Меню

Линейка мощностей силовых трансформаторов

Технические данные трансформаторов

Классификация трансформаторов отечественного производства по габаритам приведена в табл. 5.11. В табл. 5.12–5.24 приведены основ­ные каталожные и расчетные данные трансформаторов.

Габариты трансформаторов

Габарит Группа Диапазон мощностей, кВ-А Класс напряжения, кВ
I 1 До 20 До 35 включительно
2 25-100
II 3 160-250
4 400-630
5 1000
III 6 1600-2500
7 4000-6300
IV 8 10 000-32 000
9 Свыше 32 000
V 10 До 16 000 110 и 150
11 25 000-32 000
VI 12 40 000-63 000 110и150
13 До 63 000 220 и 330
VII 14 80 000-200 000 110и150
15 80 000-200 000 220 и 330
VIII 16 Свыше 200 000 До 330
включительно
17 Независимо от мощности Свыше 330
18 Для электропередач Независимо от
постоянного тока напряжения
независимо от мощности

Примечание: трансформаторы, имеющие мощность или напряжение, не соответствующие стандартной шкале, относятся к габариту и группе ближайшей стандартной мощности или напряжения.

Источник

Таблица мощности силовых трансформаторов тока расчёт

Таблица расчёта выбора мощности силовых трансформаторов напряжения номинального тока. Таблица данных коэффициент параметров : холостой ход потерь проводов намотки группы обмоток сопротивления номиналов перегрузки типа силовых трансформаторов 6 10 0,4 кВ

Рациональная схема электроснабжения зависит от технически обоснованного подбора мощности трансформатора, влияющего на эксплуатационные затраты и окупаемость, которая возможна за 6 – 10 лет.

При выборе трансформатора руководствуются следующими критериями:

  1. Категория электроснабжения – определяется количество трансформаторов. Объекты категории электроснабжения III – один трансформатор. Объекты II и I категории электроснабжения – два или в некоторых случаях три трансформатора.
  2. Перегрузочная способность – определение мощности трансформатора.
  3. Суточный график распределения нагрузок – учет нагрузок по времени и дням в неделю.
  4. Экономичный режим работы тр-ра.

Выбор числа трансформаторов

Однотрансформаторные подстанции используются в двух случаях. Во-первых, для объектов III категории электроснабжения. Во-вторых, для потребителей, имеющих возможность резервирования электроснабжения с помощью АВР (автоматического включения резерва) с другого источника питания.

При питании потребителей I и II категории в аварийном режиме на двухтрансформаторной подстанции после срабатывания АВР целый трансформатор принимает на себя нагрузку неисправного. Поэтому его перегрузочной способности должно хватить на время замены вышедшего из строя трансформатора. В нормальном режиме трансформаторы работают недогруженными, что экономически нецелесообразно. Поэтому при аварийной ситуации некоторые потребители III категории электроснабжения отключают от сети.

Перерыв питания объектов II категории ограничен временем в одни сутки. Для восстановления схемы необходим стратегический складской резерв оборудования необходимого для ликвидации аварии. При этом мощность нового трансформатора должна быть идентична заменяемому. Таким образом, сокращается количество резервного оборудования.

Как выбрать силовой трансформатор по мощности

Сбор и анализ мощностей потребителей, запитанных от одного трансформатора, не всегда оказывается достаточным.

Для производственных объектов руководствуются порядком ввода оборудования в работу. При этом учитывают, что все потребители не могут быть включены одновременно. Однако также принимают во внимание возможное увеличение производственной мощности.

Поэтому при расчете и выборе мощности силового трансформатора руководствуются графиком среднесуточной и полной активной нагрузки подстанции, а также длительностью максимальной нагрузки. Если рассчитывается трансформатор, который будет участвовать в электроснабжении объектов жилой инфраструктуры, то учитывают и время года. В зимнее время нагрузка увеличивается за счет включения электрического обогрева, летом – кондиционеров.

