Меню

Коэффициент электрической мощности cos f

ОБОРУДОВАНИЕ
ТЕХНОЛОГИИ
РАЗРАБОТКИ

Блог технической поддержки моих разработок

Коэффициент мощности (cos φ). Понятие, физический смысл, измерение.

Осциллограмма фазового сдвига

Коэффициент мощности (cos φ) это параметр, характеризующий искажения формы тока, потребляемого от электросети переменного тока. Важный показатель потребителя электроэнергии. Во многом он определяет требования к питающей сети. От него зависят потери в проводах и на внутреннем сопротивлении сети.

В цепях постоянного тока мощность, впрочем, как и все остальные параметры, не меняет своего значения в течение определенного отрезка времени. Поэтому, при постоянном токе, существует единственное понятие электрической мощности как произведение значений тока и напряжения.

При переменном токе значения тока и напряжения постоянно меняются с течением времени. Мощность тоже меняется. Поэтому вводится понятие мгновенной мощности.

Мгновенная мощность.

Мгновенная мощность это произведение значения мгновенного напряжения цепи на значение мгновенного тока. На практике мощность связана с выделением тепла, механической работой и т.п. А эти явления имеют инерционный характер. Поэтому понятие мгновенной мощности не имеет практического значения, а используется для расчетов и понимания происходящих процессов.

Действующие значения тока и напряжения.

Для оценки и расчетов цепей переменного тока используются действующие значения тока и напряжения.

Действующее значение переменного тока определяется как величина такого эквивалентного постоянного тока, который проходя через то же активное сопротивление, что и переменный ток, выделяет на нем за период то же количества тепла. Математически действующее значение определяется как среднеквадратичное за период.

Вольтметры и амперметры переменного тока показывают именно действующие значения. Все операции по тепловым расчетам происходят так же, как и на постоянном токе, только с использованием действующих значений. Но это не всегда правильно.

Полная мощность.

Полная мощность вычисляется как произведение действующих значений тока и напряжения цепи.

В случае синусоидальной формы тока и напряжения, а также отсутствия фазового сдвига, вся полная мощность выделяется на нагрузке. Расчеты для переменного тока соответствуют анализу цепей постоянного тока, только используются действующие значения тока и напряжения.

Полная мощность фактически показывает требования к электрической сети. Измеряется она в В ·А , не в Вт.

Реактивная мощность.

Как только в цепи переменного тока появляются реактивные элементы ( индуктивность и емкость) все меняется. Реактивные элементы обладают способностью накапливать энергию и отдавать ее в цепь обратно. Появляется реактивная мощность.

Реактивная мощность не выделяется на нагрузке, не создает полезной работы. Она накапливается на реактивных элементах нагрузки ( конденсаторах, катушках индуктивности), а затем возвращается обратно в питающую сеть. Понятно, что возвращается она с потерями на проводах, на внутреннем сопротивлении питающей сети и т.п. Поэтому в любой энергосистеме стремятся уменьшить реактивную мощность до минимума.

Реактивная мощность может быть как положительной (для индуктивных цепей), так и отрицательной (для емкостной составляющей).

Единица измерения – вольт-ампер реактивный (ВАР).

Активная мощность.

На нагрузке остается активная мощность. Она и совершает полезную работу. Активная мощность это среднее значение мгновенной мощности за период.

Основные соотношения между параметрами.

Полная мощность в цепях переменного тока равна квадратному корню из суммы квадратов активной и реактивной мощностей.

Активная мощность вычисляется как:

I и U это действующие значения тока и напряжения.

Т.е. активная и полная мощности связаны через коэффициент — cos φ.

cos φ – это косинус угла сдвига между напряжением питающей сети и током, потребляемым нагрузкой. Это соотношение верно только для синусоидальной формы тока и напряжения. При cos φ = 1 активная мощность на нагрузке равна полной. Вся энергия питающей сети используется для полезной работы. Происходит это только на чисто активной нагрузке, без реактивной составляющей.

cos φ и есть коэффициент мощности (КМ) для переменных цепей с током и напряжением синусоидальной формы.

Читайте также:  Двигатель ep6 мощностью 120

Но многие потребители энергии не только сдвигают фазу, но искажают форму тока. Примером может служить блок питания с бестрансформаторным входом. Это эквивалентная схема подключения его к питающей сети.

