Меню

Метод наложения эдс источник тока

1.2 Метод наложения

1.2 Метод наложения

Метод наложения основан на свойстве линейности электрических цепей. Метод наложения справедлив только для линейных цепей. Метод наложения применяется для определения токов в ветвях схемы с несколькими источниками.

Алгоритм метода наложения:

1) выбирают положительные направления токов в ветвях цепи;

2) находят частичные токи в ветвях, вызванные каждым источником по отдельности (схему рассчитывают столько раз, сколько источников действует в схеме);

3) токи в ветвях по методу наложения находят как алгебраическую сумму частичных токов (знак частичного тока при суммировании определяется по положительному направлению тока ветви).

Решение задач методом наложения

Задача 1.2.1 . В электрической цепи рис. 1.2.1 с тремя источниками энергии определить все токи в ветвях, воспользовавшись методом наложения.

1. Выполним расчет цепи при воздействии источника ЭДС E1, полагая E3 = 0, J = 0. Источники считаем идеальными, поэтому внутренние сопротивления ЭДС равны нулю, а источника тока – бесконечности. С учетом этого изобразим расчетную схему (рис. 1.2.2).

Определение токов в полученной схеме будем вести, пользуясь методом эквивалентных преобразований:

R ′ Э = R 5 + R 2 ⋅ ( R 3 + R 4 ) R 2 + ( R 3 + R 4 ) = 15 + 30 ⋅ ( 10 + 5 ) 30 + ( 10 + 5 ) = 25 О м ; I ′ 1 = E 1 R ′ Э = 150 25 = 6 A ; I ′ 5 = I ′ 1 = 6 A ; I ′ 2 = I ′ 1 ⋅ R 3 + R 4 R 2 + ( R 3 + R 4 ) = 6 ⋅ 10 + 5 30 + ( 10 + 5 ) = 6 A ; I ′ 3 = I ′ 1 ⋅ R 2 R 2 + ( R 3 + R 4 ) = 6 ⋅ 30 30 + ( 10 + 5 ) = 4 A ; I ′ 3 = I ′ 4 = 4 A .

2. Расчет электрической цепи при воздействии ЭДС источника Е3 выполним, полагая Е1 = 0, J = 0 (рис. 1.2.3).

В соответствии с рис. 1.2.3 имеем:

R ″ Э = R 3 + R 4 + R 2 ⋅ R 5 R 2 + R 5 = 10 + 5 + 30 ⋅ 15 30 + 15 = 25 О м ; I ″ 3 = E 3 R ″ Э = 50 25 = 2 A ; I ″ 4 = I ″ 3 = 2 A ; I ″ 2 = I ″ 4 ⋅ R 5 R 2 + R 5 = 2 ⋅ 15 15 + 30 = 0,66 A ; I ″ 5 = I ″ 4 ⋅ R 2 R 2 + R 5 = 2 ⋅ 30 15 + 30 = 1,33 A ; I ″ 1 = I ″ 5 = 1,33 A .

3. Расчет электрической цепи при действии источника тока выполним, полагая E1 = 0, Е2 = 0 (рис. 12.4).

В соответствии с рис. 1.2.4 имеем:

R ? Э = R 4 + R 2 ⋅ R 5 R 2 + R 5 = 5 + 30 ⋅ 15 30 + 15 = 15 О м .

Находим токи в параллельных ветвях:

I ? 3 = J ⋅ R ? Э R ? Э + R 3 = 15 ⋅ 15 15 + 10 = 9 A ; I ? 4 = J ⋅ R 3 R ? Э + R 3 = 15 ⋅ 10 15 + 10 = 6 A ; I ? 2 = I ? 4 ⋅ R 5 R 2 + R 5 = 6 ⋅ 15 15 + 30 = 2 A ; I ? 5 = I ? 4 ⋅ R 2 R 2 + R 5 = 6 ⋅ 30 15 + 30 = 4 A .