Таблица №1 — Выбор силового трансформатора по мощности и допустимым аварийным нагрузкам

Читайте также:  Мощность всасывания робота пылесоса xiaomi vacuum mop skv4093gl
Вид нагрузки Интервалы нагрузки (кВ-А) для трансформаторов мощностью (кВ-А)
25 40 63 100 160 250 400 630
Производственные потребители, хоздворы,
мастерские по обслуживанию сельскохозяйственной
техники, стройцеха, овощехранилища и
насосные станции водоснабжения, котельные
до 42 43-68 69-107 108-169 170-270 271-422 423-676 677-1064
Комунально-бытовые потребители — общественные
и административные предприятия (школы,
клубы, столовые, бани, магазины)
в сочетании с жилыми домами
до 44 45-70 71-110 111-176 177-278 279-435 436-696 697-1096
Сельские жилые дома, группы
сельских жилых домов (как правило, одноэтажной застройки)
до 45 46-72 73-113 114-179 180-286 287-447 448-716 717-1127
Комунально-бытовые потребители поселков
городского типа и городов районного подчинения
до 43 44-68 69-108 109-172 173-270 271-422 423-676 677-1064
Жилые дома, поселки городского
типа и города районного подчинения
до 42 43-68 69-107 108-170 171-273 274-427 428-684 685-1077
Смешанная нагрузка с преобладанием (более 60%)
производственных потребителей
до 42 43-67 68-106 107-161 162-257 258-402 403-644 645-1014
Со смешанной нагрузкой с преобладанием (более 40%)
комунально-бытовых потребителей
до 42 43-68 69-107 108-164 165-262 263-410 411-656 657-1033

При отсутствии точных сведений активная нагрузка определяется по формуле:

Sном ≥ ∑ Pmax ≥ Pp;

Где ∑ Pmax – максимальная активная мощность;

Pp– проектная мощность подстанции.

Если график работы подстанции характеризуется кратковременным пиковым режимом мощности – 30 мин или не более 1 часа, то тр-ор будет работать в недогруженном режиме. Поэтому выгоднее подбирать трансформатор с мощностью, приближенной к продолжительной максимальной нагрузке и полностью использовать перегрузочные возможности трансформатора с учетом систематических перегрузок в нормальном режиме.

В реальных условиях значение допустимой перегрузки определяется коэффициентом начальной загрузки. На выбор величины нагрузки влияет температура окружающего воздуха, в котором находится работающий трансформатор.

Коэффициент загрузки всегда меньше единицы.

Kн = Pc/Pmax = Ic/Imax ; где Pc, Pmax и Ic, Imax – среднесуточные и максимальные мощности и тока.

Таблица №2 — Рекомендуемые коэффициенты загрузки силовых трансформаторов цеховых ТП. Коэффициент ограничивает перегрузку трансформатора оставляя по мощности некоторый запас.

Допустимая длительность, мин

Характер суточной нагрузки эквивалентен температуре окружающей среды, постоянной времени трансформатора, типу охлаждения, допускаются периодические перегрузки.

Рисунок 1 — Расчетный график нагрузки. 1 – суточный по факту; 2 – двухступенчатый эквивалентный фактическому

Согласно графику, начальный период нагрузки характеризуется работой трансформатора с номинальной нагрузкой за 20 часов и коэффициентом начальной нагрузки – 0,705.

Второй период – коэффициент перегруза kпер.= 1,27 и временем – 4 часа. Значит, перегрузки определяются графиком нагрузки преобразованном в эквивалентный график с учетом тепла. Допустимая нагрузка тр-ра зависит от номинальной нагрузки, ее длительности и максимального пика, определяется по коэффициенту превышения нагрузки:

kпер = Iэ max / Iном

коэффициент начальной нагрузки

Iэ max – эквивалентный максимум нагрузки;

Iэ.н — эквивалентная начальная нагрузка.

