используется для различных двигателей и устройств управления, работающих в тяжелых условиях, а также в специальных электромагнитных устройствах.
    • Телекоммуникации. Используются как антенны, реле и т. д.
    • Медицина. Используется в различных устройствах формирования электромагнитных изображений и для определенных приложений, таких как биофильтры.
    • Компьютеры. Используется в магнитных запоминающих устройствах.
    • Бытовая техника. Многие нагревательные катушки используют одни и те же принципы электромагнитной индукции; там, где тепло было бы нежелательным побочным эффектом в других приложениях, это основная цель в различных домашних устройствах, таких как тепловые насосы или индукционные электрические плиты.
    • Автомобильная промышленность. Применяется для различных двигателей, генераторов. В частности, узел катушки, то есть катушки зажигания, катушка соленоида или реле стартера.
    • Контроль мощности. Используется в автоматических выключателях, контакторах, катушечных переключателях реле и различных других механизмах управления мощностью.

    История

    История электромагнитной катушки — это история электромагнитной науки в целом, так как именно с катушкой из проволоки и магнитом Майкл Фарадей впервые определил, что электрический ток может генерироваться с помощью магнитных сил. За прошедшие с тех пор годы практическое применение этих знаний проявилось во многих формах, хотя самым непосредственным ранним применением, конечно же, был электрический генератор Грамма в 1871 году.

    электрический генератор Грамма

    По мере того, как наше понимание и использование электромагнитных сил продвигалось вперед, появились и электромагнитные катушки. Для каждого потенциального применения бесчисленное количество раз изобретались, совершенствовались и модернизировались одна или несколько катушек с индивидуальными требованиями. Природа электрических катушек такова, что инновации в конструкции катушек присущи практически любому применению.

    Конструкция электромагнитной катушки

    Базовая конструкция электрической катушки может легко усложниться с добавлением дополнительных обмоток. Обмотка определяется как полный узел катушки с отводами и другими элементами. В то время как в где то может использоваться одна обмотка, то другие требуют добавления вторичных и даже третичных обмоток.

    Читайте также:  Схемы стабилизаторов тока для автомобильного аккумулятора

    Электрический трансформатор, например, представляет собой электромагнитный компонент, который состоит из первичной и вторичной обмоток, что позволяет ему передавать электрическую энергию от одной электрической цепи к другой электрической цепи посредством магнитной муфты без движущихся частей.

    электромагнитная катушка

    Определенные как точки в проволочной катушке, которая состоит из открытого проводящего участка, отводы катушки могут различаться в основном по размеру, так же как и диаметр самой катушки. Когда катушка имеет большой диаметр, степень самоиндукции намного больше, и ток пытается течь внутри провода, а не снаружи, что может быть проблемой.

    Кроме того, многослойные электрические катушки могут иметь проблемы с межслойной емкостью, которая относится к электрическому явлению, при котором сохраняется электрический заряд, поэтому форма катушки должна быть изменена.

    В результате для многослойных электрических катушек спиральная форма является наиболее практичной формой. Величина самоиндукции намного больше, и ток пытается течь внутри провода, а не снаружи, что может быть проблемой.

    Кроме того, многослойные электрические катушки могут иметь проблемы с межслойной емкостью, которая относится к электрическому явлению, при котором сохраняется электрический заряд, поэтому форма катушки должна быть изменена.

    • Проводящие материалы

    Основа любой электрической катушки, включая простые резистивные нагревательные элементы — это проводящий материал, имеющий форму катушки. Чаще всего это медная проволока, но для этой роли можно использовать любой токопроводящий материал. Алюминий — популярная альтернатива.

    • Основные материалы

    Для большинства электромагнитных катушек также необходимо учитывать материал сердечника. Обычно это какой-нибудь ферромагнитный материал, например, железо. Сердечник может представлять собой сплошной кусок, пучок проводов или любое количество других конфигураций.

    Типы и формы электромагнитных катушек

    В зависимости от используемого приложения, вы обычно будете довольно ограничены в общем стиле электрической катушки. Устройству, который требует статора, совместимого с постоянным током, не нужна катушка для электродвигателя переменного тока, так как ваши возможности, таким образом, будут довольно ограничены.