Эквивалентная схема бестрансформаторного БП

В подобных устройствах напряжение питающей сети выпрямляется и сглаживается на конденсаторе большой емкости. Полученное постоянное напряжение с малым уровнем пульсаций используется для дальнейшего преобразования.

Для питающей сети эта схема представляет нагрузку активно-емкостного характера. Но диоды выпрямительного моста имеют нелинейную характеристику. В начале и в конце периода они закрыты и нагрузка отключена. А в середине периода диоды открываются и кроме активной нагрузки подключают к сети значительную емкость сглаживающего фильтра. В результате ток имеет искаженную форму, показанную на рисунке.

Осциллограмма искажения тока в бестрансформаторных БП

Это один из самых неприятных типов нагрузки, но и самый распространенный. Вся бытовая техника (телевизоры, компьютеры . ) представляют такой характер нагрузки.

Коэффициент мощности (КМ) в переменных цепях с искаженной формой тока определяется как отношение активной мощности к полной.

Следующие диаграммы иллюстрируют, как КМ влияет на работу потребителей электроэнергии.

Диаграмма cos φ = 1

На этом рисунке показаны осциллограммы чисто активной нагрузки. Фазового сдвига нет, cos φ = 1, вся энергия из сети переходит в активную мощность на нагрузке.

На втором рисунке крайний, самый плохой вариант.

Диаграмма cos φ = 0

Сдвиг фазы между током и напряжением 90°, cos φ = 0. Видно, что диаграмма мгновенной мощности расположена симметрично относительно 0. Средняя активная мощность равна 0. Конечно, устройств с cos φ = 0 на практике не бывает, но промежуточных вариантов сколько угодно. Например, бестрансформаторный блок питания, приведенный в качестве примера выше, имеет КМ 0,6 — 0,7.

Значимость КМ можно показать простейшими расчетами.

Два потребителя электроэнергии с одинаковой активной (полезной) мощностью. У первого cos φ = 1, а у второго 0,5. Это означает, что второй потребитель потребляет от сети ток в два раза больше, чем первый. Т.к. зависимость потерь в проводах от тока имеет квадратичный характер (P = I 2 * R), то потери на активном сопротивлении проводов во втором случае будут в 4 раза больше. Потребуются провода большего сечения.

Для мощных нагрузок, длинных линий электропередач высокий КМ особенно важен.

Измерение коэффициента мощности.

Для измерения cos φ используются специальные приборы – фазометры. Они применяются в сетях с потребляемым током синусоидальной формы, без искажения.

Фазометр

Для измерения КМ у нагрузок, искажающих ток, обычно пользуются следующей методикой.

Схема измерения коэффициента мощности.

Схема измерения коэффициента мощности

Необходимо вычислить полную мощность, как произведение показаний вольтметра и амперметра.

Теперь надо активную мощность (показания ваттметра) разделить на полную.

При отсутствии ваттметра можно использовать счетчик электроэнергии.

Для этого необходимо замерить время 10 калибровочных импульсов (миганий светодиода на корпусе счетчика). Вычислить время периода одного импульса (разделить на 10). Зная коэффициент счетчика (обычно 3200 импульсов на кВт) можно посчитать активную мощность нагрузки. С учетом того, что счетчики электроэнергии имеют класс точности 1.0, измерение получится довольно точным.

Коррекция коэффициента мощности.

Для увеличения КМ существуют специальные устройства – корректоры коэффициента мощности (ККМ). Они бываю пассивными и активными.

Для пассивной коррекции КМ в цепь питания последовательно включают дроссель. Такое решение часто применяется для трансформаторных станций катодной защиты. Но это от безвыходности. Других решений для трансформаторных станций не существует. Дроссель требуется громадных размеров, не меньше чем силовой трансформатор станции. Размеры, вес, цена станции увеличиваются практически в 2 раза, а коэффициент мощности удается поднять только до 0,85.

В инверторных станциях катодной защиты без корректора мощности (выпрямительно-емкостная нагрузка, пример был выше) КМ порядка 0,6 — 0,7. Для его увеличения используют специальные электронные модули – активные корректоры коэффициента мощности. Их схемы, построены по принципу повышающего импульсного преобразователя. Специальные управляющие микросхемы отслеживают форму тока потребления и так управляют ключом преобразователя, что она становится синусоидальной. На выходе активного ККМ формируется постоянное напряжение 380 – 400 В. Поэтому использовать их с трансформаторами невозможно.

