Меню

Контроль мощности эквивалентной дозы

Методические указания му 6 715-98

2. Контроль мощности эквивалентной дозы внешнего гамма-излучения

2.1. Контролируемой величиной в зданиях и сооружениях по п. 1.1 является мощность эквивалентной дозы (МЭД) (мкЗв/ч) внешнего гамма-излучения.

Допускается измерять и представлять результаты в единицах мощности экспозиционной дозы гамма-излучения (мкР/ч), связанной с (мкЗв/ч) приближенным соотношением:

. (1)

2.2. Согласно НРБ-96 (пп 7.3.3 и 7.3.4) значение МЭД внешнего гамма-излучения в проектируемых новых зданиях жилищного и общественного назначения не должно превышать среднее значение мощности дозы на открытой местности (в районе расположения здания) более чем на 0.3 мкЗв/ч.

2.3. Измерения МЭД внешнего гамма-излучения на открытой местности (мкЗв/ч) производится вблизи обследуемого здания не менее чем в 5 точках (пунктах), расположенных на расстоянии от 30 до 100 м от существующих зданий и сооружений и не ближе 20 м друг от друга. Точки измерений следует выбирать на участках местности с естественным грунтом, не имеющим локальных техногенных изменений (щебень, песок, асфальт) и радиоактивных загрязнений. При измерениях блок детектирования располагают на высоте 1 м над поверхностью земли. В каждой точке число измерений при использовании дозиметров типа ДРГ-01Т (ДБГ-06Т) должно быть не менее десяти. За результаты измерений в каждой i-той точке на открытой местности принимается среднее арифметическое полученных в ней измерений, а случайную составляющую погрешности результата измерения Δ0i для доверительной вероятности Р = 0.95 рассчитывают по формуле:

Δi = t0,95 × s i (2)

в которой приняты обозначения:

t0,95 — значение коэффициента Стьюдента для доверительной вероятности Р = 0,95 (принимают по Приложению 5 в зависимости от числа повторных измерений N в данной точке);

s i — среднеквадратичное отклонение результата измерения от среднего, i которое рассчитывается по результатам всех N повторных измерений в i-той точке по формуле:

(3)

n-ое измерение МЭД гамма излучения в i-той точке.

При использовании дозиметров интегрального типа EL-1101 (EL-1119) время измерения должно выбираться таким, чтобы случайная составляющая погрешности оценки значения результата измерения не превышала 20%. В этом случае значение считывается со шкалы приборов, а Δi определяется как произведение на статистическую погрешность измерений, считываемую со шкалы прибора.

2.4. В качестве оценки измеренного значения МЭД гамма-излучения на открытой местности за принимают наименьшее из полученных результатов измерений в i-ой точке, а за случайную составляющую погрешности этого результата дельта — соответствующую величину для результата измерений в этой точке.

Результат измерения МЭД гамма-излучения на открытой местности вблизи обследуемого здания представляют в форме:

, мкЗв/ч. (4)

Примечание: Значение может различаться для различных типов и экземпляров приборов, поэтому эти значения должны быть получены для всех экземпляров приборов, используемых при обследовании здания.

2.5. Объем контроля МЭД внешнего гамма-излучения должен быть достаточным для выполнения всех помещений, где значения могут превышать установленный предел, а также для оценки максимальных значений МЭД в типичных помещениях (по функциональному назначению, занимаемой площади, на этаже, в подъезде, а также по типу использованных стройматериалов).

Измерения МЭД гамма-излучения в помещениях сдаваемого в эксплуатацию здания проводятся, как правило, выборочно. Для проведения измерений выбирают типичные помещения, ограждающие конструкции которых изготовлены из различных строительных материалов. При этом в многоэтажных зданиях выбирают помещения, подлежащие обследованию, на каждом этаже.

