Меню

Кпд тиристорного преобразователя постоянного тока

Частотный тиристорный преобразователь – подробное описание ТПЧ

Тиристорный преобразователь частоты

Для выпрямления переменного тока используются спецустройства. Тиристорный преобразователь частоты в 2017 году служит во многих областях производства для регулировки выходного напряжения и различных параметров линии питания.

Принцип действия и конструктивные особенности

Чтобы преобразовать нагрузку применяют тиристорный преобразователь цепей высокого напряжения на основе IGBT. Частотный преобразователь на тиристорах – это прибор преобразования тока, регулировки его параметров и уровня тока. Частотным преобразователем можно выровнять значения параметров приводов на электромоторах: угол, обороты вала при запуске и другие.

Тиристорный преобразователь частоты

Схема тиристорного выравнивателя.

Для мотора постоянного тока используют преобразователь на тиристорах. Достоинства этого прибора позволили создать ему широкое применение. К преимуществам относятся:

  • КПД (95%) у марки ПН-500.
  • Область контроля: мотора от малых мощностей до мегаватт.
  • Может выдерживать значительные импульсы нагрузок запуска двигателя.
  • Долговечная и надежная эксплуатация.
  • Точность.

Недостатки имеются и у этой системы. Мощность находится на низшем уровне. Это проявляется при точном регулировании процесса производства. В качестве компенсации используют дополнительные устройства. Такой частотный преобразователь не может работать без помех. Это видно при эксплуатации чувствительных приборов электрооборудования и радиотехнических устройств.

  1. Реактор в виде трансформатора.
  2. Блоки выпрямления тока.
  3. Реактор для сглаживания преобразования.
  4. Перенапряжение не воздействует на защиту.

Преобразователи (2017 г) подключаются через реактор. Трансформатор служит для согласования звена напряжения выхода и входа, выравнивания между ними напряжения. Схема электрического соединения включает в себя реактор для сглаживания. Частотный преобразователь имеет схему, в которой есть сглаживающий реактор.

Частотник пропускает нагрузку. Нагрузка идет в блоки выпрямителя в выходное звено. Чтобы выровнять питание нескольких устройств подключают индукционные потребители на специальных шинах.

Преобразователи частоты бывают двух типов – высокочастотные и низкочастотные. Подбор нужной модели осуществляется по необходимым параметрам цепей электроэнергии. В 3-фазных станках тип подключения иной. 1-фазный ток переносит воздействия, но КПД теряется на преобразовании 3-фазного тока.

Система применяется в плавильном производстве, контроле подъемно-транспортных устройствах, сварочном производстве. Такой принцип работы нагрузки реализовывает систему двигателя с генератором. На наименьших оборотах двигателя происходит регулировка оборотов шпинделя в широком диапазоне, настройка разных характеристик привода мотора.

Разработка

Схема электрических соединений тиристорного преобразователя частоты и двигателя бесступенчатого переключения состоит из двух видов:

  1. 1- фазная.
  2. 2-х фазная.

Принцип действия нагрузки. Схема 3-фазного частотника

Тиристорный преобразователь частоты

На схеме изображена электроэнергия эксплуатации частотника. Подобную диаграмму делают для мостовой схемы. Она чаще применяется при конструировании частотника для нагрузки оборудования и станков. Напряжение фазы в схеме увеличено.

эксплуатации частотника

Схема с одной фазой применяется для линии питания, эксплуатации механизма с большим сопротивлением индуктивности. Она действует в интервале мощности 10 – 20 кВт, редко при значительных мощностях. Для электропечи или станка в быту применяется такую схему:

эксплуатации частотника

Схема цепей с тремя фазами используется для механизмов на 20 кВт, моторов синхронных, экскаваторов и кранов. Популярной схемой с несколькими фазами 6-фазная схема. Она предусматривает применение уравнителя малого потенциала и большого тока. Прибор с током проводит и изменяет электроэнергию параллельно, в отличие от многих подобных устройств. Сделать его трудно, однако надежность у него больше, чем на тиристорах с одной фазой. Этот контроллер с реверсом имеет негативную сторону – КПД у него составляет меньше 70%.

Свой тиристорный преобразователь частоты изготовить, возможно, в зависимости от основы применения. На рисунке показана схема на базе Micro-Cap 9. Основным достоинством является необходимость в нагрузке нескольких узлов совместно.

Схема модели индукционного комплекса на тиристорах инвертора

эксплуатации частотника

Технические данные и стоимость

Характеристики частотников на тиристорах зависят от вида, опций.