Перегрузки трансформаторов допустимы, но их возможности: время и величина ограничены нормативами, установленными заводом изготовителем. Правила ПТЭЭП, глава 2. 1. 20 и гл. 2. 1. 21. ограничивают перегрузку трансформатора до 5%.

Таблица №4 — Перегрузка по времени для масляных трансформаторов

Источник



Шкала стандартных мощностей силовых трансформаторов

В нашей стране принята единая шкала мощностей трансформаторов. Выбор рациональной шкалы является одной из основных задач при оптимизации систем промышленного электроснабжения. На сегодняшний день существует две шкалы мощностей: с шагом 1,35 и с шагом 1,6. То есть первая шкала включает мощности: 100, 135, 180, 240, 320, 420, 560 кВА и т. д, а вторая включает 100, 160, 250, 400, 630, 1000 кВА и т. д. Трансформаторы первой шкалы мощностей в настоящее время не производятся и используются на уже существующих ТП, а для проектирования новых ТП применяется вторая шкала мощностей.

Читайте также:  Как измерить мощность своего голоса

Следует отметить, что шкала с коэффициентом 1,35 более выгодна с точки зрения загрузки трансформаторов. Например, при работе двух трансформаторов с коэффициентом загрузки 0,7 при отключении одного из них второй перегружается на 30 %. Такой режим работы соответствует требованиям условий работы трансформатора. Таким образом, его мощность может использоваться полностью.

При допустимой перегрузке в 40 % появляется недоиспользование установленной мощности трансформаторов со шкалой 1,6.

Допустим, два трансформатора на ТП работают раздельно и нагрузка каждого составляет 80 кВА, при отключении одного из них второму требуется обеспечить нагрузку 160 кВА. Вариант установки двух трансформаторов по 100 кВА не может быть принят, поскольку в этом случае перегрузка составит 60 % при выводе из работы одного трансформатора. При установке же трансформаторов по 160 кВА ведёт к их загрузке в нормальном режиме лишь на 50%.

При использовании шкалы с шагом 1,35 можно установить трансформаторы мощностью 135 кВА, тогда их загрузка в нормальном режиме составит 70 %, а в аварийном перегрузка составит не более 40%.

Исходя из этого примера видно, что шкала с шагом 1,35 более рациональна. А около 20% мощности выпускаемых трансформаторов не используется. Возможным решением этой проблемы является установка двух трансформаторов на ТП разной мощности. Однако это решение нельзя считать технически рациональным, поскольку при выводе из строя трансформатора большей мощности, оставшийся трансформатор не покроет всю нагрузку цеха.

Встаёт закономерный вопрос: чем был обусловлен переход на новый ряд мощностей? Ответ, видимо, кроется в сокращении многообразия мощностей для унификации оборудовании: не только трансформаторов, но и смежного с ним (выключатели, выключатели нагрузки, разъединители и др.).

Исходя из всего сказанного, выбор числа и мощности трансформаторов для питания заводских подстанций производится следующим образом:

1) определяется число трансформаторов на ТП, исходя из обеспечения надёжности электроснабжения с учётом категории приёмников;

2) выбираются наиболее близкие варианты мощности выбираемых трансформаторов (не более трёх) с учётом допустимой нагрузки их в нормальном режиме и допустимой перегрузке перегрузки в аварийном режиме;

3) определяется экономически целесообразное решение из намеченных вариантов, приемлемое для конкретных условий;

4) учитывается возможность расширения или развития ТП и решается вопрос о возможной установке более мощных трансформаторов на тех же фундаментах, либо предусматривается возможность расширения подстанции за счёт увеличения числа трансформаторов.

Короткие замыкания. Основные понятия и соотношения величин токов.

Короткое замыкание (КЗ) — электрическое соединение двух точек электрической цепи с различными значениями потенциала, не предусмотренное конструкцией устройства и нарушающее его нормальную работу. Короткое замыкание может возникать в результате нарушения изоляции токоведущих элементов или механического соприкосновения неизолированных элементов. Также коротким замыканием называют состояние, когда сопротивление нагрузки меньше внутреннего сопротивления источника питания.