Число обследуемых помещений выбирается в зависимости от этажности здания, числа помещений (квартир) и других характеристик здания, при этом:

— в односемейных домах, коттеджах (в том числе многоэтажных), школьных и дошкольных учреждениях измерения должны проводиться в каждом помещении;

— в многоквартирных домах при числе квартир до 10 и зданиях социально-бытового назначения при числе помещений до 30 измерения проводятся в каждой квартире для жилых зданий и в каждом помещении для других зданий;

— в многоквартирных домах при числе квартир до 100 и зданиях социально-бытового назначения при числе помещений до 300 измерения проводятся не менее чем в 50% квартир (помещений) в каждом подъезде;

— при числе квартир в каждом здании свыше 100 и числе помещений в здании социально-бытового назначения свыше 300 число обследуемых квартир (помещений) должно быть не менее 25% от их общего числа в каждом из подъездов здания.

При обследовании многоквартирных жилых домов измерения в каждой обследуемой квартире следует проводить не менее чем в двух помещениях, которые должны быть различными по функциональному назначению.

2.6. Для предварительной оценки радиационной обстановки в помещениях с целью выявления возможных локальных источников гамма-излучения проводят предварительное обследование, для проведения которого следует использовать поисковые высокочувствительные гамма-радиометры (индикаторы) типа СРП-68, СРП-88 или высокочувствительные гамма-дозиметры, имеющие поисковый режим работы, типа EL-1101 (см. Приложение 2).

С поисковым радиометром (дозиметром) производят обход всех помещений обследуемого здания по периметру каждой комнаты, производят замеры на высоте 1 м от пола на расстоянии 5 — 10 см от стен, и по оси каждой комнаты, производя замеры на высоте 5 — 10 см над полом. При обнаружении локальных повышений показаний используемого прибора, производят поиск максимума и фиксируют в журнале его положение и показания прибора в точке максимума. Кроме того, в журнал заносят максимальные показания прибора в каждом помещении.

Конкретные помещения (квартиры), подлежащие обследованию по п. 2.5, выбираются с учетом результатов проведенного предварительного обследования. При этом обязательно должны обследоваться те из них, в которых зафиксированы максимальные показания поисковых радиометров (дозиметров), а также обнаруженные точки локальных максимумов.

Читайте также:  Турбина не развивает полной мощности причины

2.7. Измерения МЭД внешнего гамма-излучения в каждом обследуемом помещении выполняют в точке, расположенной в его центре на высоте 1 м от пола, а также в выявленных участках с максимальным значением МЭД гамма- излучения (п. 2.6).

Число повторных измерений N выбирают из условия, чтобы случайная составляющая относительной погрешности оценки среднего значения результата измерения на превышала 20%:

(5)

Здесь: — оценка среднего значения результата измерения в помещении, а случайную составляющую погрешности результата измерения дельта для доверительной вероятности P = 0.95 рассчитывают по формуле:

Δ = t0.95 × s , мкЗв/ч (6)

в которой приняты такие же обозначения, как и в выражении (2)

Результат измерения МЭД гамма-излучения в данном помещении представляют в форме:

, мкЗв/ч. (7)

Результаты всех измерений заносятся в рабочий журнал.

2.8. В зависимости от результатов оценки максимального значения измеренной мощности дозы в помещении принимаются следующие варианты решений.

2.8.1. Помещение считается удовлетворяющим нормативу, приведенному в НРБ-96, если измеренное значение МЭД в этом помещении ( , мкЗв/ч) с учетом погрешности (Δ σ , мкЗв/ч) удовлетворяет условию:

, мкЗв/ч, (8)

где: — измеренное по пп. 2.32.4 значение МЭД гамма-излучения на открытой местности, мкЗв/ч;

Δ σ — суммарная погрешность оценки разности двух величин — и (мкЗв/ч), определяемая из выражения

(9)

δ — предел относительной погрешности дозиметра, значение которого принимают по паспорту или свидетельству о поверке;

t0.95(ν)- значение коэффициента Стьюдента для доверительной вероятности P = 0.95 при числе наблюдений ν;

ν — число степеней свободы, рассчитываемое по формуле:

, (10)

в которой n — число повторных наблюдений при измерении и S, а m — то же для и S, соответственно.

При использовании дозиметров типа EL-1101 суммарная погрешность Δ σ определяется по формуле:

, (11)

где s и s — случайные составляющие погрешности результатов измерения и , соответственно, для доверительной вероятности P = 0.95, рассчитываемые дозиметрами EL-1101 и EL-1119.