    формы электромагнитных катушек

    Специфика конструкции электрических катушек означает, что каждый небольшой аспект конфигурации может сильно повлиять на производительность конечного продукта. Например, на индуктивные свойства простой электромагнитной катушки напрямую влияют эти и многие другие факторы:

    • Количество обертываний
    • Площадь катушки
    • Длина катушки
    • Материал сердечника
    • Материал катушки

    Несмотря на то, что в конструкции электрических катушек есть основное сходство, есть много способов, которыми каждая катушка может быть разработана специально для ее применения. Например, некоторые электрические катушки требуют защиты от суровых условий окружающей среды, таких как влажность, соль, масло и вибрация.

    Чтобы защитить хрупкие катушки от агрессивных элементов, поскольку при длительном воздействии можно легко потерять проводимость, электрические катушки можно формовать или герметизировать.

    В то время как формованные катушки заключены в пластиковые покрытия, которые герметизируют весь блок катушек, герметизированные катушки сделаны из проволоки, которая сама залита полимерно- эпоксидной смолой.

    Другие типы электрических катушек, такие как катушки тороидального трансформатора, намотаны вокруг ферритовых колец и обернуты герметизирующей лентой для защиты окружающей среды.

    катушки тороидального трансформатора

    Один из наиболее распространенных типов электрических катушек, соленоидные катушки, иногда просто называют соленоидами. Часто используемые в качестве удаленного переключателя, соленоиды представляют собой катушки с током, которые становятся магнитными, когда ток проходит через катушку, которая обычно наматывается на железный сердечник.

    Другие типы электромагнитных катушек включают:

    катушки Роговского

    • катушки Гарретта, используемые в металлоискателях
    • катушки Роговского, используемые для измерения переменного тока (AC)
    • катушки Удина, которые являются катушками с разрушающим зарядом
    • катушки Браунбека, используемые в геомагнитных исследованиях.

    Катушка Роговского

    Оптимизация производительности электромагнитных катушек

    Поскольку работа электрической катушки в конечном итоге очень проста, оптимизация производительности обычно сводится к точному согласованию конструкции катушки с применением. Это означает, что необходимо убедиться, что все совпадает, эффективно подходит и течет чисто, без потерь тепла, движения и т. д.

    В зависимости от конкретного применения повышение производительности может означать замену катушки на лучшую конструкцию или замену компонентов, чтобы они лучше соответствовали вашей конструкции. катушка. Вам нужно будет решить, исходя из того, что вы пытаетесь сделать.

    Конечно, чтобы сделать что-либо из этого, требуется понимание того, как работает ваша система, что делает аналитические инструменты и программное обеспечение идеальными для всех, кто пытается добиться максимальной производительности.

    Вы можете обнаружить несколько поверхностных проблем без надлежащего оборудования, но для всего, что приближается к максимальной производительности, вам понадобится современное оборудование.

    При выборе конструкции для вашей электрической катушки есть несколько других факторов, которые вы можете рассмотреть, прежде чем обращаться к компании, производящей обмотки. Если вы не уверены в чем-либо из них, не стесняйтесь спросить совета у любой компании, производящей обмотки, или спросите своего инженера-электрика.

    Виды электромагнитных катушек

    • Катушки с воздушным сердечником (самонесущие катушки) — электромагнитные катушки, которые намотаны «вокруг воздуха» без сердечника, отсюда термины «воздушные катушки» и «самоподдерживаемые катушки».
    • Катушки с намоткой на шпульку — электромагнитный провод, намотанный на пластиковый сердечник или «шпульку». Пластиковые сердечники бывают разных размеров, а катушки, намотанные на бобину, могут быть пропитаны, отформованы или заклеены лентой, чтобы соответствовать различным медицинским устройствам, датчикам, реле и автомобилям.
    • Дроссельные катушки — представляют собой электрические катушки с низким сопротивлением и высокой индуктивностью, которые используются для блокировки высокочастотных переменных токов (AC) электричества, позволяя проходить низкочастотным постоянным токам (DC).