Читайте также:  Коэффициент спроса установленной мощности потребителя

В трёхфазных электрических сетях различают следующие виды коротких замыканий

однофазное (замыкание фазы на землю или нейтральный провод); двухфазное (замыкание двух фаз между собой);

двухфазное на землю (две фазы между собой и одновременно на землю); трёхфазное (три фазы между собой)

В электрических машинах возможны короткие замыкания:

межвитковые — замыкание между собой витков обмоток ротора или статора, либо витков обмоток трансформаторов;

замыкание обмотки на металлический корпус.

Последствия короткого замыкания

Железнодорожное военное оборудование — устройство закорачивания и отвода контактной сети (ЗОКС)

При коротком замыкании резко и многократно возрастает сила тока, протекающего в цепи, что, согласно закону Джоуля — Ленца приводит к значительному тепловыделению, и, как следствие, расплавлению электрических проводов, с последующим возникновением возгорания и распространением пожара.

Короткое замыкание в одном из элементов энергетической системы способно нарушить её функционирование в целом — у других потребителей может снизиться питающее напряжение, что может привести к повреждению устройства; в трёхфазных сетях при коротких замыканиях возникает асимметрия напряжений, нарушающая нормальное электроснабжение. В больших энергосетях короткое замыкание может вызывать тяжёлые системные аварии.

В случае повреждения проводов воздушных линий электропередачи и замыкании их на землю в окружающем пространстве может возникнуть сильное электромагнитное поле, способное в близко расположенном оборудовании навести ЭДС, опасную для аппаратуры и работающих с ней людей.

Для защиты от короткого замыкания принимают специальные меры:

Ограничивающие ток короткого замыкания: устанавливают токоограничивающие электрические реакторы;

применяют распараллеливание электрических цепей, то есть отключение секционных и шиносоединительных выключателей;

используют понижающие трансформаторы с расщеплённой обмоткой низкого напряжения;

используют отключающее оборудование — быстродействующие коммутационные аппараты с функцией ограничения тока короткого замыкания — плавкие предохранители и автоматические выключатели;

Применяют устройства релейной защиты для отключения поврежденных участков цепи

Основные понятия и соотношения величин токов.Электрический ток — упорядоченное по направлению движение электрических зарядов. За направление тока принимается направление движения положительных зарядов.

Прохождение тока по проводнику сопровождается следующими его действиями:

магнитным (наблюдается во всех проводниках)

тепловым (наблюдается во всех проводниках, кроме сверхпроводников) химическим (наблюдается в электролитах).

Для возникновения и поддержания тока в какой-либо среде необходимо выполнение двух условий:1) наличие в среде свободных электрических зарядов ; 1)создание в среде электрического поля.

В разных средах носителями электрического тока являются разные заряженные частицы.

Электрическое иоле в среде необходимо для создания направленного движения свободных зарядов. Как известно, на заряд q в электрическом поле напряженностью Е действует сила F = q* E, которая и заставляет свободные заряды двигаться в направлении электрического поля. Признаком существования в проводнике электрического поля является наличие не равной нулю разности потенциалов между любыми двумя точками проводника,

Однако, электрические силы не могут длительное время поддерживать электрический ток. Направленное движение электрических зарядов через некоторое время приводит к выравниванию потенциалов на концах проводника и, следовательно, к исчезновению в нем электрического поля.

Для поддержания тока в электрической цепи на заряды кроме кулоновских сил должны действовать силы неэлектрической природы (сторонние силы).

Устройство, создающее сторонние силы, поддерживающее разность потенциалов в цепи и преобразующее различные виды энергии в электрическую энергию, называется источником тока.

Для существования электрического тока в замкнутой цепи необходимо включение в нее источника тока.

Источник

Adblock
detector