2.8.2. Если условие (8) не выполняется из-за большой погрешности оценки значения МЭД, то проводят дополнительные измерения с целью снижения суммарной погрешности измерения ΔΣ, делая большее количество повторных измерений или используя дозиметры, имеющие меньшее значение основной погрешности (см. Приложение 2).

2.8.3. Если по результатам измерений условие (8) не выполняется, то принимаются меры по выявлению причин повышенного значения мощности дозы гамма-излучения и решается вопрос о возможности их устранения, после чего измерения в данном помещении повторяют.

2.8.4. Если проведенные мероприятий не дали необходимого результата, то решается вопрос о перепрофилировании сдаваемых в эксплуатацию зданий (или их отдельных помещений).

2.9. В случае реконструкции или капитального ремонта существующих зданий перед началом проектно-изыскательских работ необходимо провести в них радиационное обследование в объеме, предусмотренном пп. 2.32.8, с целью выяснения необходимости проведения защитных мероприятий и внесения их в план работ.

2.10. При проведении обследования в эксплуатируемых зданиях выбор помещений для обследования зависит от конкретной ситуации, требований Заказчика (домовладельца, администрации и т.п.) и должен согласовываться с территориальным центром госсанэпиднадзора. При отсутствии каких-либо чрезвычайных ситуаций (наличие информации о локальных источниках, прогнозируемом превышении норматива и т.п.) и требований Заказчика обследовать конкретные помещения их выбор (при обследовании здания) и обследование проводится также, как и при приемке в эксплуатацию (пп. 2.32.8.3).

Источник



РАДИАЦИОННЫЙ КОНТРОЛЬ ОБЪЕКТОВ КАПИТАЛЬНОГО СТРОИТЕЛЬСТВА

Исторический экскурс

Атомы вещества состоят из ядер (с протонами и нейтронами) и вращающих вокруг них электронов. У большинства они устойчивы, а у некоторых ядра обладают нестабильностью и могут излучать в пространство энергию. Это и есть радиоактивное излучение, которое подразделяется на α-, β- и γ- излучение. (альфа-, бета- и гамма-излучение).

Альфа-излучение – это поток тяжелых положительно заряженных частиц. Возникает в результате распада атомов тяжелых элементов, таких как уран, радий и торий. В воздухе альфа-излучение проходит не более пяти сантиметров и, как правило, полностью задерживается листом бумаги или внешним омертвевшим слоем кожи. Однако если вещество, испускающее альфа-частицы, попадает внутрь организма с пищей или воздухом, оно облучает внутренние органы и становится опасным.

Бета-излучение – это электроны, которые значительно меньше альфа-частиц и могут проникать вглубь тела на несколько сантиметров. От него можно защититься тонким листом металла, оконным стеклом и даже обычной одеждой. Попадая на незащищенные участки тела, бета-излучение оказывает воздействие, как правило, на верхние слои кожи. Если вещество, испускающее бета-частицы, попадет в организм, оно будет облучать внутренние ткани.

Гамма-излучение – это фотоны, т.е. электромагнитная волна, несущая энергию. В воздухе оно может проходить большие расстояния, постепенно теряя энергию в результате столкновений с атомами среды. Интенсивное гамма-излучение, если от него не защититься, может повредить не только кожу, но и внутренние ткани. Плотные и тяжелые материалы, такие как железо и свинец, являются отличными барьерами на пути гамма-излучения.

В отношении радиоактивности по нормам радиационной безопасности принято использовать словосочетание «ионизирующее излучение». Ионизация – процесс превращения атомов молекул в ионы. Ионы могут быть заряжены положительно и отрицательно. Положительно заряженные ионы образуются путем выбивания энергией электронов из атома. Отрицательно заряженные ионы появляются если нейтральная частица присоединила свободный электрон к атому.