    Дроссельные катушки

    Катушка Тесла

    • Электрические катушки — альтернативное название электрических катушек, состоят из серии петель, изготовленных из токопроводящей металлической проволоки и намотанных на ферромагнитный сердечник.
    • Инкапсулированные катушки — это электрические катушки, заключенные в силиконовый, полиэфирный, жидкий или термоформованный эпоксидный кожух.
    • Катушки высокого напряжения — это электрические катушки, в которых используется напряжение выше, чем обычно считается безопасным.
    • Катушки зажигания — это электрические индукционные катушки, которые используются для преобразования более низких напряжений мощности в более высокие напряжения мощности, необходимые для зажигания свечей зажигания системы.
    • Пропитанные катушки — катушки, которые были сначала погружены в эпоксидную смолу или подвергнуты совместной экструзии перед намоткой. Ламинирующая эпоксидная смола изолирует проводящий электромагнитный провод от элементов, создавая блок, который эффективно защищен от погодных условий и грязи без затрат на инструменты, связанные с формованными катушками
    • Индукционные катушки — распространенный синоним электрических катушек, электромагнитные катушки используются для создания электродвижущей силы путем активации на магнетизм посредством электрических токов.
    • Магнитные катушки — которые также могут называться электромагнитными катушками или просто катушками, включают все типы электрических катушек, которые работают по принципу индукции.
    • Литые катушки — электромагнитные катушки, заключенные в термоформованные или отлитые под давлением пластиковые корпуса, защищающие катушку от погодных условий, грязи и вибрации.
    • Электромагнитные катушки — также называемые соленоидами, представляют собой трехмерные петли или катушки из проволоки, которые намотаны вокруг металлического сердечника и служат для создания магнитного поля при прохождении электрического тока через катушку.
    • Катушки, обмотанные лентой — катушки, обычно намотанные на сердечник, которые заключены в герметизирующую ленту для защиты электромагнитной катушки от погодных условий, грязи и вибрации. Бухты, намотанные лентой, не так эффективны в блокировании этих вредных элементов, как пропитанные или формованные бухты, но затраты на производство катушек, намотанных лентой, намного ниже
    • Катушка Тесла — электрическое устройство, которое генерирует чрезвычайно высокое напряжение, обычно с целью создания электрических дуг и эффектов молнии или для получения рентгеновских лучей.

    Катушка Тесла

    • Тороиды / тороидальные катушки — медный провод, намотанный на ферритовое или железное кольцо в форме пончика. Ферритовый сердечник усиливает индуктивность катушки и может использоваться в транспортных средствах, аудио и источниках питания.
    • Катушки трансформатора — электромагнитные катушки, обычно пропитанные или ламинированные, которые используются для изменения напряжения входящего электрического тока, подавая ток обратно с той же частотой, но с другим напряжением.
    • Звуковые катушки — звуковая катушка, состоящая из обмотки, воротника и бобины, представляет собой своего рода электрическую катушку. Он прикрепляется к вершине диффузора громкоговорителя, где его цель — помочь усилить звук.

    Электромагнитные катушки термины

    • Шпулька — пластиковый сердечник, вокруг которого часто наматываются электрические катушки.
    • Обмотка катушки — процесс наматывания электромагнитного провода вокруг сердечника или в самонесущую «воздушную» катушку; катушки могут быть однослойными или состоять из множества слоев. Для точных технических катушек часто требуется «прецизионная намотка».

    Проводник — материал, часто металл (например, медь), который пропускает электрические токи за счет движения свободных электронов.

    Электрический ток — Поток электрически заряженных электронов или ионов к положительному полюсу, вызванный путем введения электрического энергетического поля

  • Электромагнетизм — магнетизм, который создается электрическим током и зависит от него.
  • Поле катушки — представляет собой электромагнит используется для создания магнитного поля в электромагнитной машине, правило вращающейся электрической машины такой как двигатель или генератор. Он состоит из проволочной катушки, по которой течет ток.
  • Индуктивность — Электродвижущая сила или сила электромагнитной катушки (или цепи), создаваемая воздействием на катушку электрического тока.

    Преобразователь — электрическое устройство, преобразующее энергию из одной формы в другую.

  • Обороты — количество раз, когда электромагнитная катушка наматывается либо на ее сердечник, либо, в случае воздушных катушек, количество раз, когда катушка полностью закручивается
  • Источник

    

    Отталкивание магнита и катушки с переменным током

    Оригинальное название:
    «Эксперимент 2020-04-04» Демонстрация отталкивания магнита и катушки с переменным током

    Код УДК: 537.6/.8
    Код ББК: 22.33

    Читайте также:  Защита от поражения электрическим током в лаборатории

    Объектом исследования является сила магнитного взаимодействия катушки с переменным током и постоянного магнита. Вызывает сомнение равенство модуля силы магнитного притяжения и магнитного отталкивания при прочих равных условиях. Высказывается гипотеза, что модуль силы магнитного отталкивания может превышать модуль силы магнитного притяжения. Ставятся цели: 1)обнаружение выраженного отталкивания постоянного магнита на свободном подвесе и катушки БЕЗ сердечника с переменным током; 2)сравнение силы отталкивания магнита от катушки переменного тока с силой отталкивания магнита от катушки постоянного тока. Приводятся измеренные экспериментальные данные в таблицах и графиках, производится оценка эффекта.

