Меню

Максимальное рабочее напряжение варистора

Максимальное рабочее напряжение варистора

Варисторы устанавливаются параллельно защищаемому электрооборудованию. В случае трехфазной нагрузки при соединении «звездой» они включаются в каждую фазу между фазой и землей, а при соединении нагрузки «треугольником» — между фазами. Наиболее предпочтительное место установки варисторов — сразу после коммутационного аппарата со стороны защищаемой нагрузки. Заводом «ПРОГРЕСС» выпускается очень удобный трехфазный ограничитель импульсных напряжений «Импульс-1», который представляет собой устройство для закрепления варисторов на электрощите, содержащее помещенные в корпус приспособления — держатели для трех варисторов, снабженные выводами. Это устройство позволяет легко реализовывать схемы защиты трехфазной нагрузки, соединенной как «звездой», так и «треугольником», а также защищать до трех независимых электроустановок, питающихся от однофазной сети.

Выбор типа используемого варистора и определение его классификационного напряжения осуществляется на основе анализа работы варистора в двух режимах: в рабочем и в импульсном.

1. Анализ работы варистора в рабочем режиме состоит в определении по таблице 1 такого классификационного напряжения, для которого длительное максимальное напряжение на нагрузке наиболее близко к табличному значению, но не превосходит его. Данные таблицы справедливы для варисторов с предельными отклонениями классификационного напряжения не более 10 % . Максимально допустимое длительное действующее переменное напряжение для варисторов зарубежного производства в большинстве случаев указывается в составе маркировки.

2. Анализ работы варистора в импульсном режиме состоит в расчете максимальной мгновенной энергии по формуле:

где E — максимальная мгновенная энергия в джоулях, P — номинальная мощность нагрузки, приходящаяся на одну фазу (Вт), f — частота переменного напряжения (Гц), ? — КПД защищаемой нагрузки. Такие расчеты обычно выполняются для нагрузок в несколько киловатт и более.

По таблице 2 выбирают тип варистора, обеспечивающего рассеивание энергии, значение которой рассчитано по приведенной формуле. .

Источник



Что такое варистор, основные технические параметры, для чего используется

Содержание

  1. Что такое варистор и где применяется
  2. Виды и принцип работы
  3. Маркировка, основные характеристики и параметры
  4. Преимущества и недостатки варисторов
  5. Подбор варистора
  6. Обозначение на схеме и варианты подключения варистора

Каждый электронный прибор, который включен в сеть нуждается в защите от превышения пороговых значений тока или напряжения. Для защиты по току применяют различные плавкие предохранители и автоматические выключатели, а вот для предохранения устройства от перенапряжения чаще всего применяют варисторы. В данной статье мы рассмотрим принцип работы варистора, его характеристики, достоинства и недостатки этого электронного компонента.

Читайте также:  Тест по теме напряжение вольтметр 8 класс

Что такое варистор и где применяется

Варистор – это выполненный из полупроводникового материала переменный резистор, который способен изменять свое электрическое сопротивление в зависимости от приложенного к нему напряжения.

Принцип действия у такого электронного компонента отличается от обычного резистора и потенциометра. Стандартный резистор имеет постоянное во величине сопротивление в любой промежуток времени вне зависимости от напряжения в цепи, потенциометр позволяет менять сопротивление вручную, поворачивая ручку управления. А вот варистор обладает нелинейной симметричной вольтамперной характеристикой и его сопротивление полностью зависит от напряжения в цепи.

Благодаря этому свойству, варисторы широко и эффективно применяют для защиты электрических сетей, машин и оборудования, а также радиоэлектронных компонентов, плат и микросхем вне зависимости от вида напряжения. Они имеют невысокую цену изготовления, надежны в использовании и способны выдерживать высокие нагрузки.

Варисторы применяются, как в высоковольтных установках до 20 кВ, так и в низковольтных от 3 до 200 В в качестве ограничителя напряжения. При этом они могут работать, как в сетях с переменным, так и с постоянным током. Их используют для регулировки и стабилизации тока и напряжения, а также в защитных устройствах от перенапряжения. Используются в конструкции сетевых фильтров, блоков питания, мобильных телефонов, УЗИП и других ОИН.

Виды и принцип работы

При работе в нормальных условиях варистор имеет огромное сопротивление, которое может снижаться при превышении напряжением порогового значения. То есть, если значительно повышается напряжение в цепи, то варистор переходит из изолирующего состояния в электропроводящее и за счет лавинного эффекта в полупроводнике стабилизирует напряжение с помощью пропускания через себя тока большой величины.

Варисторы могут работать с высоким и низким напряжением и, соответственно, подразделяются на две группы устройств, которые имеют одинаковый принцип работы:

  1. Высоковольтные: способные работать в цепях со значениями тока до 20 кВ (используются в защитных системах сетей и оборудования, в устройства защиты от импульсных перенапряжений).
  2. Низковольтные: номинальное напряжения для компонентов данного вида варьируется от 3 до 200 В (применяется для защиты электронных устройств и компонентов оборудования с током 0,1 – 1А и устанавливаются на входе или выходе источника питания).