Почему необходим контроль и возможные последствия превышений

Воздействие радиации на организм несет в себе как положительные, так и отрицательные стороны. Малые дозы радиации стимулируют обновление клеток в организме, уменьшают вероятность развития онкологических заболеваний. Например, в медицине против опухолей используют радиотерапию – лечение ионизирующим излучением, специально направленным на проблемный участок тела или орган. Радоновые ванны, широко используемые в схемах санаторно-курортного лечения, укрепляют иммунную, нервную и сердечно-сосудистую системы.

Читайте также:  Формула объема через мощность

Однако при интенсивном и продолжительном воздействии на человека ионизирующее излучение вызывает необратимые негативные изменения на генном уровне, что приводит к наследственным заболеваниям у последующих поколений, проблемам с иммунитетом, раковым опухолям. Чтобы население не подвергалось риску от интенсивного облучения, радиационный контроль осуществляется на законодательном уровне.

Основные санитарные правила обеспечения радиационной безопасности
(ОСПОРБ-99/2010) устанавливают требования по защите людей от вредного радиационного воздействия при всех условиях облучения от источников ионизирующего излучения. Согласно п.2.1 ОСПОРБ-99/2010 «Радиационная безопасность персонала, населения и окружающей среды считается обеспеченной, если соблюдаются основные принципы радиационной безопасности (обоснование, оптимизация, нормирование) и требования радиационной защиты, установленные Федеральным законом от 09.01.96 N 3-ФЗ «О радиационной безопасности населения», НРБ-99/2009 и действующими санитарными правилами.» Исходя из Статьи 3. данного ФЗ основными принципами обеспечения радиационной безопасности являются:

· принцип нормирования – непревышение допустимых пределов индивидуальных доз облучения граждан от всех источников ионизирующего излучения;

· принцип обоснования – запрещение всех видов деятельности по использованию источников ионизирующего излучения, при которых полученная для человека и общества польза не превышает риск возможного вреда, причиненного дополнительным к естественному радиационному фону облучением;

· принцип оптимизации – поддержание на возможно низком и достижимом уровне с учетом экономических и социальных факторов индивидуальных доз облучения и числа облучаемых лиц при использовании любого источника ионизирующего излучения.

СанПиН 2.6.1.2523-09 «Нормы радиационной безопасности» (НРБ-99/2009) устанавливает основные пределы доз, допустимые уровни ионизирующего излучения, которые являются обязательными для всех юридических и физических лиц, независимо от их подчиненности и формы собственности, в результате деятельности которых возможно облучение людей, а также для администраций субъектов Российской Федерации, местных органов власти, граждан Российской Федерации, иностранных граждан и лиц без гражданства, проживающих на территории Российской Федерации. Годовая доза облучения населения не должна превышать 1 мЗв в год в среднем за любые последовательные 5 лет, но не более 5 мЗв в год.

Согласно Федеральному закону от 30.12.2009 N 384-ФЗ (ред. от 02.07.2013) «Технический регламент о безопасности зданий и сооружений» ст. 10 п.1 «Здание или сооружение должно быть спроектировано и построено таким образом, чтобы при проживании и пребывании человека в здании или сооружении не возникало вредного воздействия на человека в результате физических, биологических, химических, радиационных и иных воздействий».

Что контролируем

Основными контролируемыми показателями радиационной безопасности на объектах капитального строительства являются:

1. Мощность дозы гамма-излучения (далее МЭД);

2. Среднегодовая эквивалентная равновесная объемная активность изотопов радона

4. Плотность потока радона (далее ППР) с поверхности грунта в пределах площади застройки;

5. Удельная эффективная радиоактивность естественных радионуклидов (далее ЕРН) в строительных материалах.

Рассмотрим каждый показатель поподробнее.

Мощность эквивалентной дозы (МЭД)

Эквивалентная доза – поглощенная доза в органе или ткани, умноженная на соответствующий взвешивающий коэффициент для данного вида излучения. Для альфа- бета- и гамма- излучения он равен единице. Если на организм воздействует сразу несколько разных источников излучения, то эквивалентная доза определяется как сумма эквивалентных доз для этих видов излучения. Мощность эквивалентной дозы определяет насколько организм поглощает дозу излучения в течение определенного времени. Источниками излучения на объектах строительства могут быть привозимые стройматериалы, геологические слои, которые могут быть разработаны на подготовительном этапе строительства. Из-за того, что гамма-излучение обладает максимальной проникающей способностью, оно имеет наибольший приоритет при радиационном контроле.