Значения ТПЧ 320 800
Мощность, кВт 320 800
Наибольшая мощность, кВ-А 640 1250
Частота, герц 50 50
Входное напряжение, В 380 500
Величина наибольшего постоянного тока, А 630 1000
КПД, % 94 94
Выходное напряжение, В 800 1000

Преобразователь на тиристорах, работающий в условиях с влажностью и запыленностью (ЭПУ-1-1-3447Е УХЛ4).

Ток, А 25
Наибольший ток нагрузки, А 100
Входное напряжение, В 380

Тиристорные преобразователи объединяют в комплексы по выпрямлению. У одного уравнителя при неисправности ремонтируют полностью все оборудование или демонтируют. У выпрямительного комплекса заменяют только тот механизм, который вышел из строя. Эти системы применяются в станках. Стоимость оборудования тиристорного преобразователя АВВ DCS400 на 2017 г составляет в районе ста рублей.

Самодельный преобразователь частоты на тиристорах

Я взял двигатель асинхронного типа мощностью 2 кВт. Все собирал самостоятельно. Нужно было получить из сети в 220 вольт три фазы для управления электродвигателем. Нужно было управлять оборотами двигателя, не получать скачков выходного напряжения.

Посмотрев информацию в Интернете, нашел схемы различного рода. Предлагается очень много разных вариантов. Я остановился именно на этой схеме, так как его мощность до 4 кВт, функции защиты работают нормально.

Я взял корпус от системного блока компьютера и вмонтировал в него все детали. Можно было сэкономить, и сделать по-другому, но у меня уже был этот шкаф. Блок питания я покупал отдельно.

Тиристорный преобразователь частоты

Хотя можно было собрать схему блока питания самому. Ни с кем не советовался и сам начал собирать. Собрал набор конденсаторов с реле, диодный мост с полевыми транзисторами. Установил вентилятор охлаждения на случай, если будет двигатель нагрузки 4 кВт, и будет нагреваться. При двигателях 2-3 кВт преобразователь работает нормально, никаких проблем с нагревом нет. Я решил сделать так, чтобы вентилятор не работал постоянно, так как он будет засасывать в шкаф пыль, потом его надо будет чистить. Решил сделать так, чтобы кулер включался и выключался при определенных температурах.

Для этого я сделал небольшую плату регулировки с реле, хотя можно тоже ее купить. За полдня собрал эту плату из имеющихся деталей. В шкафу имеется шунт, который настроен для двигателя 4 кВт. Если будет перегрузка по току, то двигатель выключится. Плата преобразователя сделана на микроконтроллере. Если поменять контроллер и поставить кварц на 20 мГц и два конденсатора в обвязке кварца, то можно поменять прошивку, вынести на панель корпуса монитор, ручку регулятора оборотов. При работе можно будет изменять частоту.

Тиристорный преобразователь частоты

Но я делать этого не стал, так как нужны были дополнительные деньги. Этот частотник мне обошелся около трех тысяч рублей, это на 2017 год. Заводской преобразователь на тиристорах такого же класса, пусть даже в меньшем корпусе обошелся бы около 7-10 тысяч рублей. Это зависит от бренда изготовителя.

Такой частотный преобразователь можно применять на станках с ЧПУ на шпиндель, вывести контроль на пульт управления. Проверим, как он работает. Включаем старт, двигатель плавно включился и работает. Выключаем его, затем включаем реверс и повторяем операции. Все работает нормально.

Недавно купил выпрямитель за 1000 рублей. Это недорого для тиристорного выпрямителя. Такие диоды приходится заказывать из других регионов. Если управляющий электрод замкнуть на анод, то он превращается в диод. Если убираем, то превращается в тиристор. Если к проводам припаять плату управления, то им можно управлять. Получается тиристорный выпрямитель. Я поставил его на сварочный аппарат. На ручную дуговую сварку не стоит ставить тиристорный выпрямитель, так как при сварке большие пульсации, сварочный шов получается плохого качества. Для полуавтомата тиристоры подойдут, там пульсации не важны.

Преобразователь частоты на логических элементах

Современные асинхронные двигатели управляются весьма сложно. Дело в том, что пуск мощного асинхронного двигателя сопряжен со значительными токовыми перегрузками. Мощный вращающий момент может вывести из строя подшипники и опоры, на которых установлены двигатели.

Резкое отключение двигателя может привести к перенапряжению и к серьезным электрическим авариям. Поэтому, на сегодняшний день наиболее перспективными системами управления двигателями являются частотные преобразователи. Путь, к которому шел частотный преобразователь к цифровому варианту, довольно сложен. В современных устройствах была проблема в том, чтобы выходные каскады были мощными. Не было мощных транзисторов. Сейчас появились IGBT транзисторы или мощные транзисторы с изолированным затвором.

Читайте также:  Импульсный стабилизатор тока lm2596

Рассмотрим преобразование однофазной цепи в трехфазную.