    Как известно [1, 164], [2, 12] при изучении электромагнетизма и в проектировании электрооборудования расчет силы (электро)магнитного взаимодействия производится по формуле силы Ампера (или по закону Био-Савара). Величина силы пропорциональна силе тока I, что означает смену знака силы при смене направления тока, при этом модуль силы Ампера считается сохраняющимся. Аналогичные рассуждения делаются и по индукции В магнитного поля — изменение направления индукции магнитного поля В изменяет направление силы Ампера, при этом сама величина (модуль) силы Ампера также считается неизменной.

    В электродвигателях и электромагнитах этот факт одинаковости сил магнитного притяжения и отталкивания считается очевидным. В электроустановках эти силы, как правило, работают совместно, создавая суммарный эффект.

    Однако со строго научной, фундаментальной точки зрения нуждается в экспериментальной (да и теоретической тоже) проверке сама одинаковость сил магнитного притяжения и отталкивания, которая и производится в данной работе.

    На основании экспериментальных данных научно обосновано предположение о возможном превышении модуля силы магнитного (электромагнитного) отталкивания над модулем силы магнитного (электромагнитного) притяжения при прочих равных условиях: одинаковых величинах силы тока и одинаковом модуле индукции магнитного поля и одинаковых расстояниях.

    Установка в таком виде очень проста и может быть легко воспроизведена на любом подходящем оборудовании любой лаборатории или в домашних условиях. Она прежде всего имеет наглядную цель и лишь впоследствии — научно-исследовательскую. Она состоит из магнита, подвешенного на нити напротив катушки БЕЗ сердечника, линейки для измерения отклонения d магнита и системы питания катушки. Высота подвеса 1 м (погрешность +-0,02 м) используется для расчета силы, отклоняющей магнит. Расстояние от магнита до витков катушки приводится для справки, так как на основе данных работы не предполагается построение физических и математических моделей. Для этой цели необходимо проведение более точных измерений.

    Система питания состоит из автотрансформатора (ЛАТРа), понижающего трансформатора (220/24), контрольного амперметра переменного тока (использовался мультиметр), клемм и соединительных проводников.

    ЛАТР желателен для плавной регулировки и минимизации переходных процессов включения-выключения тока. Катушка на нити долго колеблется — мягкое добавление тока позволяет уменьшить колебания. Однако эксперимент может быть проведен БЕЗ применения ЛАТРа — отметьте начальное равновесное положение магнита, включите ток и дождитесь успокоения колебаний.

    Понижающий трансформатор 220/24 обеспечивает безопасную величину токов и напряжений как для человека, так и для исследуемой катушки. Сопротивление катушки постоянному току получилось примерно 5 Ом и при типичной силе тока 2. 4 ампера требуется напряжение порядка 10. 20 В, поэтому трансформатор нужен на напряжение 24 В. Для желающих повторить эксперимент замечание такое — зажимные-нажимные клеммы начинают «подгорать» при токах около 4 А (это как раз имело место).

    Контрольный амперметр желателен, но также вторичен — эксперимент может быть проведен БЕЗ него.

    Конечно было интересно пронаблюдать обычное отталкивание магнита в поле катушки постоянного тока, для чего была применена схема питания постоянным током. Поскольку сила взаимодействия оказалась достаточно большой, то был применен балласт (5-10 Ом, имеющиеся под руками другие такие же катушки) для уменьшения силы тока.

    Используемый повсеместно переменный ток обладает ценным свойством — его положительная и отрицательная полярности имеют абсолютно совпадающую по модулю величину — и по амплитуде и по протекающему за пол-периода заряду (могут быть лишь случайные, относительно редкие отклонения), что объясняется принципом его трансформации. Именно это важно в данной работе для сравнения сил магнитного притяжения и отталкивания.

