Основные характеристики синхронных генераторов
Основными характеристиками синхронных генераторов являются:
— характеристика холостого хода;
Характеристика холостого хода показывает зависимость ЭДС генератора от величины тока возбуждения при постоянной частоте и отключенной нагрузке, т.е. при холостом ходе Е = f(I в) при I н = 0, n = const.
В нижней части характеристика холостого хода прямолинейна, поскольку при малых индукциях большая часть МДС (W I в) затрачивается на преодоление магнитным потоком воздушного зазора между статором и ротором, а для воздуха зависимость Ф = f(I в) линейная. Стальные же участки магнитопровода при малых индукциях не представляют существенного сопротивления магнитному потоку.
При дальнейшем увеличении МДС и потока сказывается магнитное насыщение стали, вследствие чего магнитное сопротивление стальных участков начинает быстро возрастать и для их преодоления потоком требуется значительно большая часть МДС. Поэтому характеристика начинает наклоняться в сторону оси абсцисс и становится криволинейной.
При полном насыщении стали магнитопровода, которое наступает при очень больших МДС, характеристика холостого хода снова выпрямляется, но ее наклон к оси абсцисс значительно меньше, чем на начальном линейном участке.
Характеристика холостого хода определяет свойства магнитной цепи синхронного генератора. Она аналогична кривой намагничивания, которую рассматривали в теме магнитные цепи. т.е. она имеет восходящую и нисходящую ветви обусловленные наличием гистерезиса в сердечнике машины.
Рабочую точку А, соответствующую номинальному режиму работы генератора, выбирают обычно на перегибе («колене») характеристики холостого хода.
Внешняя характеристика показывает, как изменяется напряжение на генераторе при изменении тока нагрузки и постоянной частоте вращения, а также при неизменных коэффициенте мощности и токе возбуждения
U = f(I н) при I в, n, cos = const.
С увеличением нагрузки, подключенной к генератору, возрастает ток якоря I я. Это приводит к увеличению падения напряжения в обмотке якоря. Тогда из основного уравнения генератора U = E – I я · R я, следует, что напряжение на выходе генератора будет уменьшаться вследствие:
— изменения напряжения на обмотке якоря I я · R я ;
— изменения ЭДС Е из-за реакции якоря, зависящей от характера нагрузки.
При подключении различной по характеру нагрузки ( R, L, С) внешняя характеристика различна. Это обуславливается влияние тока якоря на магнитное поле генератора. Используя закон электромагнитной индукции и известные фазовые соотношения (ток на индуктивности отстает от напряжения на угол 90 0 , а на емкости опережает напряжение на такой же угол) можно увидеть, что при подключении емкости ток нагрузки (якоря) подмагничивает генератор (благодаря продольно – намагничивающей реакции якоря).
При индуктивной нагрузке, ток якоря наиболее сильно размагничивает генератор (сильно сказывается влияние продольно – размагничивающей реакции якоря).
Регулировочная характеристикапоказывает, как следует изменять ток возбуждения синхронного генератора при изменении тока нагрузки, чтобы поддерживать неизменным напряжение I в = f(I) при U, n, cos = const.
Различный характер кривых обусловлен опять фазовыми соотношениями в цепях с разной нагрузкой, как и во внешней характеристике.
Для поддержания напряжения неизменным при активной и тем более активно-индуктивной нагрузке, когда сильно сказывается продольно-размагничивающая реакция якоря, ток возбуждения нужно увеличивать, а при активно-емкостной нагрузке – уменьшать.
Источник
Характеристики синхронного генератора
Свойства синхронного генератора определяются характеристиками холостого хода, короткого замыкания, внешними и регулировочными.