Среднегодовая эквивалентная равновесная объемная активность изотопов радона (ЭРОА) и плотность потока радона (ППР) с поверхности грунта в пределах площади застройки

Радон является продуктом распада урана и представляет собой бесцветный радиоактивный тяжелый газ, не имеющий запаха, в силу чего его невозможно как-либо почувствовать без использования специального оборудования. Все изотопы этого газа короткоживущие, иными словами они довольно быстро распадаются: у самого устойчивого из них период полураспада составляет около четырех суток, у других же он не доходит и до минуты. Изотопы радона имеют малую проникающую способность альфа-излучения, барьером которого может служить даже обычный лист бумаги или кожа человека, но опасность их выражается не прямым воздействием на организм. Как говорилось ранее, радионуклиды могут содержаться в стройматериалах, в воде, почве. Попадая в организм человека вместе с вдыхаемым воздухом, питьем или едой, изотопы радона поражают внутренние органы, вызывая серьезные нарушения в работе организма.

Удельная эффективная радиоактивность естественных радионуклидов в строительных материалах

Естественные радионуклиды — нуклиды природного происхождения, содержащиеся в строительных материалах: радий ( 226 Ra), торий ( 232 Th), калий ( 40 K). Удельная активность радионуклида — отношение активности радионуклида в образце к массе образца. Источником радиации могут быть сами материалы, которые используются при строительстве. Поэтому необходимо регулярно анализировать не только сам участок строительства, но и поступающее на него «сырьё».

Радиационный контроль

Радиационное обследование участков территорий под строительство зданий и сооружений — комплекс измерений (испытаний) с целью оценки величины радиологических показателей земельного участка для последующего установления соответствия их требованиям санитарных правил и гигиенических нормативов или определения содержания, последовательности и объема мероприятий по обеспечению радиационной безопасности населения.

Читайте также:  Импульсный блоки питания для усилителей мощности звука

Лаборатория санитарно-эпидемиологического и радиационного контроля Государственного бюджетного учреждения города Москвы «Центр экспертиз, исследований и испытаний в строительстве» располагает самым современным оборудованием в сфере радиационной безопасности. Для гамма-съемки используют поисковые дозиметры-радиометры. Для измерений ППР и ЭРОА используют измерительный комплекс и сорбционные камеры. Удельную эффективную радиоактивность стройматериалов анализируют в спектрометрической установке.

Контроль МЭД

Для оценки земельных участков под строительство в рамках инженерно-экологических изысканий радиоактивное обследование проводят в 2 этапа. На первом этапе проводят съёмку с целью выявления и локализации возможных радиационных аномалий и определения объема дозиметрического контроля при измерениях мощности дозы гамма-излучения. Если показания прибора в ходе процесса контроля не превышают средние значение в 2 и более раз, а среднее значение не выше 0,3 мкЗв/ч на земельных участках под строительство жилых и общественных зданий, или 0,6 мкЗв/ч — на участках под строительство производственных зданий и сооружений, то считается, что локальные радиационные аномалии на обследованной территории отсутствуют.

На втором этапе проводятся измерения мощности дозы гамма-излучения в контрольных точках, которые по возможности должны располагаться равномерно по территории участка. В число контрольных должны быть включены точки с максимальными показаниями поискового радиометра, а также точки в пределах выявленных радиационных аномалий, в том числе и после их ликвидации.

Для оценки радиационной безопасности зданий и сооружений сначала измеряют радиационный фон местности вокруг объекта в 5 контрольных точках на расстоянии не менее 30м от ограждающих конструкций. Затем обследует выбранные помещения, обходя сначала по периметру и диагонали на расстоянии 25 см от стен и пола. Контрольной точкой считается:

• точка в центре помещения на высоте 1м от поверхности пола;

• точка максимума в зоне локальной аномалии, в случае обнаружения;

• точка с максимальными показаниями радиометра в остальной части помещения.