Тиристорный преобразователь частоты

Это структурная схема простейшего преобразователя. Он состоит из генератора тактовых импульсов, частотой которого можно управлять. Собран он на простейших логических элементах. Включенных в режим логических элементов нет. Три логических элемента. Конденсатор и резистор задают постоянную величину времени, то есть, частоту выдачи импульсов. Эти импульсы поступают на счетчик Джонсона, который является и счетчиком, и дешифратором, преобразующим выходной сигнал в сигнал с одним импульсом на выходе.

Предусмотрено так, что импульсы проходят последовательно. Для того, чтобы получить трехфазную систему, десятку импульсов разделили на последовательность до шести импульсов. При этом окончание седьмого импульса завершает работу счетчика, установку его в нулевое состояние. Импульс подает команду обнуления счетчика, отсчет начинается с нуля. Выходы этих элементов, в данном случае дешифратора, присоединены к трем элементам, которые являются коммутирующими. Эти коммутирующие элементы, которые управляют работой двухтактных транзисторных включений, составляют основу выхода.

На выходе появляется напряжение с частотой, которую мы зададим на этом генераторе. Тактовые импульсы поступают на счетчик Джонсона с дешифратором, запускают логические элементы. Если будет на входе единица, которая поступает на два мощных транзистора, включенных по схеме моста, то пары транзисторов осуществляют коммутацию направления тока в обмотке двигателя вправо и влево. В результате этого с ростом регулирования частоты вращения будет плавно увеличиваться частота переключения выходного напряжения в обмотке, что приведет к росту средней частоты в двигателе и росту числа его оборотов.

Если мы рассмотрим систему как полученную трехфазную систему переменного тока, то можем получить на выходе трехфазный переменный ток. Он будет прямоугольной формы. Чтобы получить импульсы, близкие к гармоническим колебаниям, необходимо применить L или C фильтры для получения полноценного сигнала. Если мы имеем дело с постоянным током, то данный преобразователь может получить из него трехфазный переменный ток. Поэтому наш частотный преобразователь, который питается постоянным током, может работать от однофазного выпрямителя.

В мощных приводах не подходят к применению транзисторы. Поэтому вместо них используют тиристорные частотники. На малой частоте вращения труднее удерживать момент, так как приводы с жесткими характеристиками. Привод насоса происходит по системе склеивания синуса. Выходная частота меньше 50 герц.

Тиристорный преобразователь частоты

Тиристорный преобразователь частоты

Тиристорные преобразователи ТПЧ – 320 2,4

Преобразователи частоты ТПЧ-320-2,4 служат для регулирования частоты и изменения 3-фазного тока в среднюю частоту. Мощность по номиналу этого прибора 320 кВт, частота 2,4 кГц. В заводских условиях эти частотники применяют для линии питания колебаний печей.

Технические данные тиристорного частотника ТПЧ 320 2,4

Выходная мощность по номиналу (кВт) Частота по номиналу (кГц) Входное номинальное напряжение (В) Интервал средней частоты (Гц) Интервал напряжения выхода (В)
320 2,4 3 х 380 1500 – 3000 100 – 800

Цифровая система микропроцессоров управления ТПЧ 320

Микропроцессорные системы управления ТПЧ 320 регулируют, защищают и диагностируют. Она сформирована на плате с микросхемами и экраном через кабели. Эта система дает гарантию надежной работы, защищает от помех.

Каждому вентилю передается импульс. Информация выдается на экран панели. Можно получить информацию от механизмов цепи. Система управления обрабатывает много данных, передающихся по связи. Это такие данные:

  • Мощность.
  • Частота.
  • Вес загрузки.
  • Вес расплавленного металла.
  • Время.

Комплектность шкафа ТПЧ 320:

  • Выпрямитель.
  • Система выравнивания мощности.
  • Дроссель сглаживания.
  • Диагностика.
  • Контроль температуры.
  • Контроль охлаждения.
  • Блокировка дверей.
  • Защита, перезапуск частотника при отключении линии питания.

Источник

Кпд тиристорного преобразователя постоянного тока

Выпрямленная ЭДС тиристорного выпрямителя:

image069_0 Тиристорный преобразователь Математическое описание ; image070_1 Тиристорный преобразователь Математическое описание ,

где: E2 – действующее значение фазной ЭДС вторичной обмотки; g = 1 – нулевая схема; g = 2 – мостовая схема.

Для нулевой трехфазной схемы Ed0 = 1,17Е2 , для мостовой трехфазной Еd0 = 2,34Е2.

Для СИФУ с синусоидальным опорным напряжением (электроприводы КТЭУ, ЭКТ) image071_0 Тиристорный преобразователь Математическое описание , КТП = Еd/Uун .