Характеристика холостого хода синхронного генератора.Представляет собой график зависимости напряжения на выходе генератора в режиме х.х. U1 = Е от тока возбуждения Iв.0 при n1 = const. Схема включения синхронного генератора для снятия характеристики х.х. приведена на рис. 20.9, а. Если характеристики х.х. различных синхронных генераторов изобразить в относительных единицах Е* = f (Iв*), то эти характеристики мало отличаются друг от друга и будут очень схожи с нормальной характеристикой х.х. (риc. 20.9, б), которую используют при расчетах синхронных машин:
E* | 0,58 | 1,0 | 1,21 | 1,33 | 1,40 | 1,46 | 1,51 |
Iв* | 0,5 | 1,0 | 1,5 | 2,0 | 2,5 | 3,0 | 3,5 |
Здесь E* = Е / U1ном — относительная ЭДС фазы обмотки статора;
Iв* = Iв0 /Iв0ном — относительный ток возбуждения; Iв0ном — ток возбуждения в режиме х.х., соответствующий ЭДС х.х. Е = U1ном
Характеристика короткого замыкания.Характеристику трехфазного к.з. получают следующим образом: выводы обмотки статора замыкают накоротко (рис. 20.10, а) и при вращении ротора с частотой вращения n1 постепенно увеличивают ток возбуждения до значения, при котором ток к.з. превышает номинальный рабочий ток статорной обмотки не более чем на 25% (I1к = l,25 I1ном). Так как в этом случае ЭДС обмотки статора имеет значение, в несколько раз меньшее, чем в рабочем режиме генератора, и, следовательно, основной магнитный поток весьма мал, то магнитная цепь машины оказывается ненасыщенной. По этой причине характеристика к.з. представляет собой прямую линию (рис. 20.10, б). Активное сопротивление обмотки статора невелико по сравнению с ее индуктивным сопротивлением, поэтому, принимая r1 ≈ 0, можно считать, что при опыте к.з. нагрузка синхронного генератора (его собственные обмотки) является чисто индуктивной. Из этого следует, что при опыте к.з. реакция якоря синхронного генератора имеет продольно-размагничивающий характер (см. § 20.3).
Векторная диаграмма, построенная для генератора при опыте трехфазного к.з., представлена на рис. 20.10, в. Из диаграммы видно, что ЭДС индуцируемая в обмотке статора, полностью уравновешивается ЭДС продольной реакции якоря и ЭДС рассеяния .
Рис. 20.9. Опыт холостого хода синхронного генератора
При этом МДС обмотки возбуждения имеет как бы две составляющие: одна компенсирует падение напряжения , а другая компенсирует размагничивающее влияние реакции якоря .
Характеристики к.з. и х.х. дают возможность определить значения токов возбуждения, соответствующие указанным составляющим МДС возбуждения. С этой целью характеристики х.х. и к.з. строят в одних осях (рис. 20.11), при этом на оси ординат отмечают относительные значения напряжения х.х. Е* = E/ U1ном и тока к.з. Iк* = I1к/ I1ном. На оси ординат откладывают отрезок ОВ, выражающий в масштабе напряжения относительное значение ЭДС рассеяния . Затем точку В сносят на
Рис. 20.10. Опыт короткого замыкания синхронного генератора
Рис. 20.11. Определение составляющих тока к.з.
характеристику х.х. (точка В’) и опускают перпендикуляр B’D на ось абсцис. Полученная точка D разделила ток возбуждения Iв0ном на две части: Iвх — ток возбуждения, необходимый для компенсации падения напряжения , и — ток возбуждения, компенсирующий продольно-размагничивающую реакцию якоря.
Один из важных параметров синхронной машины — отношение короткого замыкания (ОКЗ), которое представляет собой отношение тока возбуждения Iв0ном, соответствующего номинальному напряжению при х.х., к току возбуждения Iв.к.ном соответствующему номинальному току статора при опыте к.з. (рис. 20.10, б):
Для турбогенераторов ОКЗ = 0,4 ÷ 0,7; для гидрогенераторов ОКЗ = 1,0 ÷ 1,4.
ОКЗ имеет большое практическое значение при оценке свойств синхронной машины: машины с малым ОКЗ менее устойчивы при параллельной работе (см. гл. 21), имеют значительные колебания напряжения при изменениях нагрузки, но такие машины имеют меньшие габариты и, следовательно, дешевле, чем машины с большим ОКЗ.