Ток I ? рассчитываем по первому закону Кирхгофа:

I ? 1 + I ? 5 − J = 0 ; I ? 1 = J − I ? 5 = 15 − 4 = 11 A .

4. В соответствии с принятыми направлениями токов в исходной схеме определим их значения по методу наложения как алгебраическую сумму частичных токов всех промежуточных расчетных схем:

I 1 = I ′ 1 + I ″ 1 − I ? 1 = 6 + 1,33 − 11 = − 3,67 A ; I 2 = I ′ 2 − I ″ 2 − I ? 2 = 2 − 0,66 − 2 = − 0,66 A ; I 3 = − I ′ 3 − I ″ 3 + I ? 3 = − 4 − 2 + 9 = 3 A ; I 4 = I ′ 4 + I ″ 4 + I ? 4 = 4 + 2 + 6 = 12 A ; I 5 = I ′ 5 + I ″ 5 + I ? 5 = 6 + 1,33 + 4 = 11,33 A .

Правильность решения задачи проверяем по первому закону Кирхгофа:

− J + I 3 + I 4 = 0 ; − 15 + 3 + 12 = 0 ; − I 2 − I 4 + I 5 = 0 ; − ( − 0,66 ) − 12 + 11,33 = 0.

Токи I1 и I2 получились отрицательными, т.е. их истинное направление в схеме противоположно принятому положительному направлению.

Источник

Метод наложения

Метод наложения является следствием общефизического принципа наложения (суперпозиции), согласно которому реакция цепи на сумму отдельных воздействий равна сумме реакций цепи на каждое воздействие в отдельности.

В электротехнической практике в качестве воздействий чаще всего выступают ЭДС, а в качестве реакций – токи.

Для обоснования применения принципа наложения к анализу электрической цепи можно использовать формулу (10). В этой формуле отношение Δpq/Δ имеет размерность проводимости (См), а текущий член суммы , являющийся произведением проводимости на контурную ЭДС, имеет размерность тока (А) и представляет собой реакцию цепи (частичный ток q-го контура) на контурную ЭДС Epp p-го контура. Поэтому в соответствии с формулой (10) контурный ток равен сумме частичных контурных токов от действия каждой контурной ЭДС в отдельности. Т.е. формула (10) является математическим выражением принципа наложения применительно к контурным токам.

Согласно методу контурных токов контурные ЭДС представляют собой алгебраические суммы ЭДС источников, действующих в рассматриваемом контуре. Токи ветвей являются алгебраическими суммами контурных токов. Поэтому принцип наложения применим и к токам ветвей. А именно: токи ветвей можно рассматривать как алгебраические суммы частичных токов этих же ветвей от поочередного действия каждого из источников электрической энергии в отдельности:

где токи с одним, двумя и т.д. штрихами (число штрихов последнего члена каждой суммы равно количеству источников в схеме) – это так называемые частичные токи ветвей.

Методика расчета по методу наложения.

Расчет состоит из f + 1 этапов, где f – количество источников в схеме.

На первом этапе в цепи оставляют только один источник ЭДС или тока. Для остальных источников ЭДС и тока полагают E = 0, Ik = 0 и оставляют только их внутренние сопротивления Ri или проводимости gi. При этом ветви с идеальными источниками тока разрывают, а ветви с идеальными источниками напряжения заменяют короткозамкнутыми перемычками между точками их включения. Далее любым методом (чаще всего с помощью закона Ома) определяют частичные токи I‘ во всех ветвях схемы от действия оставленного источника. Выбранные условные положительные направления частичных токов в ветвях на схеме обозначают стрелками.

На втором этапе оставляют в цепи второй источник и аналогичным образом определяют частичные токи I» во всех ветвях схемы от действия второго источника, также обозначая на схеме направления действия частичных токов I» стрелками.

Читайте также:  Найдите силу тока в цепи трех резисторов соединенных параллельно

И т.д., выполняя на каждом новом этапе расчет частичных токов от действия очередного источника ЭДС или тока.