Для СИФУ с линейным пилообразным опорным напряжением (электроприводы КТЭ, ТПП, ЭПУ1, ТЕР):

image072_1 Тиристорный преобразователь Математическое описание

,

где UУН = 10 В, КТП = 0,157 Еd

Тиристорный преобразователь, как элемент САР — существенно нелинейное дискретно работающее звено [22, 26]. Отметим основные особенности ТП:

1. Регулировочная характеристика Ud=f(UУ) при пилообразном опорном напряжении нелинейна (рис. 5.8.):

image073_0 Тиристорный преобразователь Математическое описание

2. ТП управляется дискретно с периодом

image074_1 Тиристорный преобразователь Математическое описание (для мостовых схем).

3. ТП – это полууправляемый элемент. Очередной тиристор открывается при подаче на него управляющего импульса и потенциале на аноде, больше, чем на аноде работающего тиристора. Закрывается тиристор только при подаче на «анод-катод» отрицательного запирающего напряжения. Поэтому преобразователь переходит из выпрямительного в инверторный режим по синусоиде сети, обратно — сразу ( рис. 5.9 ).

4. В режиме прерывистого тока ТП меняет свою структуру:

4.1 . Индуктивность якорной цепи можно считать равной нулю, так как в среднем за период дискретности не происходит изменения электромагнитной энергии (сколько энергии запасается, столько и отдается)

4.2 . Эквивалентное активное сопротивление якорной цепи увеличивается, если не применяется реверсивный преобразователь со сканирующей логикой (рис. 5.10 ).

4.3 . Пропорциональная часть ПИ — РТ в режиме прерывистых токов не работает так как в момент формирования очередного импульса управления (отсчета угла a) тока якоря нет.

5. Временная задержка при переключении группы вентилей реверсивного преобразователя с раздельным управлением характеризуется как чистое запаздывание в пределах (0,5 ¸ 0,7мс).

6. Регулировочные характеристики реверсивных преобразователей имеют зону нечувствительности при переключении групп вентилей (см. рис. 5.10).

7. На вход СИФУ с датчиков тока, скорости и других источников поступают сигналы, имеющие импульсные помехи различной частоты.

Влияние дискретности и полууправляемости наиболее подробно рассмотрено в работах [22], [26]. Это влияние можно испытать практически. Если плавно повышать коэффициент усиления РТ, то вначале контур тока переходит в режим автоколебаний с малой частотой (субгармонические колебания). Затем при image075_1 Тиристорный преобразователь Математическое описание в контуре устанавливаются автоколебания с частотой, равной половине частоты дискретности работы тиристорного преобразователя. Реально дискретность работы можно учесть как среднестатистическое запаздывание на половину периода дискретности, затем запаздывание представить инерционным звеном:

image076_0 Тиристорный преобразователь Математическое описание , где τ = 0,0016 с.

Ошибка в такой замене наблюдается только правее частоты image077_1 Тиристорный преобразователь Математическое описание . На частоте image078_1 Тиристорный преобразователь Математическое описание ошибка составляет всего 1,5 дб по ЛАЧХ и 12 ° по ЛФЧХ.

Нелинейность ТП

Рис. 5.8. Нелинейность регулировочной характеристики ТП Рис. 5.10. Нелинейность ТП в зоне прерывистых токов

Полууправляемость ТП

Рис. 5.9. Полууправляемость ТП

Учитывая сильное влияние на ТП импульсных помех, на входе СИФУ устанавливают апериодический фильтр с постоянной времени Тф = 0,003 ÷ 0,005с В этом случае влияние дискретности и полууправляемости можно не учитывать.

Нелинейность регулировочной характеристики может быть скомпенсирована применением на входе СИФУ нелинейности с обратной характеристикой.

В режиме прерывистого тока нередко параметры регулятора тока перестраиваются, используя адаптивный регулятор тока. Иногда пропорциональная часть регулятора вообще отключается или коэффициент пропорциональной части увеличивается обратно пропорционально величине тока якоря.

В некоторых случаях в ТП используется дополнительный внутренний контур напряжения, подчиненный контуру тока.

Практический опыт показал допустимость представления тиристорного преобразователя апериодическим звеном с постоянной времени Ттп = 0,005 ÷ 0,01 с (в зависимости от требований к быстродействию).

Источник



Тиристорный преобразователь постоянного тока

Для выравнивания переменного тока в постоянный требуется использование специальных устройств. Тиристорный преобразователь частоты для индукционного нагрева применяется в различных областях промышленности для регулирования напряжения и прочих параметров электрической энергии.