Внешняя характеристика.Представляет собой зависимость напряжения на выводах обмотки статора от тока нагрузки: U1 = f (I1) при Iв = const; соs φ1, = const; n1 = nном = const. На рис. 10.12, а представлены внешние характеристики, соответствующие различным по характеру нагрузкам синхронного генератора.
При активной нагрузке (соs φ1 = 1) уменьшение тока нагрузки I1 сопровождается ростом напряжения U1, что объясняется уменьшением падения напряжения в обмотке статора и ослаблением размагничивающего действия реакции якоря по поперечной оси. При индуктивной нагрузке (cos φ1
Дата добавления: 2015-11-18 ; просмотров: 2200 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Источник
§88. Режимы работы синхронного генератора и его характеристики
Холостой ход. Э. д. с, индуцированная в каждой фазе обмотки якоря синхронного генератора, при холостом ходе
cE — постоянная величина, зависящая от конструкции машины (числа витков обмотки якоря, числа полюсов и др.);
Фв — магнитный поток, создаваемый обмоткой возбуждения.
Регулирование напряжения и частоты. Из формулы (88) следует, что регулировать э. д. с. (напряжение генератора) можно двумя способами: изменением частоты вращения п или изменением магнитного потока возбуждения Фв. Для изменения потока возбуждения в цепь обмотки возбуждения включают регулировочный реостат (см. рис. 284) или автоматически действующий регулятор напряжения, которые позволяют изменить ток возбуждения, поступающий в эту обмотку, а следовательно, и создаваемый ею поток. Регуляторы напряжения широко применяют для регулирования возбуждения генераторов, работающих при переменной частоте вращения, т. е. генераторов, приводимых во вращение от дизеля (на тепловозах) или от колесной пары (на пассажирских вагонах). При изменении частоты вращения п и нагрузки машины они автоматически изменяют ток возбуждения Iв, т. е. поток Фв, так, чтобы напряжение генератора было стабильным или изменялось по заданному закону.
Регулирование частоты f1, как следует из формулы (86), осуществляется изменением частоты вращения ротора.
Работа машины при нагрузке. При увеличении нагрузки синхронного генератора напряжение его изменяется. Это изменение происходит по двум причинам. При протекании тока нагрузки по обмотке якоря создается так же, как и в асинхронной машине, вращающееся магнитное поле, т. е. свой магнитный поток якоря Фя. Поток якоря Фя и поток возбуждения Фв вращаются с одинаковой частотой и создают, следовательно, некоторый результирующий поток Фрез = Фя+Фв. В результате э. д. с. машины Е = сЕФрезn, т. е. будет отличаться от э. д. с. Е при холостом ходе.
Воздействие потока якоря на результирующий поток синхронной машины называется реакцией якоря. Так как под действием реакции якоря изменяется результирующий поток в машине, то и напряжение генератора будет зависеть от тока, проходящего по обмотке якоря, и его сдвига фаз относительно напряжения. Когда ток в обмотке якоря совпадает по фазе с э. д. с. холостого хода Е (рис. 288,а), поток Фя действует по поперечной оси машины q — q; он размагничивает одну половину каждого полюса и под-магничивает другую. Результирующий поток Фрез в этом случае из-за насыщения магнитной цепи машины несколько уменьшается по сравнению с Фв.
В случае когда ток в обмотке якоря отстает от Е на 90° (рис. 288, б), поток якоря Фя действует по продольной оси машины против Фв, т. е. уменьшает результирующий поток (размагничивает машину); если ток в обмотке якоря опережает Е на 90° (рис. 288, в), поток Фя совпадает по направлению с Фв, т. е. увеличивает поток Фрез (подмагничивает машину). Если ток якоря отстает или опережает э. д. с. Е на угол, меньший 90°, то это можно рассматривать как сочетание рассмотренных случаев. В общем случае если ток якоря отстает от напряжения, то реакция якоря действует размагничивающим образом. Она уменьшает результирующий поток и напряжение генератора. Когда ток опережает напряжение, то реакция якоря увеличивает результирующий поток и напряжение генератора.