    При питании электромагнита переменным током постоянный магнит в поле его должен испытывать лишь периодические толчки чередующегося направления с частотой питания сети — 50 Гц. Именно этот принцип и применяется в основе разнообразных электродинамических звуковоспроизводящих устройств (в них как раз магнит неподвижен, а катушка — она обычно намного легче — испытывает колебания под влиянием переменного тока.) При этом согласно действующей общепринятой теории [1, 164], [2, 12] средняя равновесная точка вибрирующего сердечника (если он имеет постоянный магнит) смещаться НЕ должна при включении тока (при условии механической линейности подвеса).

    В настоящей установке как раз и используется аналогичная электромеханическая схема. В поле электромагнита переменного тока размещен свободно подвешенный постоянный магнит, который и взаимодействует с равновеликими по модулю чередующимися по направлению силами.

    Поскольку магнит взаимодействует с чередующимися силами противоположного направления с катушкой электромагнита, то заметное отклонение магнита в какую-либо сторону от катушки говорит об отличии силы отталкивания от силы притяжения.

    Используемые магниты и катушка

    Была применена катушка БЕЗ сердечника с числом витков 550, толщиной провода 0,56 мм, внутренним диаметром обмотки 24 мм, наружным — 55 мм, осевой толщиной 14 мм, длина провода оказалась около 68 метров и ее сопротивление постоянному току получилось примерно 5 Ом. Для ее изготовления на 3d-принтере были распечатаны детали каркаса, хотя пробный эксперимент предполагает использование ЛЮБОЙ подходящей катушки (даже бескаркасной). Для крепления использован латунный крепеж, пластиковый кронштейн и планка из дсп — все немагнитное.

    Теперь об использованных магнитах и их обозначениях в результатах ниже. Всего было три типоразмера магнитов: один типоразмер — ферритовые от бензонасоса (форма — сегмент цилиндрического слоя); и два — неодимовые с никелевым покрытием (дисковый и цилиндрический).
    «1фвыпN» — ферритовый магнит выпуклым «севером» N к катушке;
    «2фвыпS» — ферритовый магнит выпуклым «югом» S к катушке;
    «3фвогN» — ферритовый магнит вогнутым «севером» N к катушке;
    «4фвогS» — ферритовый магнит вогнутым «югом» N к катушке;
    «5Днслаб» — неодимовый «слабый» дисковый магнит диаметром 38 мм и толщиной 2х1.5 мм;
    «6Днсиль» — неодимовый «сильный» дисковый магнит диаметром 38 мм и толщиной 2х1.5 мм;
    «7Цн» — неодимовый цилиндрический магнит диаметром 30 мм и толщиной 2х10 мм.
    Для упрощения конструкции ВСЕ магниты использованы по 2 штуки — примагничены два одинаковых сквозь тонкую пластиковую пленку от упаковки, для тонкой регулировки положения пленка к подвеске крепилась медной проволокой, позволяющей ее согнуть и выровнять плоскости, углы, положения и проч.

    Видео на ЮТубе
    https://youtu.be/06Hq5AeF2sw
    Эксперименты со всеми тремя магнитами проводились по одинаковой методике и преследовали простую демонстрационную цель. Для удобства применялись две линейки: одна — для измерения отклонения от положения равновесия, другая — для измерения расстояния от плоскости витков катушки до характерной точки подвески магнита. Сначала линейки устанавливались в удобное положение и осторожно прибавлялось напряжение ЛАТРа, увеличивалась сила тока. Измерялось отклонение магнита от положения равновесия.

    В качестве базового при первом измерении был применён именно ферритовый магнит с большим удельным сопротивлением. Это гарантировало отсутствие токов Фуко и отсутствие Ленцевского отталкивания. На неодимовых магнитах величина отклонения по порядку величины соответствовала отклонению ферритовых магнитов, что говорит о слабом влияние токов Фуко в неодимовых магнитах. В последствие предполагается провести специальное измерение Ленцевского эффекта на дисках из алюминия/дюраля.

    Для сравнения проводилось измерение отталкивания магнитов постоянным током. Поскольку возникает вопрос о средневыпрямленном и среднеквадратическом значении силы тока, то для измерения использовался амперметр только переменного тока, а в эксперименте с постоянным током использовался выпрямительный мост. Таким образом влияние коэффициента формы (k=1.11) переменного тока оказывалось одинаковым и в измерениях на переменном токе, и в измерениях на постоянном токе. Это позволило вообще не обращать внимание на коэффициент формы при обработке результатов. К этому вопросу мы еще вернемся в будущих статьях.

