Краткие сведения о контактных напряжениях
Контактные напряжения возникают при взаимодействии тел, размеры площадки контакта которых малы по сравнению с размерами самих соприкасающихся тел: например, контакт двух стальных круговых цилиндров по общей образующей, рис. 76 (аналог зубчатого зацепления, фрикционной передачи, роликовых подшипников), контакт шара и тора (шариковые подшипники качения).
Контакт при перекатывании в передачах и опорах качения происходит по малым площадкам (начальный контакт по линии или в точке), вследствие чего в поверхностном слое возникают высокие напряжения. Материал в районе этой площадки испытывает объемное напряженное состояние. Впервые исследованием контактных напряжений занимался физик Герц (Hertz). В его честь контактные напряжения обозначают с индексом Н: σH.
Контакт ненагруженных прижимающей силой цилиндров с параллельными осями происходит по линии (по образующей). Под действием прижимающей силы Fn, вследствие упругих деформаций цилиндров (рис.76) первоначальный контакт по линии переходит в контакт по прямоугольной площадке (очень узкой полоске) шириной 2а. Размеры площадки контакта и возникающие нормальные напряжения σHзависят от нагрузки Fn, упругих характеристик материалов (коэффициентов Пуассона, модулей упругости) и формы контактирующих тел. Как показывают исследования, в поперечном сечении по площадке контакта напряжения изменяются по эллиптическому закону, достигая максимального значения σHmax в зоне максимальных деформаций — по линии действия прижимающей силы (выносной элемент А). Особенностью действия нормальных контактных напряжений является то, что они не распространяются глубоко в тело деталей, сосредотачиваясь в тонком поверхностном слое.
Кроме нормального напряжения σHв зоне контакта возникают также касательные напряжения τ. Наибольшее касательное напряжение τmах = 0,3а σHmax имеет место в точке, расположенной на линии действия прижимающей силы Fn и отстоящей от поверхности соприкосновения на 0,78а.
Числовые значения контактных напряжений намного превышают как значения других видов напряжений (растяжения, изгиба), так и механических характеристик материала при одноосном напряженном состоянии: σт и σΒ. Так, в подшипниках качения σHmax = 4600 МПа, в то время как для применяемой стали марки ШХ15 предел текучести σт = 1700 МПа, временное сопротивление σΒ = = 1900 МПа. Отсутствие мгновенного разрушения при наличии столь высоких напряжений объясняют тем, что в зоне их действия материал находится в условиях всестороннего объемного сжатия.
Максимальное значение σHmax используют в качестве основного критерия контактной прочности:
где [σ]H— допускаемое контактное напряжение, полученное из эксперимента или опыта эксплуатации при аналогичных условиях в зоне контакта.
Для случая сжатия двух цилиндров можно воспользоваться формулой Г. Герца(H.Hertz. 1857. 1894 гг.), которую талантливый немецкий физик-экспериментатор в 1881 г. предложил для определения максимального значения контактных напряжений, полученную из решения контактной задачи теории упругости (индекс «max» при этом опускают):
где b- длина линии контакта (длина цилиндров); μ1, μ2 — коэффициенты Пуассона материалов контактирующих тел;
Е1,Е2— модули упругости материалов;
ρ1, ρ2 — радиусы кривизны контактирующих поверхностей.
Для контакта двух выпуклых поверхностей:
Для контакта выпуклой и вогнутой поверхностей:
Формула Герца выведена при следующих допущениях:
— материалы соприкасающихся тел однородны и изотропны;
— прижимающие силы направлены по прямой, соединяющей центры кривизны поверхностей тел в точке первоначального касания, и таковы, что в зоне контакта имеют место только упругие деформации;
— силы трения в контакте отсутствуют;
— поверхности тел совершенно гладкие и идеальные по форме;
— на контактирующих поверхностях отсутствует смазочный материал; .
— длина цилиндров бесконечно большая.
Контактные напряжения сжатия σH для фрикционных колес из стали и других материалов определяют по формуле Герца:
где q — номинальная нагрузка на единицу длины контактной площадки колес; Ε — приведенный модуль упругости материалов колес; ρ — приведенный радиус кривизны колес. Расчетная погонная нагрузка
где k = 1. 1,3 — коэффициент неравномерности распределения нагрузки по длине контактной площадки; k принимается тем меньше, чем точнее изготовлена и смонтирована передача; b — длина контактной площадки.
При проектном расчете по контактным напряжениям формулу (12.12) обычно преобразуют так, чтобы можно было определить диаметр меньшего колеса d1. Задавшись отношением ψ=b/d из формул находим требуемый диаметр d1 меньшего колеса цилиндрической фрикционной передачи (рис. 75, а):
где [σн] — допускаемое контактное напряжение на сжатие для фрикционных колес.