На последнем этапе определяют токи ветвей как алгебраические суммы частичных токов (с учетом направлений частичных токов в ветвях).

Примечание. Расчет мощностей и энергий можно вести только по полным токам ветвей, т.к. мощности и энергии являются квадратичными функциями токов.

Пример 3. Рассчитать токи в ветвях схемы рис. 31 методом наложения. Схема характеризуется следующими параметрами: E4 = 40 В, E6 = 32 В, Ri4 = 1 Ом, Ri6 = 1 Ом, R1 = 6 Ом, R2 = 10 Ом, R3 = 2 Ом, R4 = 7 Ом, R5 = 8 Ом, R6 = 9 Ом.

Рис. 31. К методу наложения

Анализируемая схема является мостовой. В схеме четыре узла и шесть ветвей. В четвертой и шестой ветвях имеются источники с ЭДС E4, E6 и внутренними сопротивлениями источников Ri4, Ri6. Выбранные положительные направления токов ветвей указаны на схеме стрелками.

Расчет токов в рассматриваемой схеме методом наложения необходимо выполнять в три этапа. На первом этапе рассчитаем частичные токи ветвей I‘ от действия источника в шестой ветви. На втором этапе определим частичные токи ветвей I» от действия источника в четвертой ветви. На третьем этапе найдем результирующие токи ветвей.

Первый этап.Удаляем из схемы ЭДС E4, оставив в схеме внутреннее сопротивление Ri4. Схема приобретает вид, изображенный на рис. 32.

Рис. 32. К первому этапу метода наложения

Заменим контур-треугольник acd эквивалентной звездой (на схеме рис. 32 лучи звезды показаны внутри контура acd пунктиром). Схема приобретает вид, изображенный на рис. 33.

Рис. 33. Схема замещения для первого этапа метода наложения

Для расчета сопротивлений эквивалентной звезды воспользуемся формулами (7):

Схема рис. 33 по структуре соединения ветвей аналогична схеме рис. 16 и представляет собой смешанное соединение в цепи постоянного тока. На схеме рис. 33 первая и четвертая ветви включены параллельно, а шестая ветвь включена последовательно с ними. Определим эквивалентные сопротивления каждой ветви схемы рис. 33.

Применяя формулу (6) для смешанного соединения в цепи постоянного тока, находим входное сопротивление схемы по отношению к ЭДС E6 схемы рис. 33:

Далее по закону Ома находим частичный ток шестой ветви

Для определения частичных токов первой и четвертой ветвей рассчитаем напряжение между узлами e и b схемы рис. 33:

Частичные токи первой и четвертой ветвей находим по закону Ома:

Для нахождения частичных токов второй, третьей и пятой ветвей схемы рис. 32 необходимо рассчитать напряжения , , . Расчет выполняем, используя схему рис. 33:

Возвращаемся к схеме рис. 32 и, используя закон Ома для участка цепи, определяем частичные токи второй, третьей и пятой ветвей:

Второй этап. Удалим из исходной схемы (см. рис. 31) ЭДС E6, оставив в схеме внутреннее сопротивление Ri6. Схема приобретает вид, изображенный на рис. 34.

Рис. 34. Ко второму этапу метода наложения

Заменим контур-треугольник acd эквивалентной звездой (на схеме рис. 34 лучи звезды показаны внутри контура acd пунктиром). Схема приобретает вид, изображенный на рис. 35.

Схема рис. 35 – это смешанное соединение в цепи постоянного тока. Численные значения сопротивлений Ra, Rb, Rc эквивалентной звезды схемы рис. 35 те же, что и схемы рис. 33, а именно: Ra = 1 Ом, Rb = 0,8 Ом, Rc = 4 Ом. Поэтому и эквивалентные сопротивления каждой ветви схемы рис. 35 такие же, как и у и схемы рис. 33. Эти сопротивления найдены выше: R1a = = 7 Ом, R4c = 12 Ом, R6b = 10,8 Ом.