    Поскольку подвешенный магнит вибрировал в поле переменного тока, то для исключения аэродинамического влияния эксперимент был повторен четырежды на ферритовых магнитах — как выпуклой стороной, так и вогнутой стороной к катушке. Во всех случаях наблюдалось устойчивое отклонение магнита от катушки, по порядку величины соответствующее отклонению плоских неодимовых магнитов.

    Яндекс-документ (таблица)
    https://yadi.sk/i/BaYuvbNXWIvXvQ

    Прямая ссылка на HTML-страничку
    http://easy-physics.club/sci/2020-04-04-ex1-rezult.html
    или в оригинале статьи
    http://easy-physics.club/sci/2020-04-04-ex1.html

    Во всех форматах имеется 8 страниц, содержащих следующее:
    0-ая «0кат» — упрощенный расчет использованной катушки
    1-ая «1фвыпN» — результаты измерений и расчетов по ферритовому магниту 1фвыпN;
    2-ая «2фвыпS» — —//— по ферритовому магниту 2фвыпS;
    3-ая «3фвогN» — —//— по ферритовому магниту 3фвогN;
    4-ая «4фвогS» — —//— по ферритовому магниту 4фвогS;
    5-ая «5Днслаб» — —//— по неодимовому диску 2х 38х1.5мм;
    6-ая «6Днсиль» — —//— по неодимовому диску 2х 38х1.5мм;
    7-ая «7Цн» — —//— по неодимовому цилиндру 2х 30х10 мм.

    В таблицах результатов (листы 1. 7) перечислим и прокомментируем все колонки по порядку:

    A — Контрольное число, см — отсчеты по линейке, закрепленной на катушке. По ней можно определить расстояние от катушки до характерной точки магнита.
    B — Отклонение от равновесия, d, мм — отсчеты по линейке, расположенной на полу и на которой «ноль» выставлен на положение равновесия магнита.
    C — Расстояние от витков до магнита, мм — разность, вычисленная по колонке A.
    D — Сила переменного тока I1, А — измеренная сила переменного тока при данном (колонка B) отклонении от равновесия
    E — Сила постоянного тока I0, А — измеренная сила постоянного тока, вызывающая такое же (колонка B) отклонение от равновесия (такую же силу отталкивания).
    F — Сила отталкивания Fотт, Н — вычислялась по массе магнита и по отклонению от положения равновесия ( d*m*g/(длину подвеса) ).
    G — Относит. величина эффекта I0 / I1 — отношение постоянного тока к переменному току, показывает насколько постоянный ток вызывает большее отталкивание, чем переменный
    Остальные колонки оставим пока без комментариев.
    Непосредственная оценка силы отталкивания оказалась недостаточно информативна с позиции общности, она зависит от объемных характеристик магнита, его формы, силы намагниченности (Энергии магнитного поля и остаточной индукции магнитного поля, которая сама по себе еще и неоднородна). Оказалось, что простое отклонение от равновесия d и легче воспринимается, и более информативно. Оно автоматически учитывает, что у более тяжелого магнита и энергия магнитного поля больше — отклонение окажется близким у магнитов разного размера-массы и пропорциональным остаточной индукции. Этот вопрос нуждается в более глубокой теоретической проработке, оставим его для будущих статей. В данной статье как основной результат использовано именно отклонение d магнита от положения равновесия.

    Читайте также:  Есть ли ток в домофоне

    По измеренным данным построены некоторые зависимости.

    Зависимость отклонения магнитов от силы переменного тока d=d(I1)
    Рисунок в заголовке статьи, оригинал тут
    http://easy-physics.club/sci/2020-04-04-ex1.html
    По представленным графикам видно, что ВСЕ магниты показывают уверенное отклонение от катушки. Т.е. можно сделать вывод — постоянные магниты действительно отталкиваются от катушки с переменным током , и, следовательно, сила магнитного отталкивания превышает силу магнитного притяжения в описываемых условиях.
    Неодимовые магниты показывают бОльший эффект (линии 5,6,7 идут выше линий 1,2,3,4), что, на первый взгляд, объясняется просто их бОльшей силой намагничивания (бОльшим модулем магнитной индукции), но конечно, нужно в будущем исключить возможное влияние проводимости магнитов (влияние Ленцевского отталкивания).
    По ферритовым магнитам вывод пока можно сделать следующий — вогнутая сторона магнита дает немного сильнее эффект (линии 3,4 идут выше линий 1,2), что может объясняться как аэродинамикой, как большей кривизной силовых линий, так и просто разбросом величины их намагниченности — нужны более корректные эксперименты, исключающие аэродинамические эффекты и в которых будет возможность измерить модуль индукции магнитного поля магнита.