Принцип работы и конструкция

Для преобразования нагрузки может использоваться тиристорный или транзисторный высоковольтный преобразователь на базе IGBT. Тиристорный частотный преобразователь (ТП, ТПР или ТПЧ) – это электрическое устройство для преобразования переменного тока в постоянный, регулирования его уровня и прочих характеристик. С его помощью можно уравнивать различные параметры электрических редукторов: скорость вращения в момент пуска, угол и прочие.

Фото — тиристорный уравнитель

Тиристорный преобразователь применяется для двигателя постоянного тока (ДПТ) вместе с системой автоматического регулирования (FR A700 в Mitsubishi Electric, Siemens Simoreg DC Master, Omron Yaskawa). Он имеет очень широкую область применения благодаря своим достоинствам:

  1. Высокий показатель КПД – до 95 % (к примеру, у модели ПН-500);
  2. Широкий спектр контроля. Его можно использовать для двигателя с мощностью от десятых киловатта до нескольких мегакиловатт;
  3. Способность выдерживать сильные импульсные нагрузки при включении электродвигателя в сеть;
  4. Высокие показатели надежности и долговечности;
  5. Точность в работе.
Читайте также:  Контроль тока с токовым трансформатором

Но у такой системы есть определенные недостатки. В первую очередь – это низкий коэффициент мощности, который проявляется при глубоком регулировании производственных процессов. Компенсировать его можно при помощи дополнительных устройств. Кроме этого, мощный преобразователь вызывает помехи в электрической сети, что сказывается на работе чувствительного электро- и радиооборудования.

  1. Трансформатор или реактор;
  2. Выпрямительные блоки;
  3. Дополнительный реактор, сглаживающий преобразование;
  4. Система защиты оборудования от перенапряжений.

Большинство современных преобразователей подключаются к трансформатору через реактор. Трансформатор в этой схеме является согласующим звеном между входящим и выходным напряжением, он уравновешивает разницу между ними. Помимо него, электросхема также включает в себя специальный сглаживающий реактор. Этот прибор необходим для нейтрализации определенных пульсаций, возникающих при выпрямлении и изменении типа тока. Но система не всегда включает в себя реактор, т. к. при достаточной индуктивности асинхронного двигателя в нем нет необходимости.

Агрегат пропускает через автономный инвертор (расположенный во входящем звене) первичную нагрузку. Они попадают в выпрямляющие блоки, установленные в выходном звене. Для подключения других индукционных потребителей используются специальные шины, которые помогают выравнивать питание в целой группе устройств.

Такой преобразователь бывает низкочастотный и высокочастотный. В зависимости от потребных частот и имеющихся параметров электричества подбирается нужная модель. Нужно отметить, что в станках, где используется трехфазный ток, применяется другой тип подключения. Однофазный переносит воздействия и преобразования, в то время как на преобразовании трехфазного тока теряется КПД.

преобразовательный пункт

Фото — преобразовательный пункт

Система используется в плавке металлов, сварочных работах, контроле кранового механизма и многих других производственных и технологических процессах. Применение такого принципа работы позволяет реализовать систему генератор-двигатель без использования генератора. Благодаря этому производится широкая регулировка частот вращения шпинделя даже на самых малых скоростях, настраиваются механические и другие характеристики электропривода и прочие параметры.

Разработка

Электрическая схема тиристорный преобразователь-двигатель (к примеру, КТЭ) для плавного переключения может быть двух видов:

  1. Однофазной;
  2. Многофазной.

В зависимости от типа исполнения варьируются соотношения расчетных единиц и принципы работы преобразователя.

нулевая схема трехфазного преобразованияФото — нулевая схема трехфазного преобразования

На этом чертеже схематически показано изменение электрической энергии при работе тиристорного преобразователя в режиме выпрямителя и инвертора. В то же время, для мостовой схемы можно сделать такую же диаграмму, но только состоящую из двух нулевых. Именно она наиболее часто используется при проектировании преобразователя для станочного оборудования. Это происходит из-за того, что исходное фазовое напряжение в ней в два раза превышает фазовой напряжение (Udo) в нулевой схеме работы.

питание

Фото — питание

Однофазная схема используется для контроля питания и работы привода машин с высоким индуктивным сопротивлением. Она работает в пределах мощности от 10 кВт до 20, намного реже – при больших мощностях. К примеру, подойдет для электрической печи, домашнего станка.

однолинейная схема

Фото — однолинейная схема

Трехфазная используется для оборудования, где требуется от 20 кВт для работы. К примеру, для синхронных приводов, двигателя крана и экскаватора. Еще одной популярной многофазной схемой контроля является шестифазная (Кемрон). Её проект предусматривает использование в конструкции уравнительного реактора, который направлен на контроль низкого напряжения и высокого тока. Этот силовой электрический прибор пропускает и преобразовывает электрическую энергию параллельным путем, а не последовательным (как большая часть аналогичных устройств). Его более сложно разработать своими руками, но степень надежности и эффективности значительно больше, нежели у однофазного тиристорного преобразователя. Но такой реверсивный контроллер имеет серьезный недостаток – его КПД менее 70 %.