Локальная радиационная аномалия в помещении – место, где показания прибора выше средних значений в 2 и более раз.

Согласно МУ 2.6.1.2838-11 объем работ по гамма съемке помещений определяется из количества помещений. В односемейных домах, школах и детских садах обследования проводятся во всех помещениях. В многоквартирных домах все зависит от масштаба объекта.

Контроль ППР с поверхности земли

Измерение плотности потока радона на земельных участках предпочтительно проводят в пределах контура проектируемого здания в узлах сети контрольных точек. Шаг сети контрольных точек должен приниматься из расчета не более 10 м на 10 м, а общее число точек должно быть не менее 10 независимо от площади застройки здания. Расположение контрольных точек должно быть по возможности равномерным. Каждая контрольная точка располагается на горизонтальном участке размером не менее 50 на 50 см. Предпочтение отдается участкам с менее плотным и наименее влажным грунтом, где наиболее вероятны высокие значения ППР.

Перед проведением измерений выполняется предварительная подготовка площадки вокруг контрольной точки, которая заключается в зачистке от снега, мусора, растительности и крупных камней, рыхления на глубину (3÷5) см и выравнивания поверхности участка. Для отбора пробы в каждой контрольной точке устанавливается накопительная камера с активированным углем на срок от 3 до 5 часов. По истечении времени отбора активированный уголь пересыпается из накопительных камер в сорбционные колонки. После доставки проб в лабораторию проводят измерения на измерительном комплексе.

Контроль ЭРОА в помещениях

ЭРОА измеряют в каждом обследуемом помещении как минимум в одной контрольной точке. Отбор проб воздуха производят на высоте 1 — 2 м от пола не ближе 0,5 м от стен помещения. Отбор проб воздуха и проведение измерения объемной активности радона и торона в контрольных точках осуществляют с помощью радиометра радона. На первом этапе обследования проводят отбор проб воздуха для определения содержания радона. Через 5 – 14 часов в лабораторных условиях проводят измерение содержания торона в данных пробах и проводят расчет полученных значений.

Контроль ЕРН в строительных материалах

Определение удельных активностей ЕРН в сыпучих материалах, строительных изделиях и облицовочных материалах из природного камня проводят на навесках, отобранных из представительной пробы. Представительную пробу получают путем перемешивания не менее 10 точечных проб.

Результаты работы

За 2019 год Лаборатория санитарно-эпидемиологического и радиационного контроля Государственного бюджетного учреждения города Москвы «Центр экспертиз, исследований и испытаний в строительстве» провела более чем 1200 работ на объектах капитального строительства в сфере радиационной безопасности. По всем выявленным несоответствиям подготовлены отчеты и переданы в комитет Государственного Строительного Надзора города Москвы для принятия мер административного воздействия. На момент публикации статьи все нарушения устранены.

Библиографический список:

1. ГОСТ 30108-94 «Определение удельной эффективной активности естественных радионуклидов»;

2. Федеральный закон от 09.01.96 N 3-ФЗ «О радиационной безопасности населения»;

3. МУ 2.6.1.2398-08 «Радиационный контроль и санитарно-эпидемиологическая оценка земельных участков под строительство жилых домов, зданий и сооружений общественного и производственного назначения в части обеспечения радиационной безопасности»;

4. МУ 2.6.1.2838-11 «Радиационный контроль и санитарно-эпидемиологическая оценка жилых, общественных и производственных зданий и сооружений после окончания их строительства, капитального ремонта, реконструкции по показателям радиационной безопасности»;

5. СанПиН 2.6.1.2523-09 Нормы радиационной безопасности (НРБ-99/2009);

6. СП 2.6.1.2612-10 «Основные санитарные правила обеспечения радиационной безопасности (ОСПОРБ-99/2010)».

Статью написал и оформил:

Лаборант Лаборатории «СЭиРК» Кружалин Д.И.

Статью правил и утвердил:

Начальник Лаборатории «СЭиРК» Ипполитов Д.Е.

Если вы нашли ошибку: выделите текст и нажмите Ctrl+Enter

Источник