    Зависимость относительной величины эффекта от отклонения I0 / I1 = f(d)
    Оригинал тут
    http://easy-physics.club/sci/2020-04-04-ex1.html
    Хотелось бы количественно оценить обнаруженный эффект и в качестве меры, некоторой условной единицы, логично использовать стандартную силу электромагнитного взаимодействия. Для этого были проведены вспомогательные калибровочные измерения силы отталкивания магнита и катушки с постоянным током I0 в максимально совпадающих условиях. Далее вычислялась вспомогательная величина I0 / I1 «Относительная величина эффекта», показывающая, насколько постоянный ток I0 влияет сильнее переменного I1 (впоследствии из этой величины можно получить феноменологические коэффициенты «четности»), или «на сколько процентов отталкивание сильнее притяжения».
    Здесь представлены зависимости этой величины от отклонения магнита от равновесия — т.е. пространственная относительная оценка эффекта. По зависимостям видно, что с удалением магнита и катушки эффект УВЕЛИЧИВАЕТСЯ! Вывод пока предварительный, но ощущается его важность для построения теории в будущем.
    Также можно сделать еще один вывод, что сама разница сил притяжения и отталкивания относительно невелика и составляет 0.6. 1.3%, т.е. вероятность заметить столь малую разницу сил была крайне мала, особенно при использовании приборов с погрешностью 1. 3%! Тем не менее эта разница (и воспроизводимые зависимости ее) имеет фундаментальное значение — из неё следует чётность электромагнитных эффектов.
    Впоследствии предполагается это исследование сделать существенно глубже, обширнее, точнее и из него получить данные для математических и физических моделей.

    1.Показано отталкивание всех магнитов от катушки с переменным током, что свидетельствует о превышении силы магнитного отталкивания над силой магнитного притяжения для всех видов использованных магнитов и для катушки представленной геометрии. Это подтверждает высказанную в начале статьи гипотезу.

    2.Показана пропорциональность отталкивания магнита силе переменного тока в катушке.

    3.Относительная величина разности сил отталкивания и притяжения составила 0.6. 1.3% по сравнению со стандартным отталкиванием на постоянном токе (исследованный диапазон расстояний от магнита до плоскости витков составил от 10 до 30 мм, разный для разных магнитов, исследованный диапазон переменных токов составил до 1.6 А).

    4.Обнаружено, что относительная величина эффекта возрастает с увеличением расстояния между магнитом и катушкой.

    1.Будьте осторожны с силами токов более 3А — многие клеммы очень быстро выходят из строя. Будьте осторожны с ЛАТРами и трансформаторами — напряжение сети 220 В (и даже «низкое» напряжение) опасно!

    2.Стальные магниты с «мягкой» петлей намагничивания непригодны, эффект проявляется на ферритовых и неодимовых магнитах с «жесткой», «прямоугольной» петлей.

    1.Савельев И.В. Курс общей физики. Том 2. Электричество. Издание 4-е, переработанное. М.: Издательство «Наука». Главная редакция физико-математической литературы, 1970

    2.Тихомирова С.А. Физика. 11 класс : учеб. для общеобразоват. учреждений (базовый и профильный уровни) / С. А. Тихомирова, Б. М. Яворский. — 3-е изд., стер. — М. : Мнемозина, 2012. — 303с. : ил.