После вычисления d1 определяют длину контактной линии:
Проверочный расчет по контактным напряжениям сжатия фрикционных колес при начальном касании их по линии производят по формуле (12.12) при этом допускаемые контактные напряжения на сжатие рекомендуется принимать: для закаленных стальных колес с HRC ≥ 60 [σH] = 800. 1200 МПа, для текстолитовых колес (при модуле упругости текстолита E = 6· 10 3 МПа) [σH] =80. 100 МПа и для чугунных колес [σH] ≤ 1.5 σB, где σΒ — предел прочности чугуна при изгибе.
В реальных изделиях длина линии контакта конечна, на поверхности контакта действуют силы трения, а сами поверхности смазаны. Возможность использования при этом приведенной формулы Герца обусловлена тем, что допускаемые напряжения [σ]H находят экспериментально для условий, близких к условиям эксплуатации проектируемого изделия.
Деформации микрообъемов материала в зоне контактного взаимодействия при качении, цилиндров схематично показаны на рис. 77: а — без нагрузки, б — под нагрузкой. Материал каждого из тел, контактирующих при свободном качении, подвергается циклическим нагружению и разгрузке по мере прохождения деформированной области (рис. 77). Выделенный микрообъем материала испытывает при этом цикл обратимого сдвига и сжатия A-B-C-D-E. Тем не менее, при относительно невысоких нагрузках материал ведет себя в макрообъемах как идеально упругое тело.
Источник
Контактные напряжения и контактная прочность
Многие детали машин работают в условиях контактного нагружения. Работоспособность таких деталей ограничена прочностью поверхностей. Под контактными напряжениями понимают такие напряжения, которые возникают в месте контакта прижатых друг к другу рабочих поверхностей деталей машин в том случае, когда площадка контакта весьма мала по сравнению с поверхностями контактирующих тел. Контактные напряжения и деформации изучаются в курсе «Теория упругости». Мы рассмотрим лишь основные моменты.Различают два вида контакта — линейный и точечный.
Линейный контакт
1. Контактирующие тела изотропны;
2. Деформации происходят только в упругой зоне;
3. Усилия действуют по общей нормали к поверхности;
4. Площадь контакта много меньше площади поверхности тел.
о приложения нагрузки контакт будет по линии длинойlk (рис. 3.7). Но так как тела упругие, то в результате приложения нагрузкиQ образуется узкая полоска (пунктир). В сечении торцовой плоскостью цилиндров получим следующую картину (рис. 3.8). В зоне контакта возникают напряжения сжатия. Они меняются по эллиптическому закону, описанному решением Герца – Беляева:
Для деталей, изготовленных из стали и других материалов с коэффициентом Пуассона = 0,3, получим
.
Здесь — погонная нагрузка;
— приведённый модуль упругости,
где Е1иЕ2 – модули упругости тела 1 и 2;
— приведённый радиус кривизны.
В последнем выражении принимают “+” – при внешнем контакте, а
”-” – при внутреннем контакте.
Условие прочности по контактным напряжениям.
Точечный контакт
Врезультате приложения нагрузки в месте контакта возникает площадка в виде круга (рис. 3.9).
Условие прочности для точечного контакта.
Лекция №4 Виды разрушения зубьев Поломка зубьев
силие Pn занимает различное положение на рабочей части профиля зубаAB (рис. 4.1). Наиболее опасное сечение будетaa‘ . В опасном сечении возникают изгибные напряжения. Пусть время нахождения зуба в зацеплении — t1. Через времяt2 этот зуб снова войдёт в зацепление. Значит, напряжения изгиба в опасном сечении меняются циклически. Через определённое число циклов в переходной кривой у ножки зуба появляется усталостная трещина. Когда зуб входит в зацепление, она раскрывается, когда выходит – закрывается. Постепенно трещина развивается и происходит излом. Критерием прочности в этом случае являются изгибные напряжения, по которым необходимо производить расчёт. Для повышения изгибной прочности нужно применять материалы с высокими механическими свойствами, увеличивать радиус переходной кривой, обрабатывать переходную кривую.
В Рис. 4.2 Рис. 4.3 Рис. 4.4ыкрашивание поверхностей
При работе передачи на поверхности зуба вблизи полюсной линии появляются небольшие ямки в металле (рис 4.2). Этот процесс может затухнуть – ограниченное выкрашивание. Ограниченное выкрашивание возникает в мягких металлах и в открытых передачах, где велик износ. В этом случае поверхность быстрее изнашивается, чем выкрашивается. При большой твёрдости зубьев происходит дальнейшее выкрашивание, профиль зуба нарушается и деталь выходит из строя. Выкрашивание обязано своим возникновением циклическим действиям контактных напряжений при наличии смазки. Под действием этих напряжений возникают трещины усталости (рис 4.3). Направление этих трещин совпадает с направлением скольжения. В эти трещины попадает смазка. При перекрытии трещины масло не сжимается и происходит вырыв частицы металла (рис 4.4). Это происходит на ножках зубьев. На головках зубьев масло сначала выдавливается из щели, а потом только щель перекрывается. Разрушение происходит у полюсной линии, так как там однопарное зацепление (нагрузки выше). Для предотвращения выкрашивания зубья должны быть рассчитаны по контактным напряжениям.
Источник