Рис. 35. Схема замещения для второго этапа метода наложения

На схеме рис. 35 первая и шестая ветви включены параллельно, а четвертая ветвь включена последовательно с ними. Применяя формулу (6) для смешанного соединения в цепи постоянного тока, находим входное сопротивление по отношению к ЭДС E4 схемы рис. 35:

Далее по закону Ома находим частичный ток четвертой ветви

Для определения частичных токов первой и шестой ветвей рассчитаем напряжение между узлами e и b схемы рис. 35:

Частичные токи первой и шестой ветвей находим по закону Ома:

Для нахождения частичных токов второй, третьей и пятой ветвей схемы рис. 34 необходимо рассчитать напряжения , , . Расчет выполняем, используя схему рис. 35:

В; В;

Возвращаемся к схеме рис. 34 и, используя закон Ома для участка цепи, определяем частичные токи второй, третьей и пятой ветвей:

Третий этап. Токи ветвей схемы рис. 31 определяем как алгебраические суммы частичных токов:

Источник



Метод наложения токов. Пример решения

Наряду с методом контурных токов для анализа электрических цепей используется другой метод – метод наложения . Этот метод основан на принципе наложения, который применяется только к линейным системам.

Метод наложения относительно прост, и в основном применяется для не сложных электрических цепей.

Его суть заключается в том, что токи в ветвях определяются как алгебраическая сумма их составляющих от каждого источника. То есть каждый источник тока вносит свою часть в каждый ток в цепи, а чтобы найти эти токи, нужно найти и сложить все составляющие. Таким образом, мы сводим решение одной сложной цепи к нескольким простым (с одним источником).

Читайте также:  Сварочный аппарат ресанта 220 ток

Порядок расчета

1 – Составление частных схем, с одним источником ЭДС, остальные источники исключаются, от них остаются только их внутренние сопротивления.

2 – Определение частичных токов в частных схемах, обычно это несложно, так как цепь получается простой.

3 – Алгебраическое суммирование всех частичных токов, для нахождения токов в исходной цепи.

Пример решения методом наложения

1. Для начала произвольно выберем направление токов, если в итоге какой либо ток получится со знаком минус, значит нужно изменить направление данного тока на противоположное.

2. Составим частную схему с первым источником ЭДС и рассчитаем частные токи в ней, убрав второй источник. Для удобства частичные токи будем обозначать штрихами.

Свернем схему к одному контуру, с сопротивлением источника и эквивалентным сопротивлением цепи для нахождения тока источника I1. Для тех, у кого возникают затруднения с нахождением эквивалентного сопротивления рекомендуем прочесть статью виды соединения проводников.

Найдем ток по закону Ома для полной цепи

Найдем напряжение на R 2345

Тогда ток I3 равен

Определим напряжение на R25

3. Составим частную схему со вторым источником ЭДС

Аналогичным образом вычислим все частичные токи от второй ЭДС

4. Найдем токи в исходной цепи, для этого просуммируем частичные токи, учитывая их направление. Если направление частичного тока совпадает с направлением исходного тока, то берем со знаком плюс, в противном случае со знаком минус.

5. Проверим с правильность решения с помощью баланса мощностей.

Небольшая погрешность связана с округлениями промежуточных значений в ходе выполнения вычислений.

Похожие публикации

  • Поиск 🔍
  • ТОЭ
    • Цепи постоянного тока
    • Цепи переменного тока
    • Методы анализа электрических цепей
    • Трехфазные электрические цепи
    • Переходные процессы
  • Электричество и магнетизм
  • Электрические машины
    • Трансформатор
    • Асинхронный двигатель
    • Асинхронные машины специального назначения
    • Двигатель постоянного тока
  • Электроника
    • Выпрямители
  • Электричество в быту
  • Электромагнитные устройства
  • Альтернативная энергетика
  • Заказать решение задачи
  • ТОЭ, электроника и электрические машины | electroandi.ru

Скидка по промокоду fr054-140151 — 8% !