Время срабатывания варистора при скачке напряжения составляет около 25 нс, что является отличным значением, но в некоторых случая недостаточным. Поэтому производители электронных компонентов разработали технологию изготовления smd-резистора, который имеет время срабатывания от 0,5 нс.

Читайте также:  Напряжение 110 лучше чем 220

Варисторы всех типов изготавливают из карбида кремния или оксида цинка путем спекания данного материала со связующим веществом (смолы, глина, стекло) при высокой температуре. После получения полупроводникового элемента выполняется его металлизация с обеих сторон с припайкой металлических выводов для подключения.

Маркировка, основные характеристики и параметры

Каждый производитель варисторов маркирует свой продукт определенным образом, поэтому существует достаточно большое количество вариантов обозначений и их расшифровок. Наиболее распространенным российским варистором является К275, а популярными компонентами иностранного производства являются 7n471k, kl472m и другие.

Расшифровать обозначение варистора CNR-10d751k можно следующим образом: CNR – металлооксидный варистор; d – означает, что компонент в форме диска; 10 – это диаметр диска; 751 –напряжение срабатывания для данного устройства (расчёт происходит путём умножения первых двух цифр на 10 в степени равной третьей цифре, то есть 75 умножаем на 10 в первой степени получатся 750 В); k – допустимое отклонение номинального напряжения, которое равно 10 % в любую сторону (l – 15%, M – 20%, P – 25 %).

Основными характеристиками варисторов являются следующие параметры:

Классификационное напряжение – напряжение при определенных значениях тока, протекающего через варистор ( обычно данное значение составляет 1 мА). Этот параметр является условным и не влияет на выбор устройства;

Максимально допустимое напряжение – диапазон напряжения ( среднеквадратичное или действующее значение), при котором варистор начинает понижать свое сопротивление;

Максимальная энергия поглощения – характеристика, показывающая значение энергии, которую варистор рассеивает и не выходит из строя при воздействии одиночного импульса ( измеряется в Джоулях);

Максимальный импульсный ток – нормирует время нарастания и длительность действия импульса тока ( измеряется в Амперах);

Ёмкость – очень важный параметр, который измеряется при закрытом состоянии и заданной частоте ( падает до нуля, если к варистору приложен большой ток);

Допустимое отклонение – отклонение от номинальной разности потенциалов в обе стороны ( указывается в процентах).

Время срабатывания – промежуток времени, за который варистор переходит из закрытого состояния в открытое ( обычно несколько десятков наносекунд).

Преимущества и недостатки варисторов

Важными преимуществами нелинейного резистора (варистора) является его стабильная и надежная работа с высокими частотами и большими нагрузками. Он применяется во многих устройствах, работающих с напряжениями от 3 В до 20 кВ, относительно прост и дешёв в производстве и эффективен в эксплуатации. Дополнительными важными преимуществами являются:

  • высокая скорость срабатывания (наносекунды);
  • длительный срок службы;
  • возможность отслеживания перепадов напряжения (безынерционный метод).
Читайте также:  Блок 220 с регулятором напряжения

Несмотря на то, что данный электронный компонент имеет достаточно много преимуществ, он имеет и недостатки, которые влияют на его применение в различных системах. К ним можно отнести:

  • низкочастотный шум при работе;
  • старение компонента (утрата параметров со временем);
  • большая емкость: зависит от напряжения и типа элемента, находится в диапазоне от 70 до 3200 пФ и влияет на работоспособность устройства;
  • при максимальных значениях напряжения мощность не рассеивается – значительно перегревается и выходит из строя при длительных максимальных значениях напряжения.

Подбор варистора

Чтобы правильно подобрать варистор для определенного устройства необходимо знать характеристики его источника питания: сопротивление и мощность импульсов переходных процессов. Максимально допустимое значение тока определяется в том числе длительностью его воздействия и количеством повторений, поэтому при установке варистора с заниженным значением пикового тока, он достаточно быстро выйдет из строя. Если говорить кратко, то для эффективной защиты прибора необходимо выбирать варистор с напряжением, имеющим небольшой запас к номинальному.

Также для безотказной работы такого электронного компонента очень важна скорость рассеивания поглощенной тепловой энергии и возможность быстро возвращаться в состояние нормальной работы.

Обозначение на схеме и варианты подключения варистора

На схемах варистор обычно обозначается, как обычный резистор, но с добавлением буквы U рядом с наклонной чертой. Эта черта и указывает в схемах на то, что данный элемент имеет зависимость сопротивления от напряжения в цепи. Также на электрической схеме этот элемент маркируется двумя буквами R и U с добавлением порядкового номера (RU1, RU2 … и т.д.).

Существует большое количество вариантов подключения варисторов, но общее для всех способов – это то, что данный компонент подключается параллельно цепи питания. Поэтому при отсутствии опасных значений импульсов напряжения, ток, который протекает через варистор имеет малую величину (ввиду больших значений сопротивления) и никак не влияет на работоспособность системы. При возникновении перенапряжения, варистор изменяет сопротивление до малых величин, нагрузка шунтируется, и поглощенная энергия рассеивается в окружающее пространство.

Источник