Своими руками можно сделать собственный преобразователь, но многое зависит от используемой базы. Внизу дана схема, разработанная на основе Micro-Cap 9. Главной особенностью этой модели является необходимость в совместном моделировании различных узлов.

Схема тиристорного уравнителя

Фото — Схема тиристорного уравнителя

Видео: как работают тиристорные преобразователи

Техническое описание и обзор цен

Характеристики тиристорных преобразователей зависят от типа их исполнения и функциональных особенностей.

Параметры ТПЧ 320 800
Выходная мощность, кВт 320 800
Максимальная полная мощность, кВ-А 640 1250
Частота, Гц 50 50
Входящее напряжение, В 380 500
Максимальный ток, А 630 1000
КПД, % 94 94
Выходное напряжение, В 800 1000
Номинальный ток, А 400
Максимальный ток, А 800
Входящее напряжение, В 460
Габаритные размеры, мм 800x775x1637

ЭПУ-1-1-3447Е УХЛ4 (производитель заявляет, что этот преобразователь может работать в сложных условиях, повышенной пыльности и влажности):

Номинальный ток, А 25
Максимальный ток, А 100
Входящее напряжение, В 380

Но тиристорные преобразователи продаются не только по одной единице, но и в виде выпрямляющих комплексов (КТЭУ). Если единичный уравнитель при поломке нуждается в полном ремонте или демонтаже, то у комплекса производится замена вышедшего из строя оборудования. Такие системы используются как в приводах станков, так и в ЭКТ (комплектных тиристорных электроприводах).

Рассмотрим, какова цена тиристорного преобразователя ABB DCS400:

Город Цена, у. е.
Москва 100
Санкт-Петербург 100
Челябинск 95
Воронеж 98
Самара 95
Новосибирск 95
Ростов-на-Дону 98

Купить устройство можно в любом магазине электрических товаров, прайс-лист зависит от характеристик и типа исполнения.

Источник

Тиристорные преобразователи постоянного тока

Тиристорные преобразователи постоянного токаТиристорным преобразователем постоянного тока (ТП) является устройство для преобразования переменного тока в постоянный с регулированием по заданному закону выходных параметров (тока и напряжения). Тиристорные преобразователи предназначаются для питания якорных цепей двигателей и их обмоток возбуждения.

Тиристорные преобразователи состоят из следующих основных узлов:

• трансформатора или токоограничивающего реактора на стороне переменного тока,

• элементов системы управления, защиты и сигнализации.

Трансформатор осуществляет согласование входного и выходного напряжений преобразователя и (так же, как и токоограничивающий реактор) ограничение тока короткого, замыкания во входных цепях. Сглаживающие реакторы предназначаются для сглаживания пульсаций выпрямленных напряжения и тока. Реакторы не предусматриваются, если индуктивность нагрузки достаточна для ограничения пульсаций в заданных пределах.

Применение тиристорных преобразователей постоянного тока позволяет реализовать практически те же характеристики электропривода, что и при использовании вращающихся преобразователей в системах генератор-двигатель (Г — Д), т. е. регулировать в широких пределах частоту вращения и момент двигателя, получать специальные механические характеристики и нужный характер протекания переходных процессов при пуске, торможении, реверсе и т. д.

Однако, по сравнению с вращающимися статические преобразователи имеют целый ряд известных преимуществ, поэтому в новых разработках крановых электроприводов предпочтение отдается статическим преобразователям. Тиристорные преобразователи постоянного тока наиболее перспективны для применения в электроприводах крановых механизмов мощностью свыше 50—100 кВт и механизмов, где требуется получение специальных характеристик привода в статических и динамических режимах.

Схемы выпрямления, принципы построения силовых цепей преобразователей

Тиристорные преобразователи выполняются с однофазными и многофазными схемами выпрямления. Существует несколько расчетных соотношений основных схем выпрямления. Одна из таких схем показана на рис. 1, а. Регулирование выпрямленного напряжения Ua и тока Ia производится путем изменения угла управления α . На рис. 1, б-д для примера показан характер изменения токов и напряжений в трехфазной нулевой схеме выпрямления при активно-индуктивной нагрузке

Трехфазная нулевая схема (а) и диаграммы изменения тока и напряжения в выпрямительном (б, в) и инверторном (г, д) режимах

Рис. 1. Трехфазная нулевая схема (а) и диаграммы изменения тока и напряжения в выпрямительном (б, в) и инверторном (г, д) режимах.