Читайте также:  Установленная мощность малой энергетики

Активные корректоры повышают КМ до 0,95 – 0,99.

Пример активного ККМ 2000 Вт для инверторной станции катодной защиты серии «ТИЭЛЛА».

Блок KKM 2000 Вт, станции катодной защиты

Схемотехнике активных ККМ я посвящу отдельную статью.

Источник



Коэффициент мощности косинус фи — наглядное объяснение простыми словами.

что такое косинус фи

Многие из вас наверняка видели на электроинструментах, двигателях, а также люминесцентных лампах, лампах ДРЛ, ДНАТ и других, такие надписи как косинус фи — cos ϕ.

Однако люди далекие от электротехники и позабывшие школьные уроки физики, не совсем понимают, что же означает данный параметр и зачем он вообще нужен.

два проводника с потенциалом

Предположим перед вами есть 2 проводника. Один из этих проводников имеет потенциал. Не суть важно какой именно — отрицательный (минус) или положительный (плюс).

У другого провода вообще нет никакого потенциала. Соответственно между этими двумя проводниками будет разность потенциалов, т.к. у одного он есть, а у другого его нет.

напряжение это разность потенциалов

Если вы соедините кончики двух проводов не непосредственно между собой, а через лампочку накаливания, то через ее вольфрамовую нить начнет протекать ток. От одного провода к другому.

ток после включения лампочки возрастание

На первый взгляд может показаться, что лампочка загорается моментально. Однако это не так. Ток проходя через нить накала, будет нарастать от своего нулевого значения до номинального, какое-то определенное время.

постепенное возрастание тока после подключения прибора или лампочки

В какой-то момент он его достигает и держится на этом уровне постоянно. То же самое будет, если подключить не одну, а две, три лампочки и т.д.

катушка индуктивности и ее влияние на косинус фи

А что случится, если вместе с лампой последовательно включить катушку, намотанную из множества витков проволоки?

Изменится ли как-то процесс нарастания тока? Конечно, да.

сравнение графика нарастания силы тока с катушкой индуктивности в схеме и без нее

Данная катушка индуктивности, заметно затормозит время увеличения тока от нуля до максимума. Фактически получится, что максимальное напряжение (разность потенциалов) на лампе уже есть, а вот ток поспевать за ним не будет.

Его нарастание слишком медленное. Из-за чего это происходит и кто виноват? Виноваты витки катушки, которые оказывают влияние друг на друга и тормозят ток.

выбрось батарейку и ничего не будет

Если у вас напряжение постоянное, например как в аккумуляторах или в батарейках, ток относительно медленно, но все-таки успеет дорасти до своего номинального значения.

возрастание тока при постоянном напряжении

А далее, ток будет вместе с напряжением идти, что называется «нога в ногу».

синусоида переменного напряжения и косинус фи

А вот если взять напряжение из розетки, с переменной синусоидой, то здесь оно не постоянно и будет меняться. Сначала U какое-то время положительная величина, а потом — отрицательная, причем одинаковое по амплитуде. На рисунке это изображается в виде волны.

Эти постоянные колебания не дают нашему току, проходящему сквозь катушку, достигнуть своего установившегося значения и догнать таки напряжение. Только он будет подбираться к этой величине, а напряжение уже начинает падать.

запаздывание тока от напряжения

от чего зависит запаздывание тока от напряжения

Причем, чем больше в катушке намотано витков, тем большим будет это самое запаздывание.

Как же это все связано с косинусом фи — cos ϕ?

один цикл синусоиды напряжения в 360 градусов

А связано это таким образом, что данное отставание тока измеряется углом поворота. Полный цикл синусоиды или волны, который она проходит от нуля до нуля, вместив в себя максимальное и минимальное значение, измеряется в градусах. И один такой цикл равен 360 градусов.

косинус фи на графике запаздывания тока от напряжения

А вот угол отставания тока от напряжения, как раз таки и обозначается греческой буквой фи. Значение косинуса этого угла опаздывания и есть тот самый cos ϕ.

значения косинуса фи в зависимости от градусов

Таким образом, чем больше ток отстает от напряжения, тем большим будет этот угол. Соответственно косинус фи будет уменьшаться.