Источник

Метод наложения эдс источник тока

Выбор того или иного метода расчета электрической цепи в конечном итоге определяется целью решаемой задачи. Поэтому анализ линейной цепи не обязательно должен осуществляться с помощью таких общих методов расчета, как метод контурных токов или узловых потенциалов. Ниже будут рассмотрены методы, основанные на свойствах линейных электрических цепей и позволяющие при определенных постановках задач решить их более экономично.

Метод наложения

Данный метод справедлив только для линейных электрических цепей и является особенно эффективным, когда требуется вычислить токи для различных значений ЭДС и токов источников в то время, как сопротивления схемы остаются неизменными.

Данный метод основан на принципе наложения (суперпозиции), который формулируется следующим образом: ток в k – й ветви линейной электрической цепи равен алгебраической сумме токов, вызываемых каждым из источников в отдельности.

Аналитически принцип наложения для цепи, содержащей n источников ЭДС и m источников тока, выражается соотношением

Здесь — комплекс входной проводимости k – й ветви, численно равный отношению тока к ЭДС в этой ветви при равных нулю ЭДС в остальных ветвях; — комплекс взаимной проводимости k – й и i– й ветвей, численно равный отношению тока в k – й ветви и ЭДС в i– й ветви при равных нулю ЭДС в остальных ветвях.

Входные и взаимные проводимости можно определить экспериментально или аналитически, используя их указанную смысловую трактовку, при этом , что непосредственно вытекает из свойства взаимности (см. ниже).

Аналогично определяются коэффициенты передачи тока , которые в отличие от проводимостей являются величинами безразмерными.

Доказательство принципа наложения можно осуществить на основе метода контурных токов.

Если решить систему уравнений, составленных по методу контурных токов, относительно любого контурного тока, например , то получим

где — определитель системы уравнений, составленный по методу контурных токов; — алгебраическое дополнение определителя .

Каждая из ЭДС в (2) представляет собой алгебраическую сумму ЭДС в ветвях i–го контура. Если теперь все контурные ЭДС в (2) заменить алгебраическими суммами ЭДС в соответствующих ветвях, то после группировки слагаемых получится выражение для контурного тока в виде алгебраической суммы составляющих токов, вызванных каждой из ЭДС ветвей в отдельности. Поскольку систему независимых контуров всегда можно выбрать так, что рассматриваемая h-я ветвь войдет только в один -й контур, т.е. контурный ток будет равен действительному току h-й ветви, то принцип наложения справедлив для токов любых ветвей и, следовательно, справедливость принципа наложения доказана.

Таким образом, при определении токов ветвей при помощи метода наложения следует поочередно оставлять в схеме по одному источнику, заменяя остальные их внутренними сопротивлениями, и рассчитать составляющие искомых токов в этих схемах. После этого полученные результаты для соответствующих ветвей суммируются – это и будут искомые токи в ветвях исходной цепи.

В качестве примера использования метода наложения определим ток во второй ветви схемы на рис. 1,а.

Принимая источники в цепи на рис. 1,а идеальными и учитывая, что у идеального источника ЭДС внутреннее сопротивление равно нулю, а у идеального источника тока – бесконечности, в соответствии с методом наложения приходим к расчетным схемам на рис. 1,б…1,г.

Читайте также:  Голову как током пронизывает

В качестве другого примера использования метода определим взаимные проводимости и в цепи на рис. 2, если при переводе ключа в положение 1 токи в первой и второй ветвях соответственно равны и , а при переводе в положение 2 — и .

Учитывая, что в структуре пассивного четырехполюсника не содержится источников энергии, на основании принципа наложения для состояния ключа в положении “1” можно записать

; (3)
. (4)

При переводе ключа в положение “2” имеем

; (5)
.. (6)

Тогда, вычитая из уравнения (3) соотношение (5), а из (4)-(6), получим

откуда искомые проводимости

Принцип взаимности

Принцип взаимности основан на теореме взаимности, которую сформулируем без доказательства: для линейной цепи ток в k – й ветви, вызванной единственной в схеме ЭДС , находящейся в i – й ветви,

будет равен току в i – й ветви, вызванному ЭДС , численно равной ЭДС , находящейся в k – й ветви,

Отсюда в частности вытекает указанное выше соотношение .