Показанный на диаграммах угол γ (угол коммутации), характеризует период времени, в течение которого ток протекает одновременно по двум тиристорам. Зависимость среднего значения выпрямленного напряжения Ua от угла регулирования α называется регулировочной характеристикой.

Для нулевых схем среднее выпрямленное напряжение определяется из выражения

где m — число фаз вторичной обмотки трансформатора; U2 ф – действующее значение фазового напряжения вторичной обмотки трансформатора.

Читайте также:  Как находить силу тока в каждом резисторе в смешанной цепи

Для мостовых схем Udo в 2 раза выше, так как эти схемы эквивалентны последовательному включению двух нулевых схем.

Однофазные схемы выпрямления используются, как правило, в цепях с относительно большими индуктивными сопротивлениями. Это цепи независимых обмоток возбуждения двигателей, а также якорные цепи двигателей небольшой мощности (до 10—15 кВт). Многофазные схемы используются в основном для литания якорных цепей двигателей мощностью свыше 15— 20 кВт и реже для питания обмоток возбуждения. По сравнению с однофазными многофазные схемы выпрямления имеют целый’ ряд преимуществ. Основными из них являются: меньшие пульсации выпрямленного напряжения и тока, лучшее использование трансформатора и тиристоров, симметричная нагрузка фаз питающей сети.

В тиристорных преобразователях постоянного тока, предназначенных для крановых приводов мощностью свыше 20 кВт, наиболее оправдано применение трехфазной мостовой схемы. Это обусловлено хорошим использованием трансформатора и тиристоров, низким уровнем пульсаций выпрямленного напряжения и тока, а также простотой схемы и конструкции трансформатора. Известным достоинством трехфазной мостовой схемы является и то, что она может быть выполнена не с трансформаторной связью, а с токоограничивающим реактором, габариты которого существенно меньше габаритов трансформатора.

В трехфазной нулевой схеме условия использования трансформатора при обычно применяемых группах соединения Y/Y и Δ/Y хуже из-за наличия постоянной составляющей потока. Это приводит к увеличению сечения магнитопровода и, следовательно, расчетной мощности трансформатора. Для исключения постоянной составляющей потока применяют соединение вторичных обмоток трансформатора в «зигзаг», что также несколько увеличивает расчетную мощность. Увеличенный уровень, пульсаций выпрямленного напряжения вместе с отмеченным выше недостатком ограничивает использование трехфазной нулевой схемы.

Шестифазная схема с уравнительным реактором целесообразна при использовании ее на низкое напряжение и большой ток, так как в этой схеме нагрузочный ток протекает параллельно, а не последовательно через два диода, как в трехфазной мостовой схеме. Недостатком этой схемы является наличие уравнительного реактора, имеющего типовую мощность около 70% выпрямленной номинальной мощности. Кроме того, в шестифазных схемах используется довольно сложная конструкция трансформатора.

Схемы выпрямления на тиристорах обеспечивают работу в двух режимах — выпрямительном и инверторном. При работе в инверторном режиме энергия из цепи нагрузки передается в питающую сеть, т. е. в противоположном направлении по сравнению с выпрямительным режимом, поэтому при инвертировании ток и э. д. с. обмотки трансформатора направлены встречно, а при выпрямлении — согласно. Источником тока в режиме инвертирования является э. д. с. нагрузки (машины постоянного тока, индуктивности), которая должна превышать напряжение инвертора.

Перевод тиристорного преобразователя из выпрямительного режима в инверторный достигается изменением полярности э. д. с. нагрузки и увеличением угла α выше π/2 при индуктивной нагрузке.

Встречно-параллельная схема включения вентильных групп

Рис. 2. Встречно-параллельная схема включения вентильных групп. УР1— УР4 — уравнительные реакторы; РТ — токоограничивающий реактор; CP — сглаживающий реактор.

Схема нереверсивного ТП для цепей обмоток возбуждения двигателей

Рис. 3. Схема нереверсивного ТП для цепей обмоток возбуждения двигателей. Для обеспечения режима инвертирования необходимо, чтобы закрывающийся очередной тиристор успел восстановить свои запирающие свойства, пока на нем имеется отрицательное напряжение, т. е. в пределах угла φ (рис. 1, в).

Если это не произойдет, то закрывающийся тиристор может снова открыться, так как к нему прикладывается прямое напряжение. Это приведет к опрокидыванию инвертора, при котором возникнет аварийный ток, поскольку э. д. с. машины постоянного тока и трансформатора совпадут по направлению. Для исключения опрокидывания необходимо, чтобы выполнялось условие

где δ — угол восстановления запирающих свойств тиристора; β = π — α — угол опережения инвертора.