Читайте также:  Мощность моторов для ралли

графики синусоиды для ламп

По научному, ток сдвинутый от напряжения называется фазовым сдвигом. При этом почему-то многие уверены, что синусоида всегда идеальна. Хотя это далеко не так.

111_driver

В качестве примера можно взять импульсные блоки питания.

что такое коэффициент мощности и КНИ

Не идеальность синусоиды выражается коэфф. нелинейных искажений — КНИ. Если сложить две эти величины — cos ϕ и КНИ, то вы получите коэффициент мощности.

Однако, чтобы все не усложнять, чаще всего под понятием коэфф. мощности имеют в виду только лишь один косинус фи.

формула расчета косинуса фи коэффициента мощности

На практике, данный коэффициент мощности рассчитывают не при помощи угла сдвига фаз, а отношением активной мощности к полной.

что такое треугольник мощностей

Существует такое понятие как треугольник мощностей. Сам косинус — это тригонометрическая функция, которая и появилась при изучении свойств прямоугольных треугольников.

Она здорово помогает производить определенные вычисления с ними. Например, наглядно показывает отношение длин прилежащего катета (P-активная мощность) к гипотенузе (S-полная мощность).

То есть, зная угол сдвига, можно узнать, сколько активной мощности содержится в полной. Чем меньше этот угол, тем меньше реактивной составляющей находится в сети, и наоборот.

как выбрать светодиодную лампу

В КПД все более четко — полезная мощность используется на нагрев — охлаждение — механическую работу, остальное уходит безвозвратно. Эта разница и показывается в КПД.

Более подробно, с графиками, рисунками и простыми словами, без особых научных формулировок обо всем этом говорится в ролике ниже.

Рассмотренное запаздывание тока относительно напряжения — это не хорошее явление. Как оно может сказаться на ваших лампочках или проводке?

    во-первых, это повышенное потребление электроэнергии

на что влияет низкий коэффициент мощности

Часть энергии будет просто «болтаться» в катушке, при этом не принося никакой пользы. Правда не пугайтесь, ваш бытовой счетчик реактивную энергию не считает и платить вы за нее не будете.

что такое косинус мощности фи

Например, если вы включите в розетку инструмент или светильник с полной мощностью 100Ва, на блоке питания которого будет указано cos ϕ=0,5. То прибор учета накрутит вам только на половину от этой величины, то есть 50Вт.

    величина тока в проводке увеличится

Вот известное наглядное видео, демонстрирующее последствия этого для проводки.

    для эл.станций и трансформаторов оно вредно перегрузкой

Казалось бы, выбрось катушку и вся проблема исчезнет. Однако делать этого нельзя.

откуда берется в лампах косинус фи

В большинстве светильников, лампы работают не отдельно, а в паре с источниками питания. И в этих самых источниках, как раз таки присутствуют разнообразные катушки.

111_DNaT

Катушки просто необходимы как функциональная часть всей схемы и избавиться от них не получится. Например в тех же дроссельных лампах ДРЛ, ДНАТ, люминесцентных и т.п.

значения параметра косинуса фи

Поэтому характеристика коэфф. мощности, здесь больше относится к блоку питания, нежели к самой лампе. Данный cos ϕ может принимать значение от ноля до единицы.

Ноль означает, что полезная работа не совершается. Единица — вся энергия идет на совершение полезной работы.

Чем выше коэффициент мощности, тем ниже потери электроэнергии. Вот таблица косинуса фи для различных потребителей:таблица значений косинуса фи для разных потребителейтаблица значений косинуса мощности для разных приборов и оборудования

прибор для измерения коэффициента мощности

Если вы не знаете точный коэфф. мощности своего прибора, или его нет на бирке, можно ли измерить косинус фи в домашних условиях, не прибегая к различным формулам и вычислениям? Конечно можно.

измерение коэффициента мощности косинус фи цифровым ваттметром

Для этого достаточно приобрести широко распространенный инструмент — цифровой ваттметр в розетку.

Подключая любое оборудование через него, можно легко без замеров и сложных вычислений, узнать фактический cos ϕ.

цифровой бытовой ваттметр

Зачастую, фактические данные могут быть даже точнее, чем написанные на шильдике, которые рассчитаны для идеальных условий.

Если он слишком низкий, что делать, чтобы привести его значение как можно ближе к единице? Можно это дело определенным образом компенсировать. Например, с помощью конденсаторов.

Однако это тема совсем другой статьи.

Источник