    Оригинал этой статьи был размещен тут
    http://easy-physics.club/sci/2020-04-04-ex1.html

    Здравствуйте!
    Даже в неодимовым магните, помещенном в переменное поле, которое
    направлено под углом к оси его намагниченности, возникнут качания
    магнитных моментов атомов с частотой внешнего поля. При этом
    размагничивания магнита не произойдёт! Эти качания вызовут изменение
    со временем магнитного потока через катушку и, как следствие,
    наведение в ней дополнительного индукционного тока. Возможно, с полем
    этого дополнительного тока магнит так и взаимодействует, хотя, конечно,
    нужна подробная модель, а не такие, как у меня сейчас, досужие
    рассуждения стоя с планшетом в руке. С уважением —

    Однако — можно сделать отдельный эксперимент, где катушка запитана «генератором тока» — от усилителя с большим выходным сопротивлением — типа «два коллектора npn|pnp. Вот вам и простейший набор оборудования для частотного анализа — поверьте, он ПЛАНИРУЕТСЯ! Частота 50 Гц — не останется единственной!

    Доброго времени суток! Благодарю! Учтем, в математических моделях ВСЁ значимое будет учитываться. С Уважением.

    Портал Проза.ру предоставляет авторам возможность свободной публикации своих литературных произведений в сети Интернет на основании пользовательского договора. Все авторские права на произведения принадлежат авторам и охраняются законом. Перепечатка произведений возможна только с согласия его автора, к которому вы можете обратиться на его авторской странице. Ответственность за тексты произведений авторы несут самостоятельно на основании правил публикации и законодательства Российской Федерации. Данные пользователей обрабатываются на основании Политики обработки персональных данных. Вы также можете посмотреть более подробную информацию о портале и связаться с администрацией.

    Ежедневная аудитория портала Проза.ру – порядка 100 тысяч посетителей, которые в общей сумме просматривают более полумиллиона страниц по данным счетчика посещаемости, который расположен справа от этого текста. В каждой графе указано по две цифры: количество просмотров и количество посетителей.

    © Все права принадлежат авторам, 2000-2021. Портал работает под эгидой Российского союза писателей. 18+

    Источник

    Электромагнит переменного тока

    Всем известно, что простейший электромагнит постоянного тока представляет собой соленоид с металлическим сердечником, по катушке которого пропущен электрический ток. Электромагнит переменного тока имеет существенные отличия, как в принципе действия, так и по другим параметрам.

    Применение электромагнитов

    Питание обмотки данного типа магнитов производится переменным током. Поскольку он является переменным, то направление и величина магнитного потока, также периодически изменяются. При этом, сила притяжения действует в одном направлении и изменяется только ее величина. Поэтому, происходит пульсация силы притяжения от нулевого до наивысшего значения, частота которой в два раза выше частоты питающего напряжения.

    Электромагнит переменного тока

    Для того, чтобы лучше понять разницу между двумя видами электромагнитов, следует рассматривать их в сравнении. Таким образом, можно наиболее точно определить целесообразность их применения в той или иной сфере.

    При одинаковых сечениях полюсов, среднее значение силы при постоянном токе, в два раза больше, чем сила при переменном. Это касается всех конструкций, с различным количеством фаз. Иначе говоря, сталь, используемая в магните постоянного, дает эффект, в два раза больший, чем при питании от переменного.

    Поэтому, при одинаковых параметрах хода якоря и силы тяги, электромагнит переменного тока имеет значительно больший вес, поскольку имеет место повышенный расход содержащихся в нем материалов. Здесь же следует учитывать и реактивную мощность, напрямую связанную со значением физической работы, которую должен выполнить электромагнит.

    Особенности электромагнитов переменного тока

    Быстродействие электромагнитов переменного напряжения существенно превышает аналоги постоянного. Это связано с тем, что постоянное значение времени магнита, совпадает со значением единичного полного периода тока. При этом, электродвижущая сила самоиндукции, которая возникает во время движения якоря, гораздо меньше, чем прилагаемое напряжение. Соответственно, при выполнении одной и той же работы, электромагнит потребляет меньшее количество электроэнергии.

    Очень часто возникает необходимость принятия мер по предотвращению излишних потерь из-за вихревых токов. В связи с этим, при переменном, магнитопроводы изготавливаются в разрезном или шихтованном варианте. При этом, ухудшается процесс заполнения магнитопровода сталью, и все это вызывает отдельные технологические и конструктивные недостатки. Кроме того, при вихревых токах, увеличивается нагрев самого магнита.

    Области применения таких электромагнитов самые различные. Самое главное условие – наличие переменного тока необходимой мощности и частоты. При соблюдении этих условий, электромагниты успешно используются в стационарных условиях промышленных предприятий.

    Источник