Иными словами, основанный на теореме взаимности принцип взаимности гласит: если ЭДС , действуя в некоторой ветви схемы, не содержащей других источников, вызывает в другой ветви ток (см. рис. 3,а), то принесенная в эту ветвь ЭДС вызовет в первой ветви такой же ток (см. рис. 3,б).

В качестве примера использования данного принципа рассмотрим цепь на рис. 4,а, в которой требуется определить ток , вызываемый источником ЭДС .

Перенесение источника ЭДС в диагональ моста, где требуется найти ток, трансформирует исходную схему в цепь с последовательно-параллельным соединением на рис. 4,б. В этой цепи

В соответствии с принципом взаимности ток в цепи на рис. 4,а равен току, определяемому соотношением (7)

Линейные соотношения в линейных электрических цепях

При изменении в линейной электрической цепи ЭДС (тока) одного из источников или сопротивления в какой-то ветви токи в любой паре ветвей m и n будут связаны между собой соотношением

где А и В – некоторые в общем случае комплексные константы.

Действительно, в соответствии с (1) при изменении ЭДС в k – й ветви для тока в m – й ветви можно записать

и для тока в n – й ветви –

Здесь и — составляющие токов соответственно в m – й и n – й ветвях, обусловленные всеми остальными источниками, кроме .

Умножив левую и правую части (10) на , вычтем полученное соотношением из уравнения (9). В результате получим

Обозначив в (11) и , приходим к соотношению (8).

Отметим, что в соответствии с законом Ома из уравнения (8) вытекает аналогичное соотношение для напряжений в линейной цепи.

В качестве примера найдем аналитическую зависимость между токами и в схеме с переменным резистором на рис. 5, где ; ; .

Коэффициенты А и В можно рассчитать, рассмотрев любые два режима работы цепи, соответствующие двум произвольным значениям .

Выбрав в качестве этих значений и , для первого случая ( ) запишем

При (режим короткого замыкания)

Принцип компенсации

Принцип компенсации основан на теореме о компенсации, которая гласит: в любой электрической цепи без изменения токов в ее ветвях сопротивление в произвольной ветви можно заменить источником с ЭДС, численно равной падению напряжения на этом сопротивлении и действующей навстречу току в этой ветви.

Для доказательства теоремы выделим из схемы произвольную ветвь с сопротивлением , по которой протекает ток , а всю остальную часть схемы условно обозначим некоторым активным двухполюсником А (см. рис. 6,а).

При включении в ветвь с двух одинаковых и действующих навстречу друг другу источников ЭДС с (рис. 6,б) режим работы цепи не изменится. Для этой цепи

Равенство (12) позволяет гальванически соединить точки а и c, то есть перейти к цепи на рис. 6,в. Таким образом, теорема доказана.

В заключение следует отметить, что аналогично для упрощения расчетов любую ветвь с известным током можно заменить источником тока .

  1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
  2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
  3. Каплянский А.Е. и др. Теоретические основы электротехники. Изд. 2-е. Учеб. пособие для электротехнических и энергетических специальностей вузов. –М.: Высш. шк., 1972. –448 с.

Контрольные вопросы и задачи

  1. Для каких цепей применим принцип суперпозиции?
  2. В каких случаях эффективно применение метода наложения?
  3. Как определяются входные и взаимные проводимости ветвей?
  4. Докажите теорему взаимности.
  5. Какими линейными соотношениями связаны токи и напряжения в ветвях линейной цепи?
  6. Можно ли распространить принцип компенсации на нелинейную электрическую цепь?
  7. Определить методом наложения ток в первой ветви цепи на рис. 1,а.

В цепи на рис. 2 . Определить токи в остальных ветвях схемы, воспользовавшись линейным соотношением, принципом компенсации и методом наложения.

Источник