Второй причиной изменения напряжения генератора при его нагрузке являются внутренние падения напряжения в обмотке
Рис. 288. Реакция якоря синхронной машины при различном характере нагрузки
якоря — активное и реактивное. Эти падения напряжения возникают в синхронной машине по тем же причинам, что и в асинхронном двигателе и трансформаторе.
Внешние характеристики синхронного генератора (рис. 289) представляют собой зависимости изменения напряжения генератора U от тока нагрузки Iя при постоянных значениях т, Iв и cos?. Коэффициент мощности cos?, при котором работает генератор, определяется характером его нагрузки (соотношением между активным и реактивным сопротивлениями потребителей). При активной нагрузке напряжение генератора с ростом тока нагрузки уменьшается по кривой 2, а при активно-индуктивной — по кривой 1; чем больше угол сдвига фаз ? между током Iя и напряжением U, тем сильнее размагничивающее действие реакции якоря и тем ниже идет кривая напряжения. При активно-емкостной нагрузке, когда ток Iя опережает по фазе напряжение U, реакция якоря подмагничивает машину и напряжение U может даже возрастать по сравнению с U = E при холостом ходе (кривая 3).
В синхронных генераторах из-за значительной реакции якоря изменение напряжения во много раз больше, чем в трансформаторах. Обычно генераторы работают при cos? = 0,85-0,9 при отстающем токе, при этом ?U= 35-25% от Uном. При столь большом изменении напряжения для нормальной работы подключенных к генератору потребителей требуется применять специальные устройства для стабилизации его выходного напряжения, например быстродействующие регуляторы возбуждения.
Отдаваемая генератором мощность при одних и тех же значениях тока зависит от коэффициента мощности cos?, при котором работает генератор, т. е. от характера его нагрузки. Однако проводники генератора рассчитываются на определенный ток, а его изоляция и магнитная система — на определенное напряжение и магнитный поток независимо от cos ср нагрузки. По этой причине номинальной мощностью генератора считается его полная мощность S в киловольт-амперах (кВ*А), на которую рассчитана машина по условиям нагревания и длительной безаварийной работы. Регулировать активную мощность синхронного генератора при работе его на какую-либо нагрузку можно путем изменения сопротивления нагрузки или напряжения машины.
При передаче энергии от вала ротора синхронного генератора в обмотку статора в различных элементах машины возникают потери мощности (рис. 290). Потери имеют место в обмотках статора и ротора — электрические потери ?Рэл, в стали их сердечников — магнитные потери ?Рм и в трущихся элементах (подшипники, вентиляторы и пр.) — механические потери ?Рмх. К. п. д. синхронных машин находится в пределах от 0,85 до 0,95, т. е. имеет примерно те же значения, как и у асинхронных машин.
Короткое замыкание. При коротком замыкании синхронного генератора ток короткого замыкания Iк ограничивается внутренним сопротивлением обмотки якоря, которое имеет в основном индуктивный характер. Поэтому ток Iк отстает от напряжения
Рис. 289. Внешние характеристики синхронного генератора при различной нагрузке
Рис. 290. Энергетическая диаграмма синхронного генератора
на угол, близкий к 90°, и реакция якоря сильно размагничивает машину и резко уменьшает поток Фрез и э. д. с. генератора Е. В результате установившийся ток короткого замыкания в синхронных машинах сравнительно невелик (в некоторых машинах он меньше номинального), но из этого нельзя делать вывод, что короткое замыкание не опасно для генератора.
При внезапном коротком замыкании и уменьшении результирующего потока машины Фрез в обмотках возбуждения и демпферной индуцируются э. д. с. и возникают токи, которые согласно правилу Ленца препятствуют изменению потока Фрез. Поэтому этот поток и э. д. с. генератора уменьшаются сравнительно медленно, хотя машина уже замкнута накоротко. В результате ток в обмотке якоря в начальный момент короткого замыкания резко возрастает, а затем постепенно уменьшается. Наибольший ток Iк в начальный момент короткого замыкания называется ударным; он может превышать амплитуду номинального тока якоря в 10—15 раз.
Для ограничения ударного тока в цепь обмотки якоря иногда вводят дополнительную индуктивность (реактор).
Источник