Силовые схемы тирсторных преобразователей, предназначенных для питания якорных цепей двигателей, выполняются как в нереверсивном (одна выпрямительная группа тиристоров), так и в реверсивном (две выпрямительные группы) исполнениях. Нереверсивные исполнения тиристорных преобразователей, обеспечивающих одностороннюю проводимость, позволяют работать в двигательном и генераторном режимах только при одном направлении момента двигателя.

Для изменения направления момента требуется или изменить направление тока якоря при неизменном направлении потока возбуждения, или изменить направление потока возбуждения при сохранении направления тока якоря.

Реверсивные тиристорные преобразователи имеют несколько разновидностей схем силовой цепи. Наибольшее распространение получила схема с встречно-параллельным подключением к одной вторичной обмотке трансформатора двух вентильных групп (рис. 2). Такая схема может быть выполнена и без индивидуального трансформатора с питанием тиристорных групп от общей сети переменного тока через анодные токоограничивающие реакторы РТ. Переход на реакторный вариант значительно сокращает размеры тиристорного преобразователя и снижает его стоимость.

Тиристорные преобразователи для цепей обмоток возбуждения двигателей выполняются в основном в нереверсивном исполнении. На рис. 3, а показана одна из применяемых схем включения выпрямительных элементов. Схема позволяет в широких пределах изменять ток возбуждения двигателя. Минимальное значение тока имеет место, когда тиристоры Т1 и Т2 закрыты, а максимальное, когда они открыты. На рис. 3, б, г показан характер изменения выпрямленного напряжения для этих двух состояний тиристоров, а на рис. 3, в для состояния, когда

Способы управления реверсивными тиристорными преобразователями

В реверсивных тиристорных преобразователях применяются два основных способа управления вентильными группами — совместный и раздельный. В свою очередь совместное управление выполняется согласованным и несогласованным.

При согласованном управлении отпирающие импульсы на тиристоры подаются на обе группы вентилей таким образом, чтобы средние значения выпрямленного напряжения у обеих групп были равны между собой. Это обеспечивается при условии

где a в и a и — углы регулирования выпрямительной и инверторной групп. При несогласованном управлении среднее значение напряжения инверторной группы превышает напряжение выпрямительной группы. Это достигается при условии, если

Мгновенное значение напряжений групп при совместном управлении не равны друг другу во все моменты времени, вследствие чего в замкнутом контуре (или контурах), образуемых тиристорными группами и обмотками трансформатора, течет уравнительный ток, для ограничения которого в цепь тиристорного преобразователя включаются уравнительные реакторы УР1—УР4 (см. рис. 1).

Реакторы включают в контур уравнительного тока по одному или по два на группу, причем, их индуктивность выбирается такой, чтобы уравнительный ток не превышал 10% номинального тока нагрузки. При включении токоограничивающих реакторов по два на группу они выполняются насыщающимися при протекании тока нагрузки. Например, при работе группы В насыщаются реакторы УР1 и УР2, а реакторы УРЗ и УР4 остаются ненасыщенными и ограничивают уравнительный ток. Если реакторы включаются по одному на группу (УР1 и УРЗ), то они выполняются не насыщающимися при протекании тока нагрузки.

Преобразователи с несогласованным управлением имеют меньшие габариты реакторов, чем при согласованном управлении. Однако при несогласованном управлении снижается диапазон допустимых углов регулирования, что приводит к худшему использованию трансформатора и уменьшению коэффициента мощности установки. Одновременно нарушается линейность регулировочных и скоростных характеристик электропривода. Для полного исключения уравнительных токов используется раздельное управление вентильными группами.

Раздельное управление заключается в том, что управляющие импульсы подаются только на ту группу, которая в данный момент должна работать. На вентили неработающей группы управляющие импульсы не подаются. Для изменения режима работы тиристорного преобразователя используется специальное переключающее устройство, которое при равенстве нулю тока тиристорного преобразователя сначала снимает управляющие импульсы с ранее работающей группы, а затем после небольшой паузы (5—10 мс) подает управляющие импульсы на другую группу.

При раздельном управлении нет необходимости включения уравнительных реакторов в цепи отдельных групп вентилей, возможно полное использование трансформатора, снижается вероятность опрокидывания инвертора вследствие уменьшения времени работы тиристорного преобразователя в инверторном режиме, уменьшаются потери энергии и соответственно увеличивается к. п. д. электропривода из-за отсутствия уравнительных токов. Однако раздельное управление предъявляет высокие требования к надежности устройств для блокирования управляющих импульсов.

Сбой в работе блокирующих устройств и появление управляющих импульсов на нерабочей группе тиристоров приводят к внутреннему короткому замыканию в тиристорном преобразователе, так как уравнительный ток между группами в этом случае ограничен только реактансом обмоток трансформатора и достигает недопустимо большого значения.

Источник